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Abstract
Stroke is a leading cause of morbidity and mortality worldwide; a serious complication of ischemic stroke is hemorrhagic 
transformation. Current treatment of acute ischemic stroke includes endovascular thrombectomy and thrombolytic therapy. Both 
of these treatment options are linked with increased risks of hemorrhagic conversion. The diagnosis and timely management 
of patients with hemorrhagic conversion is critically important to patient outcomes. This review aims to discuss hemorrhagic 
conversion of acute ischemic stroke including discussion of the pathophysiology, review of risk factors, imaging considerations, 
and treatment of patients with hemorrhagic conversion.
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Introduction

Ischemic stroke, which is secondary to an arterial occlusion, 
is a leading cause of morbidity and mortality worldwide and 
can be caused by a variety of different etiologies [1–3]. One of 
the serious complications of ischemic stroke is hemorrhagic 
transformation. Hemorrhagic transformation occurs after 
acute ischemic stroke (AIS) as well as secondary to venous 
thrombosis [4, 5]. Studies have reported that hemorrhagic 
transformation occurs at a rate of between 18 and 42% in 
acute ischemic stroke [4, 6].

Treatment options for patients who present with acute 
symptoms concerning for cerebral ischemia include 
thrombolytic therapy as well as recanalization of the 
occluded vessel. Alteplase therapy is the current main-
stream thrombolytic therapy in patients with ischemic 
stroke and is associated with a 6 to 8% risk of intracer-
ebral hemorrhage [7–10]. Research shows that less than 
5% of ischemic stroke patients benefit from tPA treatment 
due to the window of treatment and narrow therapeutic 
window [11]. More recently, many facilities started using 
tenecteplase (TNK) in place of alteplase for thrombolytic 

therapy; research from a large, multicenter registry showed 
decreased rates of symptomatic intracranial hemorrhage 
when compared to alteplase [12]. Mechanical thrombec-
tomy is the current standard of care in patients with acute 
ischemia secondary to large vessel occlusion [13]; in 2015, 
five randomized trials showed the efficacy of endovascu-
lar thrombectomy over standard medical care [14–17]. In 
2018, two additional trials provided evidence of thrombec-
tomy can be offered up to 24 h after symptom onset in 
selected group of patients [18, 19]. These therapies come 
with the risk of subsequent reperfusion injury which can 
lead to hemorrhagic transformation [20] and is seen to be 
fatal and roughly 3% of patients treated with acute stroke 
therapy [10].

Studies have highlighted that more than half of all 
cerebral infarctions demonstrate certain stages of hemor-
rhagic transformation [21]. Disruption of the blood–brain 
barrier within the first hours after ischemia is a thought 
to be a major player in reperfusion injury as well as 
subsequent hemorrhagic transformation [22, 23]. Hem-
orrhagic transformation can be either symptomatic or 
asymptomatic. Many cases of hemorrhagic transfor-
mation, including petechial hemorrhage, are seen to be 
asymptomatic [24]. Symptomatic intracerebral hem-
orrhage can often present with rapid neurologic dete-
rioration [25]. After severe hemorrhagic transformation 
has developed, prognosis for the patient is unfavorable 
[26–28].

This review aims to discuss hemorrhagic conversion of  
acute ischemic stroke, specifically in the post-thrombectomy era.
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Search Strategy

Between August and September of 2022, references for 
this review were identified by search of PubMed for arti-
cles published between 1969 to September of 2022. Ref-
erences from relevant articles were also reviewed. Search 
terms include acute ischemic stroke, hemorrhagic trans-
formation, stroke, cerebral hemorrhage, ischemic stroke, 
thrombectomy, and tPA complications. The list of included 
articles was generated based off of relevance to the topics 
covered in the review.

Blood Brain Barrier

The physiologic barrier between the brain parenchyma 
and brain circulation is called the blood–brain barrier [29, 
30]. It is composed of a variety of different cells includ-
ing pericytes, astrocytes, endothelial cells, and basement 
membranes; this is collectively referred to as the neuro-
vascular unit [31–33]. Early disruption of this blood–brain 
barrier is thought to play a central role in hemorrhagic 
transformation formation in patients with acute ischemic 
stroke [33, 34].

