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Abstract
Vascular cognitive impairment (VCI) is predominately caused by vascular risk factors and cerebrovascular disease. VCI 
includes a broad spectrum of cognitive disorders, from mild cognitive impairment to vascular dementia caused by ischemic 
or hemorrhagic stroke, and vascular factors alone or in a combination with neurodegeneration including Alzheimer’s disease 
(AD) and AD-related dementia. VCI accounts for at least 20–40% of all dementia diagnosis. Growing evidence indicates 
that cerebrovascular pathology is the most important contributor to dementia, with additive or synergistic interactions with 
neurodegenerative pathology. The most common underlying mechanism of VCI is chronic age-related dysregulation of CBF, 
although other factors such as inflammation and cardiovascular dysfunction play a role. Vascular risk factors are prevalent in 
VCI and if measured in midlife they predict cognitive impairment and dementia in later life. Particularly, hypertension, high 
cholesterol, diabetes, and smoking at midlife are each associated with a 20 to 40% increased risk of dementia. Control of 
these risk factors including multimodality strategies with an inclusion of lifestyle modification is the most promising strategy 
for treatment and prevention of VCI. In this review, we present recent developments in age-related VCI, its mechanisms, 
diagnostic criteria, neuroimaging correlates, vascular risk determinants, and current intervention strategies for prevention 
and treatment of VCI. We have also summarized the most recent and relevant literature in the field of VCI.
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Vascular cognitive impairment (VCI) is a recently recog-
nized entity caused predominately by cerebrovascular dis-
ease [1, 2]. VCI includes an entire spectrum of cognitive 
disorders, from mild cognitive impairment (MCI) to vascular 
dementia caused by vascular ischemic or hemorrhagic eti-
ology and vascular factors alone or in a combination with 
neurodegeneration and Alzheimer’s disease (AD) [3]. In this 
review, we discuss recent developments in age-related VCI, 
including its mechanisms, diagnostic criteria, neuroimaging 
correlates, and vascular risk determinants. We also present 
current intervention strategies for prevention and treatment 
of VCI. Recently, several review articles have described VCI 
in the context of cerebral small vessel disease [4], asympto-
matic carotid stenosis [5], stroke [6–8], heart disease [9, 10], 
and AD [11]. Here, we summarize these developments and 
the most recent literature in the field of VCI.

Epidemiology of VCI and the Aging 
Populations

Current projections suggest that 72 million people in the 
USA will be older than 65 years of age by 2030, which is a 
greater than tenfold increase in a century [12]. Age-related 
cognitive impairment is one of the major public health chal-
lenges of our time. The number of affected individuals in 
2018 was estimated at 50 million worldwide and expected 
to triple by 2050 at a cost approaching $4 trillion [13]. The 
prevalence of VCI may be lower in low-to-middle-income 
countries that are early in the process of demographic tran-
sition [14]. However, these countries now see the fastest 
increases in the prevalence of VCI.

Vascular risk factors are prevalent in the growing older 
population. For example, in the community-based Framing-
ham Heart Study, the lifetime risk for development of 
hypertension is more than 90% [15]. Similarly, age-related 
neurological diseases have increased with prolonged life 
expectancy. One in three people over age 65 would experi-
ence stroke, dementia, or both of these conditions during 
their lifetimes [16]. VCI accounts for at least 20–40% of all 
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dementia diagnosis. Growing evidence indicates that cer-
ebrovascular pathology is the most important contributor 
to dementia, with additive or synergistic interactions with 
neurodegenerative pathology. In the clinical-pathological 
analysis from the Religious Orders Study and Memory and 
Aging Project, only 9% of autopsy sample had isolated AD, 
40% had AD plus prominent vascular pathology (macro-
scopic infarcts, cerebral amyloid angiopathy, atherosclero-
sis or arteriolosclerosis), and 44% had AD plus vascular as 
well as another neurodegenerative pathology [17]. This is 
further supported by the contribution of vascular risk fac-
tors to dementia. Vascular risk factors measured in midlife 
predict cognitive impairment and dementia in later life [18]. 
Hypertension, high cholesterol, diabetes, and smoking at 
midlife are each associated with a 20 to 40% increased risk 
of dementia and, furthermore, in dose-dependent manner 
such that the risk for dementia increases from 1.3 for having 
one risk factor to 2.4 for having four risk factors [18].

Disparities in cerebrovascular disease also translate in 
race-ethnic disparities in VCI and dementia. Non-Hispanic 
Black and Hispanics/Latino individuals have a greater bur-
den of VCI and dementia compared to non-Hispanic white 
individuals [19–21]. In the Northern Manhattan Study 
(NOMAS), Hispanic and Black participants had greater 
likelihood of MCI (20%) and dementia (5%) than white par-
ticipants after accounting for age and education differences 
[22]. Further research on the understanding of vascular risk 
factors, particularly in midlife as opposed to late life in the 
development of VCI in diverse cohorts, is needed, especially 
in those where participants live in the same community for 
comparison across groups without confounding introduced 
by heterogeneity in environmental and other local factors.

