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Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson’s disease (PD) and other synucleinopathies have 
been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which 
can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral 
tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion  
(RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to iden-
tify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn −); to augment clinical diagnosis however, 
aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer’s disease 
(AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with 
Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, 
which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, 
and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical 
trial design and individualized therapies.

Keywords Parkinson’s disease · Alpha-synuclein · Real-time quaking induced conversion · Protein misfolding cyclic 
amplification · Immunofluorescence · Biopsy

Introduction

Parkinson’s disease (PD) is pathologically characterized by 
inclusions of alpha-synuclein (aSyn) that compose Lewy 
bodies and Lewy neurites [1]. These inclusions are found 
in fairly stereotyped patterns that progress from brainstem 
nuclei, to limbic regions and lastly to neocortical areas [2]. 
At this time, a definitive diagnosis of PD can only be ren-
dered after neuropathological assessments are performed, 
with levels of clinically established and clinically probable 
certainties being attainable during life [3]. Clinical diag-
nostic accuracy for PD has varied among studies over the 
last several decades and ranges from 50% to greater than 
90% [4–9]. Factors that tend to relate to lower diagnostic 

accuracy are an older age at onset and a shorter degree of 
disease duration at time of assessment or a lower amount of 
clinical follow-up time [4, 9]. Thus, the diagnostic stand-
ard remains postmortem neuropathological diagnosis until 
a method to reliably detect aSyn in vivo is developed. Most 
biomarker studies rely on patients who have been clinically 
diagnosed with PD who do not go on to have autopsy valida-
tion. While this creates some uncertainty regarding the accu-
racy of diagnosis and this may be problematic in developing 
novel biomarkers, the current clinical criteria for PD are felt 
to have high specificity [9]. Furthermore, because there is no 
currently accepted quantitative aSyn biomarker, studies of 
these candidate biomarkers are compared to clinical metrics 
like motor severity or cognition which can be influenced by 
many factors and are fundamentally indirect measures of 
disease activity. While aSyn-specific biomarkers remain a 
critical unmet need for the field, they are especially needed 
for application in early disease when clinical diagnostic 
accuracy is at its lowest and also when disease-modifying 
interventions may have the greater utility.

Over the last decade, there has been considerable 
advancements in fluid and tissue-based assays in PD. Early 
work focused on CSF aSyn species including total aSyn, 
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phosphorylated aSyn, and oligomeric aSyn species using 
immunoassays [10–12]. Plasma aSyn assays are under devel-
opment as well [13, 14]. More recently, aSyn deposits have 
been noted in a variety of peripheral tissues of PD patients, 
including skin, submandibular glad, colon, and nasal mucosa 
and these observations have led to the development of meth-
ods to detect these deposits through immunohistochemistry 
or immunofluorescence methods [15, 16]. Additionally, the 
observations that pathologically misfolded aSyn species 
may induce sequential templating of normal monomeric 
aSyn in a prion-like fashion, has led to the development of 
aSyn-seeding amplification assays (aSyn-SAAs), which use 
these properties to identify patients who harbor pathogenic 
aSyn seeds in spinal fluid and peripheral tissues [17–21]. 
While some of these assays are still under development in 
the research setting, others are reaching levels of standardi-
zation and interlaboratory variability rapidly approaching 
possible acceptable levels for clinical use.

aSyn aggregates in Lewy bodies and Lewy neurites are 
the primary neuropathology and gold-standard for diagno-
sis of PD and their burden is roughly related to severity of 
disease and certain disease features like dementia [22–26]. 
However, multiple biological factors, even sex, can influ-
ence phenotypic expression of pathological burden [27, 28]. 
Additionally, it is exceedingly common in autopsy stud-
ies that other co-pathologies aside from aSyn are found; 
approximately 35–50% of PD patients with dementia with 
have moderate to high levels of AD neuropathologic change 
[29–33]. This number is considerably higher in DLB, where 
rates of moderate or severe AD co-pathology can reach 70% 
or greater [34, 35]. The presence of the AD co-pathology is 
well described to be related to older age of onset, faster time 
to dementia, decreased overall survival, greater likelihood 
of an akinetic-rigid motor phenotype, and specific cogni-
tive features [31, 32, 36–42]. AD biomarkers are established 
using a framework for biological classification of AD based 
on positivity for amyloid-beta, tau, and neurodegeneration 
(A/T/N) [43]. A similar approach is understudied in PD and 
related synucleinopathies, but early work suggests that CSF 
AD biomarkers can be used to detect the presence of these 
AD co-pathologies in PD and predict cognitive and over-
all prognostic outcomes which could have utility in clini-
cal care and trial design [44–51]. However, the application 
of AD CSF biomarkers in clinical care for PD is unclear, 
as biological factors related to aSyn may influence AD 
biomarkers in a manner independent from AD pathology, 
necessitating PD-specific diagnostic cut-points, but further 
studies with autopsy-confirmation are needed [46, 47, 52]. 
The presence of AD co-pathology is not universal, nor is it 
exclusively linked to worse prognosis; there are many cases 
of “pure” aSyn cases with fulminant presentations and pre-
cipitous clinical courses [38, 53, 54]. Finally, neuropathol-
ogy of aging is complex and often includes additional mixed 

pathologies in PD and related disorders such as cerebro-
vascular disease, TDP-43 inclusions, age-related glial tau 
inclusions (ARTAG) and others which cannot be reliable 
measured through fluid assays at this time [55–57]. Here, we 
review the state of the science for aSyn related biomarkers 
in CSF, plasma, biopsy detection from peripheral tissues, 
and aSyn seeding amplification assays for PD with a focus 
on autopsy-confirmation which is a critical to help translate 
biomarker research into clinical practice.