The blood–brain barrier plays an important role in pro-
tecting the brain from different chemicals and has been 
implicated in a variety of pathologic conditions when 
impaired [35]. It serves to act as a bidirectional barrier 
for transport of substances [36, 37]. The blood–brain bar-
rier endothelial cells constitute the luminal component of 
the blood–brain barrier [38] and allow them to regulate ion 
movement across the central nervous system [39]. They 
have increased numbers of mitochondria which allowed 
them to generate higher amounts of energy in order to 
augment selective molecular permeability and maintain 
integrity [38, 40]. Another part of the blood–brain barrier 
is the junctional complex which comprised gap junctions, 
tight junctions, and adherens junctions [41, 42]. These 
play a role in the homeostasis of the blood–brain barrier 
as well as holding cells together and facilitate intracellu-
lar communication [41, 43]. Damage to this area leads to 
impaired permeability [41].

Many enzymes play a role in the blood–brain barrier. 
One such enzyme is matrix metalloproteinase-9. Matrix 
metalloproteinase-9 levels have been associated with hem-
orrhagic transformation [44]. This is in enzyme which 
works to degrade endothelial basal lamina and plays an 
integral role in leading to edema production as well as 
hemorrhagic transformation [45–47].

There are several stages of damage to the blood–brain 
barrier; the hyperacute stage (minutes to hours after stroke)  
occurs after sudden hypoxic damage to the blood–brain 

barrier, which results in cytotoxic edema and increased 
permeability, whereas in the acute stage (hours to days), 
the neuro-inflammatory response aggravates the injury, 
leading to higher permeability and increased risk of hem-
orrhagic transformation. This is compounded by reperfu-
sion therapy [35]. With impairment of cerebral blood flow, 
delivery of oxygen and glucose is compromised, result-
ing in decreased ATP levels [35]. The subacute stage is 
typically between 1 and 3 weeks where repair mechanisms 
are taking place, including neo-angiogenesis. The chronic 
stage (greater than six weeks) is associated with increase 
in the blood–brain barrier restoration factors, decreasing 
permeability [35].

Reopening of the occluded artery in recanalization thera-
pies results in a three-stage process of reperfusion [48, 49]. 
The first stage is a state of reactive hyperemia with loss of 
cerebral vaso-regulation which is associated with cytotoxic 
edema [35]. Following this, there is a stage of hypoperfu-
sion in relation to a reactive microvasculature obstruction 
that aggravates blood–brain barrier breakdown [35, 49]. This 
corresponds to a phase of ischemic stunning of the brain 
[49]. After the hypoperfusion, there is an increase of cellu-
lar permeability after initial reperfusion which is associated 
with vasogenic edema and angiogenesis [49].

Mechanical thrombectomy involves direct endothe-
lial trauma and potential disruption of the blood vessel. 
The device is used in thrombectomy which can lead to 
endothelial denudation, edema in the intimal and medial 
layers, and disruption of the internal elastic lamina [50]. 
It also results in rapid reperfusion which can be con-
nected with higher levels of hemorrhagic transformation 
[35]. It has been reported that symptomatic intracranial 
hemorrhage occurred in 4.4% of patients in the Hermes 
metanalysis [13].

Research has shown that the non-thrombotic effects of 
tPA can contribute to hemorrhagic transformation; tPA has 
been shown to compromise blood–brain barrier integrity via 
LRP-1 expression on the endothelial cells as well as micro-
glia and astrocytic endfeet [51–53]. It also activates PDGF-
cc and kallikrein which promotes BBB disruption [54, 55]. 
A recent study also showed that immune invasion of the 
neurovascular unit occurs as a result tPA [56]. Data exists 
showing that tPA-induced hemorrhagic transformation can 
occur not only due to reperfusion but through tPA’s effect 
on MMP activity [57].

Risk Factors of Increased Hemorrhagic 
Transformation

A variety of clinical features have been associated with 
increased risk of hemorrhagic transformation in patients 
with ischemic stroke including strokes severity (NIHSS), 
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hyperglycemia, poor collaterals, hypertension, early infarc-
tion on brain imaging, advanced age, low platelet count, use 
of anti-thrombotic drugs, and reperfusion therapy (Table 1) 
[58]. One study reported the patient has with NIHSS of 
greater than 15 had a greater than 50% rate of hemorrhagic 
transformation [59].

Many of the clinical features associated with risks 
of increased hemorrhagic transformation are a result of 
immune system activation and inflammation [60]. Hyper-
glycemia is also thought to play some role in hemorrhagic 
transformation and has been shown to increase blood–brain 
barrier disruption [61]. Two studies, including the GIST UK 
and SHINE trials, looked at evaluating whether hyperglyce-
mia treatment in the acute setting resulted in better stroke 
outcomes; both studies did not show significant improve-
ment [62, 63].

Hypertension has been also shown to increase risks of 
HT. Elevated blood pressure is felt to play a role through 
a variety of different mechanisms that include exacerbated 
inflammation, vascular remodeling with effects on collateral 
and autoregulation, and direct pressure on brain vasculature 
[64]. It can also lead to disruption of the BBB [60, 65].