The most emphasis now is on identifying individuals with 
early cognitive impairment due to vascular risk factors and 
vascular pathology as these individuals are at greatest risk 
for developing VCI and dementia and would considerably 
benefit from preventive measures. However, more research is 
needed to understand epidemiology of a complete spectrum 
of VCI. Best way is to prospectively follow epidemiologic, 
aging, and clinical cohorts worldwide for vascular risk fac-
tors burden, structural and functional brain changes, and the 
intermediate vascular and cognitive phenotypes to determine 
their risk of transforming to VCI and clinical disease. This 
approach is feasible as many ongoing cohorts and aging 
studies are nationally or government funded (Table 1), and 
they are already focused on longitudinal cognitive outcomes 
and their prevention [23]. In this effort, major challenge 
remains in the harmonization of data collection, cognitive 
testing, and neuroimaging and other biomarkers. Based 
on the world pandemic of cognitive conditions, the World 
Stroke Organization has issued a proclamation that calls for 
joint prevention of stroke and dementia, data harmonization, 

and translation into action and is now endorsed by all major 
international organizations focused on brain and vascular 
health [24].

Mechanism of VCI

Multiple cerebrovascular etiologies can cause VCI. They 
include cerebral small vessel disease (SVD), large-artery 
atherosclerosis, brain hemorrhages, cardioembolism, and 
other less common etiologies of stroke [25, 26].  Age, 
genetic, and environmental and lifestyle factors lead to 
the development of vascular risk factors, subclinical arte-
rial and brain diseases, and ultimately cause cerebral blood 
flow (CBF) and network dysfunction, which are hallmarks of 
VCI (Fig. 1). Underlying neurodegeneration through shared 
genetic and environmental risk factors may accelerate VCI. 
This process is counteracted by the individual cognitive 
and functional reserve and resilience. The mechanisms by 
which vascular pathologies contribute to VCI are not well 
understood. The most common underlying mechanism of 

Table 1  Selected list of major longitudinal epidemiology and aging 
cohorts studying VCI in the USA and worldwide

•  Framingham Heart Study (FHS)
•  Atherosclerosis Risk in Communities (ARIC)
•  Multi-Ethnic Study of Atherosclerosis (MESA)
•  Northern Manhattan Study (NOMAS)
•  Hispanic Community Health Study-Study of Latinos (HCHS-SOL)
•  Reasons for Geographic and Racial Differences in Stroke 

(REGARDS)
•  Religious Orders Study
•  Rush Memory and Aging Project
•  Einstein Aging Study (EAS)
•  Health and Retirement Study (HRS)
•  Age, Genes/Susceptibility study Reykjavik (AGES-RS)
•  Three Cities study (3C)
•  Rotterdam Study (RS)
•  Austrian Study of Stroke Prevention (ASPS)
•  Study of Health in Pomerania (SHIP)
•  Singapore Longitudinal Aging Studies (SLAS)
•  English Longitudinal Study of Ageing (ELSA)
•  The Norwegian Life Course, Ageing and Generation Study (Nor-

LAG)
•  The German Ageing Survey (DEAS)
•  Australian Longitudinal Study of Ageing (ALSA)
•  The Japanese Study of Aging and Retirement (JSTAR)
•  Taiwan Longitudinal Study on Aging (TLSA)
•  China Health and Retirement Longitudinal Study (CHARLS)
•  Finnish Geriatric Intervention Study to Prevent Cognitive Impair-

ment and Disability (FINGER)
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these etiologies is chronic age-related dysregulation of CBF, 
but hypoxia, increased permeability of blood–brain barrier 
(BBB), endothelial dysfunction, systemic inflammation, 
and inflammatory clock of aging (iAge), which are tracked 
with multimorbidity, immunosenescence, frailty, and car-
diovascular aging, are additional mechanisms among others 
and have been recently reviewed [27, 28]. Also, vascular 
pathology commonly found in autopsy studies of clinical 
AD patients [29] seems to occur early in the AD continuum 
and biomarker trajectories [30, 31].

Regulation of CBF is complex. It must ensure adequate 
delivery of oxygen and nutrients and rapid adjustment to CBF 
fluctuations. While the brain only represents about 2% of the 
total body mass, it consumes about 20% of oxygen and about 
25% of glucose in the human body [32]. While the brain has 
a high metabolic demand for oxygen and glucose relative to 
other organs, it only contains minute energy reserves and is 
thus highly dependent on constant CBF to supply energy sub-
strates. CBF regulation has to maintain constant metabolic 
supply and normal blood flow, volume and intracranial pres-
sure, and prevent injury from penetration of high pressure flow 
from large vessels to the distal microvasculature [33]. Evi-
dence from animal models has shown that chronic reduction 
in CBF can cause brain atrophy, white matter injury, lacunar 
infarcts, hemorrhages, memory impairment, and potentially 
AD [34, 35]. Vascular risk factors, particularly hypertension, 
have profound impact on cerebral vessel wall structure and 
CBF regulation. Recent studies using BOLD and arterial spin 
labeling MRI have documented the alteration in cerebrovascu-
lar reactivity in patients with SVD [36, 37]. However, whether 
the CBF dysfunction is a cause of VCI or a consequence of 
reduced brain metabolic demands in aging and neurodegenera-
tion is unclear and remains to be proven [38].