CSF aSyn Assays

In vivo CSF aSyn levels have been studied extensively, but 
due to conflicting results and significant overlap in values 
with healthy controls and other disease states their current 
utility in PD is limited until further refinement occurs [11]. 
There are several technical considerations which make 
measuring CSF aSyn challenging. First, there is relatively 
little aSyn that is present in spinal fluid, on the orders ng/
ml. There is high amounts in peripheral blood in red blood 
cells which can easily contaminate specimens [58]. In many 
studies, samples have had to be discarded if there are signifi-
cant degrees of hemoglobin contamination in CSF samples 
[59, 60]. Polypropylene collection tubes are recommended 
for use in some assays to prevent loss of CSF aSyn, and 
there is variability even amongst different tube vendors in 
their effects on aSyn levels [61]. Time to storage, number of 
freeze–thaw cycles and other pre-analytic variables affects 
measured CSF aSyn levels [61, 62]. Most of these studies 
have used ELISA assays or the bead-based Luminex xMap 
platform which are calibrated against measurements made 
with recombinant aSyn (Table 1). ELISA assays may use 
different aSyn antibodies for capture and detection which 
may account for some degree of variability observed. For 
ELISA protocols, there tends to be relatively high intra-
assay precision on repeated measurements (< 10%CV); 
however, there is less consistency between assays [62, 63]. 
Using these methods, several studies report that total CSF 
aSyn levels are lower in PD patients than normal controls or 
patients with other non-degenerative neurological diseases 
[45, 64–66]. In two meta-analyses, the sensitivity and speci-
ficity for distinguishing PD samples from normal controls 
were 72% and 88%, and 65% and 40% with modest positive 
predictive values and area under the curve values [67, 68]. 
The majority of these studies have been cross-sectional stud-
ies performed in early- to mid-stage, clinically defined PD 
(Table 1), although lower levels of CSF total aSyn is noted in 
prodromal PD as well in some patients with RBD and hypos-
mia [69]. While statistically significant group differences are 
observed, there is substantial overlap in individual values 
of PD patients and healthy controls, which limits the use of 
CSF total aSyn currently as a diagnostic tool. Furthermore, 
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lower average levels of CSF total aSyn compared to controls 
are also found in DLB, progressive supranuclear palsy, and 
multiple systems atrophy as well which would make cur-
rent assays of limited value in the differential diagnosis of 
parkinsonism [68, 70–72]. As PD progresses, aSyn levels 
in some patients rise and there is some correlation between 
these higher CSF aSyn levels and cognitive and motor dys-
function [46, 73–77], but this finding is not universal [60]. 
However, higher levels of CSF aSyn are also noted in Alz-
heimer’s disease, other neurodegenerative disease, such as 
Creutzfeldt Jakob disease [78–82], suggesting levels of this 
analyte degenerating synapses/neurons. Therefore, it is dif-
ficult to disentangle which processes may be PD-specific, 
and which may be due to non-specific neurodegeneration. 
As far as the association of CSF total aSyn and specific dis-
ease features, some studies have documented lower amounts 
of CSF total aSyn in non-tremor-dominant phenotypes than 
tremor dominant PD cases [45, 46, 60]. PD patients with 
RBD have higher CSF total aSyn than PD patients with-
out RBD [83]. There are conflicting reports about whether 
lower [45] or higher [73, 75] CSF total aSyn relates to worse 
cognitive outcomes in PD. In summation, on average, CSF 
total aSyn is lower in PD than healthy controls, especially 
early in the disease course but there is significant overlap 
of CSF total aSyn levels with healthy controls and other 
neurological diseases and therefore current assays cannot 
acceptably function as a single test to aid in the diagnosis of 
PD. Ratios of CSF total aSyn and other analytes discussed 
below may offer some improvement in diagnostic utility [64, 
80], but more work, especially longitudinal measurements 
are needed to clarify the utility of this biomarker in PD in 
relations to other conditions..

Other CSF aSyn species that have been studied in PD 
include phosphorylated and oligomeric forms of aSyn 
[75, 84]. Phosphorylated aSyn assays have focused on the 
pSer129 epitope which is a well described post-translational 
modification acidic tail near the C-terminal end of the pro-
tein in Lewy pathology [85]. In some studies, there is a 
U-shaped associated with disease severity with lower phos-
phorylated aSyn being associated with worse initial clinical 
presentations but later, higher levels being associated with 
worse motor and cognitive function [84, 86, 87].

The precise species of aSyn which contributes to neuronal 
dysfunction and neurodegeneration is not entirely clear, but 
the formation smaller oligomeric aggregations of aSyn may 
confer damage to synapses [88]. Higher levels of oligomeric 
aSyn from CSF samples compared to AD and healthy con-
trols has been noted in PD and DLB [89]. Thus, there may be 
PD-specificity for oligomeric aSyn species detected in CSF 
as opposed to total aSyn measurements summarized above. 
Early studies suggest correlations of levels with CSF oligo-
meric aSyn with motor symptoms and may be useful as part 
of an oligomeric/total CSF aSyn ratio but replication in other Ta
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e 
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laboratory settings is needed [90–93]. Early work in these 
studies use immunoassays which relay on epitope-specificity 
of the capture antibody used to detect oligomeric confirma-
tions of aSyn. More recently, a study using a newer technique 
of single molecule counting technology was unable to detect 
pSer129 aSyn in CSF samples from PD patients, raising ques-
tions about epitopes specificity of immunoassays for different 
forms of aSyn in CSF [94]. Thus, these assays remain explor-
atory for PD research at the moment until further validation 
is performed.