Advanced age is also related with increased risk of HT 
[66, 67]. This risk is multifactorial and is from increased 
systemic inflammation and changes in the BBB permeability 
[60]. Elderly patients also have changes in their immune sys-
tem, including both the adaptive and innate immune system 
[60, 68].

The direct-MT trial looked that patients who received 
thrombectomy only versus thrombectomy and alteplase and 
the rates of hemorrhagic transformation were comparable 
between the groups [69]. Other studies reported similar rates 
of hemorrhagic transformation in these two populations [13, 
70]. Careful selection of patients with a small core and large 
penumbra on perfusion imaging for thrombectomy can result 
in a decreased rate of intracerebral hemorrhage [71]. Other 
predictors of hemorrhagic transformation after endovascu-
lar therapy include low ASPECTS score and poor collateral 
status [72, 73].

Multiple passes for thrombectomy has also been iden-
tified as being associated with a significant increase in 
blood–brain barrier disruption [74].

Treatment of Patients with Hemorrhagic 
Transformation

Treatment of patients with hemorrhagic transformation of 
acute ischemic stroke is of paramount importance as hem-
orrhagic transformation is a medical emergency [75]. Most 
patients with this complication are ready in a healthcare 
facility, and as such airway, breathing, and cardiovascular 
support should be available [75]. For patients with hemor-
rhagic transformation, management changes such as closer 
attention to blood pressure goals as well as delaying ini-
tiation of anti-platelet or anticoagulation therapy should be 
considered [75]. In patients with hemorrhagic transforma-
tion, blood pressure regulation can be controversial and 
should factor the severity of ICH as well as likelihood of 
hematoma expansion verses risk of increasing the stroke 
burden as a secondary complication of hypoperfusion. For 
patients who had a full recanalization which was then com-
plicated by hemorrhagic transformation, a blood pressure 
goal of less than 140 mmHg can be considered [75]. Newer 
research looking into BP target of < 140 mmHg systolic in 
patients with mild to moderate ischemic stroke with throm-
bolysis has shown potential benefit [76]. Another recent 
study showed that while high admission SBP was associ-
ated with worse functional outcome after stroke, SBP did 
not negate the effects of endovascular therapy [77].

The goal of neurosurgical intervention in patients with 
intracerebral hemorrhage following stroke is to decompress 
the brain and reduce impact of mass effect and malignant 
edema [33, 78]. Previous trials looking at decompressive cra-
niotomy in patients with stroke had excluded patients with 
hemorrhagic transformation (Decimal and Destiny trials); a 
retrospective study done in Germany highlighted that decom-
pressive craniotomy in patients with hemorrhagic transfor-
mation in the setting of malignant cerebral infarction was 
associated with a worse outcome and higher mortality [79].

Blood Pressure Management

Blood pressure management and hemodynamics have been 
felt to be a critical part of post stroke management and 
thought to play a role in hemorrhagic transformation [80, 
81]. Studies have shown high rates of hemorrhagic transfor-
mation as well as increased mortality and worse outcomes 
in patients with higher peak systolic blood pressure values 
were with hemodynamic variability within the first 24 h 
after the thrombectomy [81–84]. The current American 

Table 1   Risk factors for hemorrhagic stroke

Risk factors for hemorrhagic transformation

Stroke severity (increased NIHSS)
Poor collateral blood supply
Hyperglycemia
Elevated blood pressure
Early ischemic changes on imaging
Advanced age
Low platelet count
Use of anti-thrombotic drugs
Reperfusion therapy
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Heart guidelines recommend blood pressure goal of less 
than 180/105 for patients treated with IV thrombolysis or 
mechanical thrombectomy [85]. This is not supported by 
randomized clinical trial data however, and the evidence for 
these recommendations is moderate to weak [80].

The Enchanted trial showed that intensive blood pressure 
control can potentially reduce the risk of major intracra-
nial hemorrhage in patients with acute ischemic stroke who 
received IV thrombolytics therapy [86]. Observational stud-
ies have highlighted increased risk of hemorrhagic trans-
formation in patients with elevated blood pressure and high 
blood pressure variability [83]. Blood pressure variability, 
when elevated, has been considered a risk factor for cerebral 
edema and post stroke hemorrhagic transformation as this 
can result in damage to already weak blood vessels [87, 88].