The tightly controlled interaction between brain cells 
and the cerebral blood vessels is a central function in the 
mechanism of VCI, and it is conceptualized through the 
neurovascular unit [39, 40]. The neurovascular unit (NVU) 
is a complex functional and anatomical structure composed 
of specialized endothelial cells of the BBB surrounded by a 
basal lamina and the interacting neurons, astrocytes, micro-
glia, pericytes, and an extracellular matrix. The key function 
of the NVU is coupling of neural activity and CBF. Growing 
evidence indicates that NVU dysfunction critically contrib-
utes to brain pathologies, including VCI and neurodegenera-
tive diseases [41, 42].

There is significant heterogeneity in the interactions 
between neurons and cerebral vessels as well as the vascu-
lature of the collateral circulation pathways across the brain. 
The circle of Willis is an anastomotic system of arteries 
that forms a network of collateral CBF circulation to supply 
nutrients to the internal brain parenchyma as well as the 
surface within the subarachnoid space via pial arteries and 
arterioles. Pial arteries dive into the substance of the brain 
surrounded by an extension of the subarachnoid space form-
ing the perivascular spaces (PVS) or Virchow-Robin spaces 
[43]. Although the precise function of PVS is not completely 
understood, a perivascular pathway has long been proposed 
as a drainage system through retrograde travel with drainage 
into cervical lymph nodes [44]. This system is now known as 
the glymphatic system, a brain-wide network through which 
cerebrospinal fluid is exchanged with the interstitial fluid as 
a waste clearance mechanism within the brain parenchyma. 
The critical role of PVS is in the exchange of energy sub-
strates, maintaining the brain immune system, and clearing 
of interstitial ß-amyloid [45, 46]. PVS have little to no resist-
ance to flow [47] and have been proposed in the mechanisms 

Fig. 1  Mechanism of Vascular 
Cognitive Impairment
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of neurodegenerative disorders through a common pathway 
of vascular hemodynamic dysregulation and failure of the 
glymphatic system [48].

Multiple large and small infarcts were proposed as 
causes of dementia in early 1970s [49] and have been asso-
ciated with high risk of dementia or worsening of cogni-
tive function if large in size, across multiple territories or in 
greater number [25, 50], and particularly for those infarcts 
in supratentorial regions and in anterior circulation [51, 
52]. There is a large interindividual variation in cognitive 
response to multiple infarcts and potential underlying neu-
rodegenerative pathology; therefore, no clear infarct volume 
threshold has been proposed. Single infarcts may cause cog-
nitive decline if located in strategic regions (called strate-
gic infarcts) such as the thalamus, angular gyrus, and basal 
ganglia [53, 54]. Specific white matter tracks that are inte-
grated into cortical-subcortical cognitive networks are likely 
playing a key role in cognitive impairments associated with 
these lesions [55].

Subclinical cerebral white matter lesions and microin-
farcts are most common causes of VCI [56–58]. Prevalence 
of white matter lesions is as high as 50% in those aged 45 
to 95% in those aged 80 [59, 60]. Subclinical, silent cer-
ebral infarcts (SBIs) are prevalent up to 40%, depending 
on age and the burden of vascular risk factors [61, 62]. In 
the Rotterdam Study and the Framingham Offspring Study, 
SBIs doubled the risk of dementia [63, 64]. In the NOMAS, 
greater burden of white matter lesions and SBIs was asso-
ciated with worse global cognitive performance and psy-
chomotor speed [65]. Furthermore, those 70 years or older 
with greater burden of white matter performed worse in epi-
sodic and semantic memory, which is likely driven by the 
cumulative effects of vascular risk factors and subclinical 
age-related neurodegenerative pathology on cerebrovascular 
integrity. In Religious Orders Study, cerebral microinfarcts 
were associated with disturbances in episodic memory, 
semantic memory, and perceptual speed [66]. In support of 
these observations, a meta-analysis of data from different 
cohorts worldwide has shown prevalence of cerebral micro-
infarcts to be twice as high in people who died with diagno-
sis of dementia [67].