Plasma aSyn Measurements

Plasma aSyn measurements in PD have yielded differing results, 
with most studies reporting higher plasma total aSyn levels 
than healthy controls [13, 95–101], but other report no differ-
ence [102, 103] and still others reporting lower amounts in PD 
patients compared to controls [14, 60, 104]. There also similarly 
remains substantial overlap in the ranges observed between PD 
patients and healthy controls, which make would make plasma 
aSyn difficult to use as a single diagnostic test for PD. Similar 
to CSF assays, these studies use different capture and detection 
antibodies and this and other sources of variability may influ-
ence results (aSyn levels in red blood cells from hemolysis, age 
variation, etc.). Initial studies largely have used ELISA-based 
assays but more sensitive assays like single molecule arrays 
or immunomagnetic reduction assays may provide improved 
clarity on these relationships with both diagnosis and clinical 
features [13, 14, 95–97, 101] (Table 2). There is conflicting 
evidence about whether increasing levels correlate with worse 
motor dysfunction [60, 95, 100, 102, 105, 106], but higher lev-
els have been reported to be associated with worse cognitive 
function [13, 95, 101, 102]. One longitudinal study had noted 
an increase in plasma total aSyn over time in PD patients [106]. 
Heterogeneity in cohorts, sample size and methodological issues 
of sample collection and analysis could contribute to conflict-
ing results across studies, necessitating further studies in large 
multicentered cohorts using standardized operating procedures. 
Future longitudinal studies in deeply phenotyped cohorts will 
provide further clarity on the use and evolution of plasma aSyn 
biomarkers although some likely changes over time can be sur-
mised from the prior studies (Table 3).

ASyn Immunohistochemistry 
and Immunofluorescence from Tissue Samples

aSyn deposits are found in autonomic nerves that inner-
vate a variety of peripheral tissues including, skin, olfac-
tory mucosa, submandibular glands, and the colon in PD 
[16, 107–110]. Thus, the presence of these phosphorylated 
deposits in peripheral tissues could potentially aid the tissue 
diagnosis of living PD and other synucleinopathies.

Given that aSyn deposits likely occur early in the dorsal 
motor nucleus of the vagus nerve and the olfactory bulb, 
Heiko Braak and others posited that environmental factors 
could cause aSyn changes that could propagate to the central 
nervous system either from the gut via the vagus nerve or 
from the olfactory epithelium [111, 112]. Moreover, model 
systems find evidence to suggest pathological aSyn can 
propagate from the gut to the brain, which is abolished by 
vagotomy [113]. However, human autopsy studies do not 
find clear evidence of “incidental” peripheral aSyn in tissues 
(i.e., isolated aSyn in peripheral tissues without involvement 
of the brain), which argue against a peripheral origin of aSyn 
in PD and related synucleinopathies and instead peripheral 
aSyn may spread from early brainstem pathology [114]. It 
is very difficult to definitively define the epicenters or ori-
gins of neurodegenerative pathologies using cross-sectional 
autopsy tissue alone, but the findings of peripheral aSyn in 
PD and DLB offer an important minimally invasive method 
to obtain tissue diagnosis in living patients.

Given the regularity of colonoscopies as screening tests 
for colon cancer, investigations at assessing for aSyn pathol-
ogy in colonic biopsies were performed but initial results 
were highly discordant with varying sensitivities in detect-
ing pathological aSyn deposits in PD patients [115–117]. 
Multi-site studies were performed that showed good inter-
rater reliability and helped to optimize methods, but results 
indicate that biopsies must include submucosal layers and 
be assessed by trained neuropathologists to determine if 
adequate neuronal elements and aSyn deposits are present 
[118, 119]. The submandibular glands of PD patients also 
demonstrate aSyn inclusions but there is a higher morbidity 
associated with needle biopsies compared to other periph-
eral tissue sampling and, because of inadequate sampling 
and immunohistochemical methods, sensitivity remains 
suboptimal in many studies [110, 116, 120–122]. aSyn 
deposits in skin biopsies are currently the most promising 
and least invasive tissue-based biomarker with optimization 
of methods that has occurred over the last several years. Ini-
tial studies discovered that different biopsy sites could yield 
different sensitivities in detecting phosphorylated aSyn 
deposits, with the abdomen and scalp showing lower rates 
of positivity but higher rates being shown in paracervical 
and lower leg sites in PD and DLB patients [16, 107–109, 
123–125]. Different fixative methods influence results, with 
formalin fixed paraffin embedded tissue not performing as 
well as Zamboni fixation methods [15, 116, 124, 126–132]. 
The main reason for this may be that formalin may cause 
more extensive protein cross linking, making it more dif-
ficult for antibodies to attach to aSyn epitopes and the heat 
or chemically based retrieval methods may decrease aSyn 
signal if used too aggressively [116, 133, 134]. Depth of 
biopsy and section thickness affects yield as well [133]. 
Immunofluorescence using double labelling with antibodies 
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against phosphorylated aSyn and neuron specific protein 
gene product (PGP) appears to perform better than bright 
field immunohistochemistry using diaminobenzamide chro-
magen (DAB) [15, 123, 127, 129–131, 135, 136]. The DAB 
chromagen is a staple of immunohistochemistry and creates 
a dark brown signal when detecting epitopes. However, in 
skin samples, it can be difficult to discern DAB signal from 
artifact and diffuse non-specific staining in small peripheral 
nerves and immunofluorescence facilitates double labelling 
to identify the overlap of small neurons innervating the skin 
and the presence of small phosphorylated synuclein inclu-
sions simultaneously in the same tissue section [134, 137]. 
The most current methodologies using Zamboni fixative, 
cryosectioning, and immunofluorescence show 90% sen-
sitivity and > 90% specificity for PD and DLB subjects in 
some studies [15, 125, 132, 138, 139]. Thus, standardiza-
tion of pre-analytical factors, including sample handling 
are critical for the development of these tests for clinical 
use [140].