Real-time autoregulation monitoring can help identify 
dynamic blood pressure range in patients where autoregu-
lation is optimally functioning [89–93]. Cerebral autoreg-
ulation is intrinsic capacity of the cerebral vasculature to 
regulate stable blood flow in the setting of systemic blood 
pressure changes [94]. This autoregulatory capacity is criti-
cal in patients with acute stroke to maintain stable blood 
flow to the ischemic penumbra and avoid excessive hyper 
perfusion [80, 95, 96]. Recent studies in this realm have 
shown that exceeding individualized autoregulatory thresh-
olds was associated with hemorrhagic transformation and 
worse outcomes [80, 89, 91].

Imaging Considerations in Hemorrhagic 
Transformation

The European cooperative acute stroke study (ECASS) has 
defined the radiographic definition of hemorrhagic transfor-
mation [97]. Findings of hemorrhagic transformation on CT 
scans is divided into 2 stages: hemorrhagic infarction and 
parenchymal hemorrhage, with or without mass effect. It is 
important to differentiate between symptomatic and asympto-
matic hemorrhage. The SITS-MOST Criteria defines symp-
tomatic intracranial hemorrhage as a local or remote type 
2 parenchymal hemorrhage which occurs on the 22-to-36-h 
post thrombolysis scan and is associated with an increase of 
NIHSS of 4 points from baseline or leading to death [98, 99].

Other findings on imaging which can mimic hemor-
rhagic transformation include contrast extravasation after 
thrombectomy. After thrombectomy, hyper-densities can 
be seen on post-procedural computed tomography, poten-
tially secondary to intracerebral hemorrhage verses con-
trast extravasation. These can occur as a result of increased 
blood–brain barrier permeability or destruction. If contrast is 
the cause of the hyperdensity, this typically clears up within 
24 h and dual energy CT can help distinguish contrast from 
hemorrhage [100, 101].

Assessing for Early Stroke

Patients with established stroke is associated with increased 
risk of hemorrhagic transformation. One way to assess early 
ischemic changes in adult middle cerebral artery infarction is 
the Alberta stroke program early CT score (ASPECTS) [102, 
103]. The 2019 American Heart Association guidelines sug-
gested use of ASPECTS for patient’s presenting within 6 h 
of onset of large vessel occlusion when determining eligibil-
ity for mechanical thrombectomy without perfusion imaging 
[102, 103].

Assessment of Blood–Brain Barrier Destruction

Imaging studies have also been done to look at measure-
ment of blood–brain barrier destruction and endothelial 
damage through CT and MR imaging [104, 105]. The risk 
study showed that blood–brain barrier leakage was associ-
ated with more than a two-fold risk of relevant hemorrhagic 
transformation and with symptomatic intracerebral hemor-
rhage [23]. The data showed that pre-treatment blood–brain 
barrier leakage prior to reperfusion therapy was associated 
with hemorrhagic transformation which can potentially help 
identify patients at risk [23].

Pediatric Populations

It is estimated that childhood ischemic stroke affects 1.2 
to 2.4/100 1000 children per year in developed countries 
[106–110]. Data about hemorrhagic transformation in the 
pediatric population is limited [111]. One study looked at 
neuro-imaging for 63 pediatric patients with acute ischemic 
stroke and found that 30% had evidence of hemorrhagic 
transformation within thirty days [112]. The majority of 
these hemorrhages were noted to be petechial with two of 
them being symptomatic [112]. Causes of increased risk of 
ischemic stroke hemorrhagic transformation in this study 
included patients with cardiac conditions and meningi-
tis [112]. Data about endovascular treatment in pediatric 
patients is very limited. One study looking at 150 Swiss 
children who presented with acute ischemic stroke between 
2000 and 2015 showed that 16 underwent recanalization 
treatment, of which 6 received endovascular therapy, 5 also 
received intravenous or intra-arterial thrombolysis [113]. 
Of this population, 1 child (6.2%) had an asymptomatic 
ICH and had received intravenous tPA, not mechanical 
thrombectomy [113].

As discussed above, the ASPECTS score can be used to 
assess for established stroke. While ASPECTS is not used 
in pediatric population, a modified pediatric aspect score 
was evaluated and showed class 2 evidence that it is associ-
ated with stroke severity, hemorrhagic transformation, and 
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12-month outcome in children with acute supratentorial 
ischemic stroke [102].

Conclusion

Acute ischemic stroke is widespread global disease which 
affects millions of people each year. One of the feared com-
plications of AIS is hemorrhagic transformation which can 
be associated with significant morbidity and mortality. This 
review aims to discuss hemorrhagic conversion of acute 
ischemic stroke in the age of thrombectomy. Future studies 
are needed to help better identify patients at risk and lead to 
improved outcomes.
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