PVS are highly associated with other markers of SVD, 
including white matter hyperintensities and cerebral micro-
infarcts, and by many are considered a hallmark of SVD 
[68]. In NOMAS, PVS were associated with increased age, 
hypertension, presence of atherosclerotic carotid plaque, and 
of risk of vascular events [69, 70], most likely through the 
mechanism of arterial stiffness and pulse-wave reflection and 
propagation to the aging brain. Other proposed mechanisms 
for enlargement of PVS include brain atrophy, inflammation, 
and dysfunction of perivascular flow [45, 71]. The evidence 
for the associations between PVS and cognitive impair-
ment and dementia has been conflicting; however, recent 

meta-analysis supports the role of PVS in cognitive impair-
ment [72]. In a recent study, PVS were associated with 
greater decline in global cognition over 4 years independent 
of other markers of SVD and with a 2.9-fold increased risk 
of dementia across 8 years of follow-up [73]. The presence 
of PVS visible on MRI is not specific for SVD, but they are 
also frequently found in patients with AD, Parkinson’s dis-
ease, and multiple sclerosis [71]. Nevertheless, the mecha-
nism behind VCI in the presence of various imaging markers 
of SVD (PVS, white matter lesions, SBI) remains difficult to 
elucidate because of shared and multiple disease processes, 
diffuse location, the presence of yet unrecognized pathology, 
and individual cognitive reserve and resilience [25].

Brain hemorrhages, intracerebral hemorrhages (ICH), 
and cerebral microbleeds are also associated with cogni-
tive impairment and dementia [74, 75]. Hypertensive 
small vessel disease is the most common cause of deep 
ICH and cerebral amyloid angiopathy of lobar ICH [76]. 
Cerebral microbleeds (CMBs) are well-defined small and 
round black structures seeing on MRI gradient echo T2*-
weighted imaging. The prevalence of CMBs is reported to 
be 3–27% in elderly individuals [77–80]. In NOMAS, the 
prevalence of CMBs was 5%; and 37% participants had only 
deep CMBs, 48% had only lobar CMBs, and 15% had CMBs 
in both locations [81]. The underlying mechanisms of CMBs 
are heterogeneous and associated with recent or old hem-
orrhages, vasculopathies, and various degrees of chronic 
ischemic injury [82]. CMBs affect cognition and risk of 
dementia independent of vascular risk factors and other 
markers of SVD [78, 79]. The mechanisms by which CMBs 
affect cognition are unclear, but evidence suggests that it is 
mediated by reduced structural brain network efficiency and 
disrupted connectivity [83, 84].

Cerebral amyloid angiopathies (CAA) include heterogene-
ous sporadic and genetic conditions characterized by amyloid 
deposition in the walls of cerebral arteries and arterioles. 
Sporadic CAA is the most common in the elderly and is char-
acterized by vascular deposition of amyloid-beta (Aβ) [85]. 
The prevalence of CAA is about 2–20%, depending on age, 
and is present in over 80% of patients with AD on autopsy 
[85–87]. CAA is associated with greater number of neurofi-
brillary tangles, neuritic plaques, and ApoE4 presence [88]. 
CAA manifests with or without intracranial hemorrhage and 
has been associated with cognitive decline, perceptual speed, 
episodic memory, and semantic memory [89]. One of the key 
features of CAA is cortical superficial siderosis (cSS), which 
represents deposits of blood-breakdown products within the 
subarachnoid space, the leptomeninges, and the superficial 
cortical layers [84]. cSS is associated with transient focal 
neurological episodes and a high risk of future intracer-
ebral hemorrhage. It requires appropriate blood-sensitive 
MR sequences that are implemented in routine scanning of 
patients with suspected cerebrovascular events and VCI [90]. 
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In the Framingham and Rotterdam studies of community-
dwelling older adults, 6.6% of individuals had deep micro-
bleeds, 12.8% had strictly lobar microbleeds without cortical 
superficial siderosis, and 0.43% had cSS [91]. Participants 
with cSS were older, had the APOE ɛ4 allele more frequently, 
and had greater prevalence of intracerebral hemorrhage. Dur-
ing a mean follow-up of 5.6 years, 42% participants with cSS 
developed a stroke, 19% transient neurological deficits, and 
4% incident dementia. Besides cSS and cerebral micro- and 
macro-bleeds, the mechanisms of cognitive decline in CAA 
also include ischemic injury to the white matter and disrup-
tion of structural and functional network integrity [92]. The 
CCA pathophysiology, treatment, and role of the fibrinolytic 
system have been recently extensively reviewed elsewhere 
[93].

Cardiac disease such as heart failure, ischemic heart dis-
ease, and atrial fibrillation has been associated with VCI. 
The most common cause of cognitive decline in heart failure 
is cardiac systolic dysfunction that leads to reduced cerebral 
perfusion [10]. Neurohormonal activation, oxidative stress, 
inflammation, glial activation, dendritic spine loss, and brain 
programmed cell death have also been proposed contributors 
of cognitive impairment in heart failure. A novel hypoth-
esis has recently emerged as the misfolded protein disease 
is found both in the brain and the heart [94]. Elevated levels 
of Aβ in the heart and skeletal muscles of AD individuals 
indicate a possible contributor to elevated concentrations of 
Aβ plasma levels and potentially indirectly contributing to 
Aβ deposits in cerebral blood vessels and brain parenchyma 
[95]. Atrial fibrillation (AF) is another important cause of 
cognitive impairment through its thromboembolic risk, 
association with cerebral SVD, vascular inflammation, and 
genetic factors [96, 97]. New evidence shows that the use 
of oral anticoagulants (OACs) in AF is associated with a 
lower risk of cognitive impairment and dementia compared 
to non-OAC and antiplatelet use [98, 99].