Aside from clinically manifest PD, skin aSyn deposits 
can be demonstrated in patients with REM sleep behavior 
disorder (RBD) and patients with pure-autonomic failure 
(pAF), both thought to be prodromal states that are highly 
likely to phenoconvert into PD or other synucleinopathy 
where presumably central nervous system pathology is 
more restricted [123, 126, 131, 137, 141–144]. It is not 
clear yet whether a positive skin biopsy predicts pheno-
conversion in RBD subjects but studies with longitudinal 
follow up are underway [137, 145]. Interestingly, there also 
may be differences in the characteristics of aSyn deposits 
between MSA and PD patients where MSA patients had 
phosphorylated aSyn deposits in somatic nerves whereas 
PD patients with orthostatic hypotension had deposits in 
autonomic nerve fibers in one study [146]. Furthermore, 
in PD patients, aSyn positive skin biopsies appear to have 
a rostro-caudal gradient, with more positive samples being 
noted from paracervical biopsy sites than limb sites; in 
MSA, however, there is a more uniform distribution of aSyn 
positivity in the different biopsy sites and higher density of 
phosphorylated aSyn in those biopsies [147]. Orthostatic 
hypotension is a common but not universal symptom of 
PD and its presence signifies autonomic involvement which 
may have relevance for skin biopsies in PD [148, 149]. One 
study found that PD patients with orthostatic hypotension 
had a more widespread and homogenous distribution of 
aSyn deposits whereas PD patients without orthostatic 
hypotension has aSyn pathology restricted to paracervical 
biopsy sites [150]. While these biopsies are likely useful 
in a categorical fashion, there are no features that corre-
late well with disease severity; however, one study of an 
MSA patient who underwent serial skin biopsies did note 
sequentially more skin structures affected, implying an evo-
lution of skin aSyn deposits over time [146, 151]. aSyn skin Ta
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deposits from PD patients with LRRK2, GBA, and SNCA 
mutations have also been demonstrated [152–155]. Given 
the pathological heterogeneity associated with LRRK2 
mutations and the limited degree of central nervous system 
aSyn deposits in patient with PRKN mutations, further stud-
ies in autopsy validated subjects will be of interest [156, 
157]. See Table 4 for selected studies of skin aSyn immu-
nofluorescence in PD.

Peripheral biopsy testing for PD is nearing clinical use 
as there is a commercially available aSyn skin biopsy assay, 
the Syn-One test (CND Life Sciences). The SynOne test 
suggests obtaining samples using 3 mm punch biopsy tools, 
Zamboni fixative and requires double-immunostaining thick 
cryosection for neuronal elements (PGP 9.5) and phospho-
rylated aSyn (pSer129) using immunofluorescence [158]. 
Unpublished data using the Syn-One test has been presented 
at the American Academy of Neurology meeting in 2020 
and the Lewy Body Disease association Biofluid/Tissue 
Biomarker symposium in 2021 reporting high sensitiv-
ity (74% from one biopsy site and 96% from three biopsy 
sites) and 99% accuracy of distinguishing synucleinopathies 
from controls [159]. This test is not FDA approved but is 
being further validated in a large multicentered clinical trial 
(NCT04700722) with a plan to enroll over 300 patients 
with synucleinopathies (PD: 105, MSA: 40, DLB: 90, pure 
autonomic failure: 65) and 200 healthy controls who will 
undergo three skin biopsies at the paracervical, distal thigh, 
and lower leg sites to determine sensitivity, specificity, accu-
racy, and precision of the current test [158].

Alpha Synuclein Seeding Amplification Assays

aSyn seeding amplification assays (aSyn-SAA) began as 
adaptations of prion disease assays and make use of the abil-
ity of aSyn seeds to template normal monomeric aSyn spe-
cies to oligomeric and fibrillar forms in a prion-like fashion 
[160–162]. In these assays, a biological sample is added to a 
well containing monomeric aSyn with a fluorescent tag thio-
flavin-T. If a pathological aSyn seed is present, it will induce 
templating of the monomers and after a certain amount of 
time, the newly created fibrils will be broken down by shak-
ing the plate allowing for more monomers to be recruited. 
After several hours, this creates an exponential rise in the 
fluorescence which can be detected. The standard diagnostic 
metrics collected is a binary positive or negative readout 
above a certain fluorescence threshold defined by the labo-
ratory, but additional metrics including the time to positive 
signal (or lag time), maximum fluorescence, and the time to 
reach 50% of maximum fluorescence can also be reported 
if fluorescence measurements are captured at regular inter-
vals (Fig. 1). In initial studies, remarkably high sensitiv-
ity and specificity (> 90%) was demonstrated in detecting 
aSyn seeding from CSF samples of patients with manifest 
PD and DLB [17, 163]. In the years since, multiple studies 
in independent laboratories have confirmed these findings 
[18, 20, 160, 163–166]. aSyn seeds are readily apparent in 
early PD when subjects within 2 years of diagnosis who had 
not started medications from the Parkinson’s Progression 
Marker Initiative were studied [166, 167], and high rates of 
positivity are also observed in prodromal patients with REM 
sleep behavior disorder and pure autonomic failure, condi-
tions which have a high likelihood of underlying alpha-synu-
clein and phenoconverting into PD or DLB [165, 168–170]. 
In the case of REM sleep behavior disorder, it is not entirely 
clear if a positive aSyn-SAA results predicts phenoconver-
sion to one of these syndromes. Some of the uncertainty is 
due to lack of longitudinal studies with serial sampling and 
differences in baseline rates of aSyn-SAA positivity in RBD 
cohorts studied [169, 170].

This body of work suggests that these assays are 
extremely sensitive and specific for detecting the categori-
cal presence/absence of aSyn seeds in CSF of patients with 
manifest disease and prodromal states where presumably 
aSyn pathology is more restricted. It is less clear whether 
the quantitative metrics collected by these assays have quan-
titative value in relation to clinical variables in PD. Aside 
from MSA, there are no major differences in maximum fluo-
rescence, time to positivity, or area under the curve between 
PD, DLB, pure autonomic failure or REM sleep behavior 
disorder patients [165]. In the majority of studies conducted, 
there have been no strong correlations with time to positiv-
ity, maximum fluorescence or time to 50% fluorescence with 

Table 3  Changes in biomarkers compared to healthy control popula-
tions. As PD progresses, there is heterogeneity in the change in bio-
marker profiles such that some patients may increase or decrease in 
certain biomarkers, but others may remain stable (↑ = or ↓ =). There 
are competing articles about the changes seen in oligomeric aSyn 
over time (↓↑)

t-aSyn total alpha-synuclein, o-aSyn oligomeric alpha-synuclein, 
p-aSyn phosphorylated alpha-synuclein, IF immunofluorescence, 
aSyn-SAA alpha-synuclein seeding amplification assay

Biomarker Prodromal PD Early PD Mid/late PD

CSF
  t-aSyn ↓ = ↓ ↑ = 
  o-aSyn ↑ ↑↓
  p-aSyn ↑ ↑
  Aβ42 ↓ ↓ = 
  t-tau ↓ ↑ = 
  p-tau ↓ ↑ = 

Plasma
  t-aSyn ↑ ↑

Skin IF + + +
  aSyn-SAA + + +
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Table 4  Selected studies in aSyn-SAA and skin immunofluorescence/immunohistochemistry

Study Assay Sample Subjects PD duration Results

aSyn-SAA
Fairfoul et al. [17] 0.1 mg/ml rec aSyn 

WT (Stratech)
BH and CSF Discovery: DLB:29

PD:2
AD:30
PSP:2
CBS:3
ILBD:13
HC: 20
Validation: PD:20
HC:15
RBD: 3

Not provided DLB v HC: Sns 0.92, Spc: 
1.00

PD v HC: Sns 0.95, Spc: 
1.00

3/3 RBD patients + aSyn-
SAA

Shahnawaz et al. [19] 1 mg/ml rec aSyn 
WT + 6hist (local)

BH and CSF PD: 76
OND: 65
NDG: 18
AD: 14

Not provided PD v disease controls: Sns: 
0.89 Spc: 0.94

Time to reach 50% 
maximum aggregation 
inversely correlated with 
HY stage

Groveman et al. [20] 0.1 mg/ml rec aSyn 
K23Q + 6hist (local)

BH and CSF PD: 12
DLB: 17
Non-aSyn: 31

2.9y PD and DLB v non-aSyn: 
Sns: 0.93, Spc: 1.00

Bargar et al. [174] 1 mg/ml rec aSyn WT 
(rPeptide)

BH, CSF, Saliva, 
Skin, colon

PD: 88
DLB: 58
Controls: 68

Not Provided CSF: PD and DLB v con-
trols: Sns 0.98, Spc 1.00

Sns and Spc not analyzed 
for other tissues

Iranzo et al. [169] 0.1 mg/ml rec aSyn 
WT (Sigma)

CSF RBD: 52
HC: 40

NA RBD v HC: Sns 0.90 Spc 
0.90

During 7y follow up 32 
photoconverted to PD or 
DLB (31/32 + aSyn SAA)

Siderowf et al. [197] 0.3 mg/ml rec aSyn 
WT + 6hist

CSF PD: 545
HC: 163
SWEDD: 54

Sporadic PD 
0.6y ± 0.5

LRRK2 PD 
3.0y ± 2.1

GBA PD
3.5y ± 2.4

All PD cases v HC: Sns 
0.88 Spc: 0.96

Sporadic PD v HC: Sns: 
0.93, Spc: 0.96

LRRK2 PD v HC: Sns: 
0.68, Spc: 0.96

GBA PD v HC: Sns: 0.96, 
Spc 0.96

Rossi et al. [168] 0.1 mg/ml rec aSyn 
WT

CSF Clinical
RBD: 18
PAF: 28
PD: 71
DLB: 34
OND: 135
Path-validated
LB + : 21
LB-: 101

Clinical PD:
56.8 m ± 45.8

Neuropathologically vali-
dated cases with aSyn

Sns: 0.95 Spc: 0.98
Clinical diagnoses aSyn v 

OND: Sns: 0.95, Spc 0.98
18/18 RBD + aSyn SAA, 

26/28 PAF + aSyn-SAA

Russo et al. [167] AbbVie RT-QuIC: 
0.1 mg/ml rec aSyn 
WT (local),

Caughey RT-QuIC:
0.1 mg/ml rec aSyn 

K23Q
PMCA:
0.3 mg/ml rec aSyn 

WT + 6hist

CSF PD: 30
HC: 30
SWEDD: 20

PPMI: 
6.7 m ± 6.5

SAA: 9.0 m ± 8.4

PD v HC at baseline:
AbbVie: Sns:0.89, Spc: 1.00
Caughey: Sns: 0.86, Spc: 

0.97
Amprion: Sns: 0.96, Spc: 

0.97
PD v HC Year 3
AbbVie: Sns: 0.93, Spc: 

0.93
Caughey: 0.89, Spc: 0.97
Amprion: 0.96, Spc: 0.93
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Table 4  (continued)

Study Assay Sample Subjects PD duration Results

 Poggiolini et al. 
[170]

1 mg/ml rec aSyn WT CSF PD: 74
MSA: 24
RBD: 45
HC: 55

PD 2.1y ± 1.4y PD v HC: Sns: 0.89 Spc 
0.96

No major correlations of 
kinetic parameters and 
clinical features in PD

MSA v HC: Sns: 0.75 Spc 
0.96 (longer T50, lower 
Fmax)

Some correlations of kinetic 
parametiers and clinical 
features in MSA

RBD v HC: Sns: 0.64 Spc 
0.96

14/45 phenoconverted in 
the 0.2–7.9 y of followup. 
9/14 + aSyn SAA at 
baseline

Kang et al. [166] RT-QuIC: 0.1 mg/
ml rec aSyn WT 
(Sigma)

PMCA: 0.3 mg/ml rec 
aSyn WT + 6hist

CSF PD: 105
HC: 79

8 (4–17) RT-QuIC: PD v HC Sns: 
0.95 Spc: 0.96

PMCA: PD v HC Sns 0.90 
Spc: 0.82

Kuzkina et al. [172] RT-QuIC
Cleveland
aSyn rec WT (rPep-

tide)
RT-QuIC
Wurzburg
5 mg/ml
aSyn rec WT (in 

house)