Subclinical atherosclerosis, including carotid intima-
media thickness (cIMT), atherosclerotic plaque, and carotid 
stenosis, has been associated with VCI. cIMT reflects thick-
ening of the intimal and medial layers of the vessel wall, 
and carotid plaque represents significant atherosclerotic 
disease in the vessel lumen that leads to stenosis and CBF 
reduction [100]. Global hypoperfusion from these causes 
has been strongly associated with neuropathological imag-
ing showing watershed infarcts, white matter lesions, and 
hippocampal sclerosis [101–103]. Although cIMT, plaque, 
and stenosis are validated markers of subclinical vascular 
disease [104–108], less is known about their ability to pre-
dict cognitive impairment and with conflicting evidence. 
In NOMAS, cIMT was associated with impairments in 
episodic and semantic memories, and processing speed, 
but only among APOE ε4 carriers, who represented 24% 
of the cohort [109], suggesting that increased cIMT may 

exacerbate cognitive dysfunction in those at higher risk for 
AD. Carotid plaque was not associated with cognitive dys-
function. In the Tromso study, however, carotid plaque but 
not cIMT was associated with cognition dysfunction, par-
ticularly in verbal memory [110]. The effect of aging, vascu-
lar risk factors, and their control likely affected not only the 
discrepancy between the studies, but also the mechanisms 
by which these subclinical vascular phenotypes affect cogni-
tion may differ [111]. Greater cIMT may result in increased 
arterial stiffness, pulsatile wave propagation to the brain, 
and endothelial injury, while carotid plaque may progress to 
significant stenosis or be a major source of cerebral emboli. 
Both of these mechanisms may lead to dysregulation of CBF 
and cerebral hypoperfusion. Carotid stenosis is a flow reduc-
tion lesion and a strong predictor of cerebrovascular events 
as well as cognitive impairment, although the studies with 
cognitive outcomes are inconsistent [5]. The mechanism 
by which carotid stenosis causes cognitive impairment is 
not fully understood. Few studies have addressed the role 
of SVD in the presence of carotid stenosis. Better evidence 
supports the role of CBF dysregulation caused by impaired 
cerebrovascular reserve in patients with severe carotid ste-
nosis and who more likely have cognitive impairment and 
suffer further cognitive decline with time [112]. Therefore, 
cognitive decline can be potentially reversed by carotid 
revascularization and this concept is currently been tested 
in the CREST-H (Carotid Revascularization and Medical 
Management for Asymptomatic Carotid Stenosis — Hemo-
dynamics) study, an ancillary study of the CREST-2 rand-
omized clinical trial [113, 114].

Specific genetic and sporadic forms of arteriopathy are 
associated with VCI. The most frequent monogenic cause 
is cerebral autosomal dominant arteriopathy with subcorti-
cal infarcts and leukoencephalopathy (CADASIL) caused by 
NOTCH3 mutations and less common cerebral autosomal 
recessive arteriopathy with subcortical infarcts and leukoen-
cephalopathy (CAASIL) condition caused by HTRA1 muta-
tions [115–117]. Although ApoE4 is a strong risk factor for 
AD, it seems less important for VCI [118]. Further discus-
sion on these conditions is outside the scope of this review 
and is summarized elsewhere [119–121].

In some instances, there is a reversibility of cognition in 
VCI. Transient cognitive impairment can return to normal 
in about 20% patients shortly after stroke [122], depression 
[123], and heart failure [124]. Transient cognitive impair-
ment in VCI does not include post-stroke delirium that is 
observed in up to 25% of hospitalized stroke patients [125], 
or post-stroke depression, found in up to 50% of stroke 
patients [126]. Post-stroke cognitive impairment is revers-
ible to normal in both of these conditions.

Despite the established relationships between clinical 
stoke and subclinical infarcts and dementia, these relations 
are understudied in a systematic way in a large and diverse 
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populations. To fill the gap in our understanding of patho-
physiology of VCI, the NIH has recently established the 
DISCOVERY study (Determinants of Incident Stroke Cog-
nitive Outcomes and Vascular Effects on Recovery), a large 
consortium to study cognitive trajectories post-ischemic and 
hemorrhagic stroke [6], as well as the MarkVCID to validate 
biomarkers of VCI due to SVD [127, 128]. Similarly, other 
large-scale international collaborations such as STROKOG 
(Stroke and Cognition Consortium), SVDs@target (Small 
Vessel Diseases-At-Target), and the HBC (Heart-Brain Con-
nection) are established to investigate the mechanisms of 
VCI [129], with STROKOG being the largest consortium 
with 18,000 individuals from 32 studies and representing 
18 countries [130]. Thus, understanding and targeting the 
mechanism of VCI are a high priority for reducing the over-
all burden of cognitive impairment and dementia.