Skin: 5 mm. C7, T12, 
thigh, lower leg

PD: 34
HC: 30

11.7y ± 6.9 Sns: 0.91, Spc 0.87
Κ = 0.86 for patient results 

between labs

Manne et al. [21] 0.1 mg/ml
aSyn rec WT

Skin Frozen
PD: 25
HC: 25
Formalin fixed
PD: 12
HC: 12

Not described Frozen
Sns 0.96 Spc 0.96
Fixed
Sns: 0.75 Spc: 0.83

De Luca et al. [177] 5 mg/ml aSyn rec WT Olfactory Mucosa PD: 18
MSA: 11
OND: 18

10.1y ± 5.1 PD Sns: 0.56
MSA Sns: 0.82
Spc: 0.83

Skin IF/IHC
Donadio et al. [138] IF Zamboni

pSer129 aSyn/PGP
Cryosectoining
CSF and skin
RT-QuIC: 0.1 mg/

ml rec aSyn WT 
(rPeptide)

3 mm C7, thigh, leg
CSF

IF reproducibility
PD: 4
MSA: 4
DLB: 1
OND: 12
IF v RT-QuIC
PD: 17
DLB: 5
MSA: 8
PAF: 3
OND: 38
HC: 24

Not available aSyn v non aSyn
Skin IF: Sns: 0.90 Spc: 1.00
CSF RT-QuIC: Sns 0.78 

Spc 1.00
Skin RT-QuIC: Sns 0.86 

Spc 0.80

Gibbons et al. [15] IF: Zamboni, pSer129 
aSyn/PGP

Cryosectioning

3 mm distal leg, 
proximal/distal 
thigh, forearm

PD: 28
HC: 23

PD nAF 
4.3y ± 5.1

PD AF 8.6y ± 7.3

Sns 0.95 Spc 0.91
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clinical aspects of Parkinson’s disease such as motor burden 
[166, 167]. There was one study where mild to moderate 
correlations of time to threshold and maximum fluorescence 
were observed with disease duration and motor burden on 
the unified Parkinson’s disease rating scale but this has not 
been replicated [167]. While not routinely performed in clin-
ical assays, serial dilution of biological samples can be used  
to calculate an SD50 value, the seeding dose at which 50% 
of wells will turn positive, using a Spearman-Karber method 
[171] (Fig. 1). In two studies, aSyn-SAA SD50 values cor-
related with disease duration and higher SD50 values were 
noted with higher degrees of pathological aSyn deposits in 
postmortem autopsy analyses [160, 167, 172]; however, it 
has not been consistently related to other disease features and 
such methods are time consuming and unlikely to be scaled 
for routine use. Regarding pure autonomic failure, subjects 
with this condition may phenoconvert to PD, DLB, or mul-
tiple systems atrophy (MSA) and there is some evidence 
that the kinetics of the aSyn-SAA curve (i.e., maximum 

fluorescence and time to positivity) and additional infor-
mation from neurofilament light chain testing in CSF may 
offer prognostic information about which synucleinopathy 
a subject is likely to phenoconvert to [163, 165]. Samples 
from patients with MSA in some studies have a faster time 
to positive but lower maximum fluorescence and this may 
reflect properties of different aSyn strains in these associated 
diseases as numerous biochemical and structural differences 
between the aSyn species in MSA and Lewy body disorders 
have been described [163, 165, 168].

In the last few years, several attempts have been made to 
adapt aSyn-SAA assays from CSF above to peripheral tis-
sue and fluid samples, which could potentially offer a less 
invasive manner of diagnosing the presence of aSyn seeds 
(Fig. 2). Much of this initial work was pursued because of 
the well documented observations of abnormally phospho-
rylated aSyn deposits in skin, colon, submandibular gland, 
and other tissues in PD patients both at autopsy and in vivo 
from biopsy studies discussed above [116, 134]. aSyn-SAA 

Table 4  (continued)

Study Assay Sample Subjects PD duration Results

Wang et al. [133] IF: Zamboni, pSer129 
aSyn/PGP

Cryosectioning

3 mm distal leg or dis-
tal/proximal thigh

PD: 29
HC: 21

5.5y ± 5.1 50 µm sections: Sns 1.00,
20 µm sections: Sns: .90,
10um sections: Sns:73
Spc: 1.00

Donadio et al. [124] IF: Zamboni
pSer129 aSyn/PGP 

Cryosectioning

3 mm C7 2 × or C7 
and T12

PD: 28 15 patients uni-
lateral symp-
toms 3y ± 2

13 patients bilat-
eral symptoms

10y ± 6

Sns 1.00 from C7
Sns 0.62 from T12 site
No differences in lateral-

ity in spite of lateralized 
motor symptoms

Donadio et al. [132] IF: Zamboni
pSer129 aSyn, PGP
Cryosectioning

3 mm C8, thigh, distal 
leg

PD: 21
Other Parkinsonism: 

20
HC: 30

PD: 13y ± 6 Sns 1.00 Spc 1.00

Doppler et al. [126] IF: PFA 4%
pSer129 aSyn PGP 

Cryosectioning

5 mm
Proximal and distal 

leg, T12, C7

PD: 25
RBD: 18
HC: 20

PD Sns: 0.80, RBD Sns: 
0.56 Spc:1.00

Doppler et al. [136] IF: PFA 4%
pSer129 aSyn, PGP. 

Cryosectioning

5 mm, proximal and 
distal leg, T12, 
finger

PD: 31
HC 35

9.0y (range 
0.3–27)

PD v HC Sns 0.52 Spc: 1.00

Al-Qassabi et al. 
[137]

IF: FFPE pSer129 
aSyn/PGP

3-5 mm Leg or C8 PD: 20
RBD: 28
Other parkinsonism: 