Diagnostic Criteria of Vascular Cognitive 
Impairment and Vascular Dementia

The concept of VCI was first outlined in 2006 by the NINDS 
in collaboration with the Canadian Stroke Network in a 
statement on harmonization of minimum, common, clinical, 
and research standards for the description, data collection, 
and study of VCI [131]. In the 2011, AHA-ASA had issued 
a scientific statement on vascular contributions to cognitive 
impairment and dementia to further capture the entire VCI 
spectrum associated with all forms of vascular brain injury, 
ranging from MCI to fully developed dementia [132], and 
proposed the term VCI for all forms of cognitive disorder 
associated with cerebrovascular disease regardless of the eti-
ology (e.g., atherosclerotic, ischemic, hemorrhagic, cardi-
oembolic, or genetic). Thus, VCI could range from the mild 
cognitive deficits, through the multifocal cognitive deficits 
to clinical vascular dementia that is severe enough to affect 
social or occupational function.

The 2011 AHA/ASA scientific statement defines VCI as 
“a syndrome with evidence of clinical stroke or subclini-
cal vascular brain injury and cognitive impairment affect-
ing at least one cognitive domain.” Memory impairment is 
not a requirement for diagnosis of VCI as memory deficits 
like seen in AD are not suitable for VCI, in which memory-
related structures (hippocampus, thalamus) may be intact 
and not causing memory impairment [133]. The need for 
continued development and refinement of cognitive batteries 
for VCI is emphasized as well as identification of imaging 
and soluble biomarkers of VCI.

Since the 1970s, there are a variety of vascular demen-
tia (VaD) criteria, ranging from the clinical Hachinski 
Ischemic Score (HIS) and the National Institute for Neu-
rological Diseases and Stroke–Association Internationale 
pour la Recherche et l’Enseignement en Neurosciences 

(NINDS-AIREN) criteria mostly used in research [134] to 
the AHA-ASA vascular cognitive impairment criteria in 
2011, Diagnostic and Statistical Manual (DSM-III, IIIR, 
IV), the International Classification of Disease 10th and 
11th revision (ICD-10, ICD-11), the California Alzheimer’s 
Disease Diagnostic and Treatment Centers (ADDTC), and 
the International Society for Vascular Behavioral and Cog-
nitive Disorders (VASCOG) criteria [135–139]. There is a 
considerable variability in the sensitivity of these different 
criteria when using pathology as a “gold standard” (ranging 
from 0.2 to 0.7). Specificity, however, ranges from 0.78 to 
0.93; thus, most of these criteria emphasize specificity over 
sensitivity. Nevertheless, less than 50% of all individuals 
with moderately severe vascular pathology at autopsy are 
diagnosed during life as having VaD [140].

More recently, the international Vascular Impairment 
of Cognition Classification Consensus Study (VICCCS-1 
and 2) has synthesized the conceptual framework, built the 
consensus, and harmonized diagnostic criteria for VCI and 
VaD into mild or major [141, 142]. In VICCCS-1 major 
VCI category, four VCI sub-types are defined: post-stroke 
dementia, subcortical ischemic vascular dementia, multi-
infarct (cortical) dementia, and mixed dementias (Fig. 2). 
VICCCS-2 further discusses VCI neuroimaging markers 
with MRI recommended as a gold standard requirement for 
a diagnosis of VCI.

Neuroimaging Correlates of Vascular 
Cognitive Impairment

Figure 3 briefly outlines MRI sequences with most typi-
cal imaging findings and their implication on cognition. 
The VICCCS-2 diagnostic guidelines [142] recommend 
the use of imaging in the diagnosis of VCI based on the 
MRI measures, including the number, size and location of 
infarcts, and hemorrhages, extent on a quantitative or vali-
dated semiqualitative scale of WMH volume, and measures 
of total brain (or ventricular) and hippocampal volumes. 
For research purposes, the NINDS-CSC VCI harmonization 
guidelines [131] recommend a minimal imaging dataset with 
MRI 3D T1-weighted, T2-weighted, fluid-attenuated inver-
sion recovery (FLAIR), and gradient echo (GRE) sequences. 
Diffusion-weighted images (for acute stroke), diffusion ten-
sor imaging (DTI) for assessing the state of the white matter 
tracts where abnormal DTI (lower fractional anisotropy) in 
normal-appearing white matter as it has been associated with 
vascular risk factors and poorer executive function [143], 
PET for β-amyloid, and non-invasive assessment of the 
cerebral vasculature (carotid ultrasound preferably or MR 
angiography) are also suggested.

White matter hyperintensities (WMHs) are often seen on 
FLAIR or T2 MRI sequences, increasingly with age and 
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in the setting of vascular risk factors. They are associated 
with cerebral SVD, though they can be seen in other neu-
rological conditions and in the appropriate clinical setting 
(e.g., multiple sclerosis). While often heterogenous in size, 
distribution, and quantity, their presence is noteworthy when 
considering vascular etiology of cognitive impairment in 
clinical practice. The presence of WMHs is associated with 
global cognitive dysfunction [144, 145], both associated 

with brain atrophy [146–148] and independent of atrophy 
[65]. Increased WMH burden has also been associated with 
functional decline [149]. Still, many questions remain unan-
swered about the cognitive implications of specific charac-
teristics of WMH, such as asymmetry of distribution [150], 
impact of the underlying histopathology [151], or location 
(e.g., peri-ventricular vs. sub-cortical) [152]. WMHs may 
also be implicated in AD and AD-related dementia, though 

Fig. 2  Vascular cognitive impairment (VCI) diagnostic criteria

Fig. 3  Vascular MR imaging phenotypes associated with vascular cognitive impairment
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the extent of this association remains to be established [153]. 
Additional work demonstrates an association of WMHs 
with amyloid deposition, but not with tau [154]. Some sug-
gest the increased risk from WMHs may be independent of 
the vascular contribution [155]. In fact, WMHs have been 
associated with processing speed dysfunction via direct 
and indirect effects on AD-specific radiographic signatures 
[156]. Ischemic strokes are likewise associated with VCI. 
The clinical cognitive outcome associated with prior infarc-
tion is impairment of frontal-subcortical functions, such as 
perceptual speed [55]. In addition to the cumulative effect 
of prior infarcts, one or more strategic infarcts in select ana-
tomic areas associated with cognitive processes may trig-
ger direct cognitive consequences — these are known as 
strategic infarcts, or single-stroke dementia. Some studies 
have correlated certain white matter tract lacunar infarcts 
to specific cognitive domain dysfunction, but concede that 
making cognitive outcome predictions based on location 
of stroke is not yet possible [54, 55]. In fact, most stud-
ies report a diversity of anatomic locations that have been 
associated with this VCI phenotype. The presence of more 
than one infarction was most strongly associated with per-
ceptual speed and other frontal-subcortical functions [157]. 
Brain atrophy is measured by employing volumetric analy-
sis of CSF (e.g., sulcal and ventricular CSF volumes) and 
cortical thickness (e.g., medial temporal lobe thickness). 
Such atrophy denotes disease progression in the context 
of cerebrovascular disease. Perivascular spaces on CT or 
MRI are visible as parenchymal hyperintensities on MRI 
T2-weighted images (or hypointesities on T1/FLAIR) as 
either linear, if run along the image plane, or round, if they 
are perpendicular to the image plane [158]. They are com-
mon in elderly and visible on MRI in 50–100% of individu-
als, depending on the imaging methods, scanner resolution, 
and criteria used for PVS assessment. Most commonly, PVS 
are seen in the basal ganglia and the centrum semiovale, and 
less in the hippocampus, the midbrain, the pons, and very 
rarely in the cerebellum [159]. The exact anatomy, structure, 
and the function of PVS and their role in cognitive dysfunc-
tion and risk of dementia are still unclear. Novel imaging 
technology to measure cerebrovascular injury is emerging 
and will inform future VCI research and definitions, particu-
larly imaging of blood–brain barrier (BBB) integrity using 
gadolinium-enhanced MRI [160]. It measures contrast agent 
leakage from the blood plasma to the brain interstitial space 
over time and allows the detection of subtle leakage values 
in aging, SVD, MCI, AD, and VaD [161]. However, whether 
BBB leakage is associated with the variation in age-related 
cognitive decline remains to be investigated. The additional 
imaging of vascular dysfunction and BBB disruption has 
been recently suggested to the AD “ATN” (amyloid, tau, 
neurodegeneration) biomarker research framework [162, 
163].

The harmonization of neuroimaging markers of cerebro-
vascular injury for the diagnosis of VCI is underway. The 
Harmonizing Brain Imaging Methods for Vascular Contri-
butions to Neurodegeneration (HARNESS) initiative pro-
vides resources to reduce variability in measurement in MRI 
studies of SVD and has made available MRI protocols and 
analysis tools for research use [164]. This initiative com-
plements the Standards for Reporting Vascular Changes on 
Neuroimaging (STRIVE) criteria that suggests harmonized 
definitions of common cerebrovascular pathologies [158]. 
Similarly, the NIH-funded MarkVCID is established to vali-
date both neuroimaging and serum- or fluid-based biomark-
ers for VCI [127, 128]. Most recently, the NIH has awarded 
the INDEED study (clinical significance of incidental white 
matter lesions on MRI among a diverse population of cog-
nitive complaints) to investigate the role of MRI-quantified 
white matter lesions on cognition and health outcomes 
[165]. There is a great expectation that this research will 
soon translate the use of multiple neuroimaging biomarkers 
of VCI into clinical practice.

Vascular Risk Factors and Vascular Cognitive 
Impairment

Evidence accumulated over the past several decades sug-
gests a significant contribution of vascular risk factors to 
VCI [166] and AD [167, 168]. Although age remains the 
most significant risk factor for VCI and all-cause dementia 
[169], vascular risk factors come in second with strongest 
evidence supporting an effect of hypertension, hyperglyce-
mia, and diabetes [25]. The evidence for the associations 
of deleterious and resilience factors with VCI as well as for 
therapeutic approaches to VCI is summarized in Fig. 4.