10
HC: 21

PD 8.4y ± 4.4 PD Sns 0.70, RBD Sns: 
0.82, Other parkinsonism 
0.20. Spc 1.00

Chahine et al. [116] IHC: FFPE aSyn. 
Proteinase K

3 mm C7-8, mid thigh PD: 58
HC: 21

4.8y ± 4.6 Sns 0.24 Spc 1.00

For aSyn-SAA studies, the type of aSyn used for reactions is detailed and for skin immunofluoresence/Immunohistochemistry, basic aspects of 
these assays are reported along with biopsy sites and type
RT-QuIC real-time quaking induced conversion, PMCA protein misfolding cyclic amplification, rec aSyn recombinant alpha-synuclein, WT wild 
type, 6hist histidine tag, BH brain homogenate, CSF cerebrospinal fluid, PD Parkinson’s disease, DLB dementia with Lewy bodies, AD Alzhei-
mer’s disease, PSP progressive supranuclear palsy, CBS cortico basal syndrome, HC healthy controls, OND other neurological disorders, NDG 
other neurodegenerative diseases, MSA multiple systems atrophy, Sns sensitivity, Spc specificity, HY Hoehn and Yahr stage, RBD REM sleep 
behavior disorder, PAF pure autonomic failure, IF immunofluorences, IHC immunohistochemistry, PFA paraformaldehyde, FFPE formalin fixed 
paraffin embedded, PGP neuron specific protein gene product
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from skin biopsies appear to offer similarly high sensitivity 
and specificity comparable to CSF in several studies in PD 
and RBD patients [21, 172–176]. Olfactory mucosa samples 
may be useful as well, but sampling requires accessing very 
deep structures, often using a rigid scope and with an otolar-
yngologist operator, which may limit feasibility [177]. Seed-
ing from olfactory mucosa samples in PD, MSA, DLB, and 
REM sleep disorder patients has been demonstrated though 
[174, 177–179]. aSyn seeding activity has also been demon-
strated from not only submandibular gland biopsies but also 
from saliva itself [180–182]. Lastly, seeding activity can be 
demonstrated from colonic biopsies, where phosphorylated 
aSyn has been known to deposit [116, 134, 174, 183]. See 
Table 4 for selected aSyn-SAA studies.

The majority of the above studies have been performed in 
clinically defined cohorts, and in those studies where neuro-
pathological confirmation has been performed, co-pathologies 
are not typically assessed in a standardized fashion [17, 160]. 
While aSyn aggregates in Lewy bodies and Lewy neurites 
are noted in brainstem, limbic and neocortical areas in PD 
and DLB, Lewy bodies, and Lewy neurites are present in 
the amygdala and nearby limbic structures in about 50% of 
sporadic Alzheimer’s disease patients and around 90% of 
familial Alzheimer’s disease cases with presenilin mutations 
[184–187]. Such cases are unlikely to exhibit PD or DLB like 
clinical phenotypes [24]. Two studies recently have addressed 
whether current CSF assays can detect aSyn seeds in these 
amygdala-predominant cases and both found that CSF assays 
detected aSyn seeds in these cases at much lower rates than in 
cases with limbic or neocortical stage Lewy pathology [188, 
189]. Both studies also show that positivity of these assays 
is dependent on aSyn stage and not masked or significantly 
influenced by the co-occurrence of Alzheimer’s pathology 
[188, 189]. Direct seeding assays from frozen amygdala 

samples from amygdala-predominant cases also showed a 
mix of positive and negative reactions in one of these stud-
ies [189]. Further studies are needed to understand whether 
this variability in seeding activity is due to a lower overall 
dose of aSyn seeds or if there are differences in the aSyn 
species in amygdala-predominant cases that result in lower 
seeding activity. Such studies are important to understand the 
interpretation of aSyn-SAA results when applied to a larger 
population where subjects may harbor incidental Lewy bodies 
or amygdala predominant Lewy bodies. Furthermore, sev-
eral population-based cohorts would suggest that the baseline 
prevalence of aSyn pathology is around 20–30%, and in some 
cases, this pathology can be widespread without causing clini-
cal symptoms [23, 35, 190–193]. While it appears that these 
assays may be somewhat less sensitive to detect these cases 
of incidental Lewy body disease and amygdala-predominant 
disease, further studies will be needed [168, 188]. Addition-
ally, some patients with (LRRK2 mutations and most, if not 
all, patients parkin PBR E3 ubiquitin protein ligase (PRKN) 
will not have pathological aSyn accumulations at autopsy 
[156, 194] and therefore will be less likely to exhibit seeding 
activity or aSyn deposits [153, 195–197]. Therefore, there is 
likely a role of integrating genetic testing information into the 
application of these assays in PD.

At this time, there is also a commercially available CSF 
aSyn-SAA assay SynTAP (Amprion Laboratories) that is not 
FDA approved but did receive FDA breakthrough designa-
tion in 2019. In the SynTAP assay, which is a slightly modi-
fied version of Amprion’s research assay (formerly referred 
to as PMCA), samples are run in triplicate using glass beads 
with fluorescence measured less frequently than the research 
assay to allow for higher throughput [189, 198]. The Syn-
Tap assay has shown similarly high accuracy to Amprion’s 
research assay [189].

Fig. 1  aSyn-SAA metrics. Tissue or fluid samples are analyzed with 
fluorescence measurements read at given intervals which can be used 
to establish curves shown in (a). From these curves, a variety of met-
rics can be derived including maximum fluorescence, time to thresh-
old (or time lag), time to 50% of maximum fluorescence (T50) or area 
under the curve calculations; however, these metrics have not consist-
ently been shown to relate to clinical characteristics or pathological 

burden within PD patients. If a sample undergoes serial dilution and 
is analyzed at these different dilutions as shown in (b), the dilution at 
which 50% of well remain positive can be used to estimate the SD50 
which may have more relevance to disease activity in some studies. In 
this example the estimated -log(SD50) = 7. Created with Biore nder. 
com
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AD Fluid Biomarkers in PD and DLB

As noted previously, autopsy studies of PD patients typi-
cally reveal 35–50% of PD patients with dementia and 
more than 70% of DLB patients have moderate to high 
levels of AD neuropathologic change [29–35]. AD co-
pathology in PD has been associated with older age of 
onset, shorter disease duration, faster time to dementia, 
greater likelihood of amnestic memory deficits and greater 
likelihood of an akinetic rigid motor phenotype in several 
studies [31, 32, 36–42]. These findings are not universal 
however, and in cluster analyses of PD, no major changes 
in rates of AD co-pathology of CSF AD biomarkers in 
studies comparing so called diffuse-malignant subtypes of 
PD with mild motor-predominant forms [199, 200]. Still, 
understanding the interplay of aSyn, Aβ, and tau pathol-
ogy in PD and DLB is of interest as it will inform the 
interpretation of AD biomarkers in these populations as 
these assays become more widely available and stratify-
ing clinical trials by the presence or absence of AD co-
pathology may be of interest [201].

PD and DLB patients tend to have lower levels of CSF 
Aβ42 and tau species than normal controls in groupwise 
comparisons early in the disease [45, 46, 49, 73, 202–204]. 
In PD, lower levels of CSF Aβ42 is related to worse cog-
nition cross-sectionally, longitudinally, and is related to 
higher likelihood of AD co-pathology at death [44, 46, 47, 
64, 73, 202, 204, 205]. Interestingly, one study showed an 
increase in CSF Aβ42 in PD patients with freezing of gait 
compared to PD patients who did not [206]; thus, clinical 
heterogeneity of PD may influence biomarker interpreta-
tion as well. While total and p-tau 181 is on average lower 
than controls in early PD, levels may increase later in the 
disease in some patients which is also associated with a 
greater likelihood of dementia [207–210]. While optimal 
cut-offs for these Aβ42, t-tau, and p-tau 181 and their 
ratios have been well established in Alzheimer’s disease, 
it is not clear if the same cutoffs apply in PD and other 
Lewy body disorders [211, 212]. Indeed, in rare autopsy-
confirmed work, there is data to suggest CSF Aβ42 may 
be associated with increasing aSyn pathology independent 
of plaque burden in LBD [47].

Fig. 2  aSyn assays from biofluids and tissue. Summary of static aSyn 
assessments, peripheral tissue immunohistochemistry, immunofluo-
rescence and aSyn-SAA assays in different tissues and fluids studied 

currently with spinal fluid aSyn-SAA and skin aSyn-SAA and immu-
nofluorescence assays showing the greatest accuracy to date but with 
many other assays still in development. Created with Biore nder. com
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More recently, plasma assays (Aβ1-42, t-tau, p-tau 181, 
p-tau 217, and p-tau 231) are being developed for use in 
AD but are already being studied in PD as well [213–216]. 
Plasma Aβ42 may be related to more severe gait impair-
ment and severity of akinetic rigid symptoms [217, 218]. 
Plasma p-tau 181 and p-tau 217 levels correlate with 
degree of tau PET and Aβ PET status [219]. In studies of 
DLB, where tau co-pathology is more likely, plasma p-tau 
181 and 231 have been associated with faster cognitive 
declines [219, 220]. Higher levels of plasma p-tau 181 are 
reported in PD patients when compared to healthy con-
trols and these levels correlate with plasma aSyn markers 
[221]. However, in some studies plasma p-tau 181 has not 
clearly been linked to cognitive decline in PD and plasma 
t-tau and neurofilament light chain measurements have had 
stronger correlations with cognitive dysfunction [95, 105, 
222]. In DLB, in particular, where rates of AD co-pathol-
ogy are often quite high, stratification by the presence of 
these AD biomarkers may prove especially important for 
clinical trial enrollment of more biologically homogenous 
patients or those who may benefit from combination thera-
pies [201].

Conclusion

aSyn-specific biomarkers have long been an unmet need 
in the field of neurodegenerative medicine. While the 
search for biomarkers with strong associations with dis-
ease pathology continues, several new fluid and tissue 
based biomarkers are being developed which offer the 
ability to detect aSyn species in patients with PD, DLB, 
and also in prodromal states, which is critical for thera-
peutic trials targeting aSyn mechanisms. CSF aSyn and 
plasma aSyn species detected by current assays may be 
limited but further development with newer second-gen-
eration immunoassays or other methods of detection may 
provide additional opportunities for biomarker develop-
ment. Please see Table 3 for a summary of CSF (Table 1), 
plasma (Table 2), and aSyn-SAA and immunofluorescence 
(Table 4) biomarker data findings in PD. aSyn immunoflu-
orescence from skin samples and aSyn-SAA assays both 
from CSF and peripheral tissues appear promising and will 
likely be of imminent use in clinic and research settings 
which will likely provide accurate methods of categori-
cally assessing for the presence of aSyn deposits and aSyn 
seeds [138]. More work will be needed to determine of 
more labor-intensive methods like calculating SD50 will 
provide quantitative readouts of aSyn seeding that have 
relevance for disease activity, but initial studies suggest 
some significant correlations with disease duration and 
pathological burden. Most studies of aSyn-SAA to date 
have been done in clinically defined cohorts of PD and 

other synucleinopathies, some with autopsy validation 
[164, 167, 168]. However, given the sensitivity of some 
of these assays in detecting aSyn seeds or clinicians may 
have to grapple shortly interpretation of a positive result 
in patients without a defined synucleinopathy syndrome, 
and it is not entirely clear if these patients are universally 
destined to phenoconvert. The integration of other bio-
markers like hyposmia, polysomnograms for RBD, and 
DAT scans will likely further be of use to stratify those 
aSyn positive cases who are more likely to develop a par-
kinsonian syndrome. When combined with CSF or plasma 
biomarkers for AD, a more comprehensive picture of both 
primary and commonly occurring AD co-pathologies can 
be constructed for PD patients. These assays will likely 
prove useful in augmenting enrollment of homogenous 
populations into clinical trials. Focuses for future work to 
bring these skin immunofluorescence and aSyn-SAAs to 
clinical use include assay standardization and research in 
autopsy-confirmed cohorts to clarify the complex relation-
ships between pathology in the brain and those detected 
from peripheral tissues and biofluids. aSyn assays that 
have quantitative value for disease activity remain a major 
unmet need, but the exciting development of these assays 
will allow for clinical assessments to be augmented by 
aSyn-specific biomarkers in a manner which has not been 
previously available for living patients.
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