Deleterious Factors

Hypertension is strongly and negatively associated with 
cognitive function. Hypertension has been consistently 
associated with poor performance in executive function 
[170]; greater rate of cognitive decline [171]; increased 
risk for MCI [171]; dementia — particularly vascular 
dementia (VaD) [172]; and structural and functional brain 
changes [173]. When uncontrolled, hypertension may lead 
to regional patterns of gray matter atrophy associated with 
white matter lesions and with worse cognitive performance 
[174]. In the Honolulu-Asia Aging Study, midlife systolic 
blood pressure (SBP) of ≥ 120 mmHg was associated with 
an increased risk of late-life dementia and VaD, with the 
latter risk being reduced with antihypertensive treatment for 
SBP but not DBP [175]. In NOMAS, the inverse association 
of SBP with processing speed/visual motor integration func-
tion was non-significant when antihypertension treatment 
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was accounted for, in a support of the effect of hypertension 
control on maintenance of cognitive function [176]. The evi-
dence of increased risk of VaD [177] is particularly strong 
for midlife rather than late-life hypertension [178], while 
for AD this relationship is less clear [179]. Furthermore, 
the relationship between hypertension and cognition appears 
to be U-shaped, with both higher and lower BP associated 
with worse cognitive outcomes in older adults [180]. Data 
pooled across 5 large cohorts suggest that racial disparities 
in late-life cognitive decline may be explained at least in part 
by higher BP levels in Black compared to white participants 
[181].

Obesity has been consistently linked to an increased risk 
of future dementia when measured in midlife, while after 
the age of 65, obesity appears to protect against dementia 
[182]. Newer evidence from a study of 39 cohorts totaling 
over 1.3 million dementia-free individuals suggests that 
the positive effect in later life may in fact be confounded 
by weight loss during the preclinical dementia phase, 
while the negative effect of midlife BMI is less likely 

impacted by preclinical changes and may better capture its 
direct effect on dementia risk [183]. Several mechanisms 
have been proposed to explain the link between obesity 
and cognitive function, including chronic low grade sys-
temic inflammation and oxidative stress in obese individu-
als [184], increased permeability of the BBB [185], and 
increased insulin resistance leading to declines in glucose 
metabolism, all of which contribute to neurodegeneration 
and neuronal death [186]. In addition, obesity may play 
a significant role in the development of VCI by promot-
ing arterial stiffness and development of atherosclerosis 
and SVD [187] via endothelial dysfunction [188]. Weight 
control is currently considered a reasonable (class IIb/level 
B evidence) preventive strategy for individuals at risk for 
VCI [132].

Diabetes and high glucose levels are consistently linked 
to poor cognitive performance [189], increased risk of 
dementia [190] and VCI [191]. Individuals < 65 years of 
age [192] and those with undiagnosed diabetes [189] are at 
particular high risk. Poor glycemic control in middle-aged 

Fig. 4  Evidence for VCI 
preventive and therapeutic 
strategies
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patients with type 2 diabetes mellitus was found to signifi-
cantly increase rate of decline in memory and reasoning in 
the Whitehall II cohort study [193]. These effects are sup-
ported by a strong relationship of hyperglycemia, diabetes, 
and insulin resistance with brain vascular changes [191, 
194], alterations in cerebral flow [195], AD and non-AD 
pathology [196], brain infarcts [197], and changes in BBB 
permeability, all of which play a role in the development of 
VCI. Metabolic syndrome, a clustering of vascular risk fac-
tors, has been negatively linked to cognitive function across 
global measures [198] and cognitive domains [199] and with 
increased risk of MCI and its progression [200].

Lipids are the basic components of cell membranes. In 
the brain, long-chain polyunsaturated fatty acids (PUFAs) 
account for about 30% of total fatty acids including doco-
sahexaenoic acid (DHA) and arachidonic acid [201] and are 
implicated in the maintenance of membrane permeability 
and the interaction between lipids and proteins, therefore 
promoting brain neurogenesis and modulating inflammation 
[202]. Reduction in PUFAs has been linked to lipid rafts, 
particularly in the frontal cortex [203], which may promote 
aggregation of beta amyloid and hyperphosphorylated tau 
[204]. Large observational studies support a link between 
high cholesterol particularly in midlife and cognitive impair-
ment and development of AD and VaD in later life, indepen-
dently of other vascular risk factors including hypertension 
and diabetes [205]. These findings are supported by a slower 
progression of cognitive decline in individuals taking statins, 
particularly among homozygous ApoE4 carriers [206]. The 
evidence on the effect of long-chain PUFA enriched diets 
on cognitive performance in older adults is conflicting, with 
some showing improvement in memory and executive func-
tion [207, 208] while others reporting no effects [209–211]. 
These conflicting results are a consequence of methodologi-
cal limitations related to lack of uniform biomarkers and 
sufficient duration of intervention. Trials that address these 
limitations may help further our understanding of the effect 
of lipids on cognitive function in older adults and elucidate 
mechanisms of action [212].

Elevated homocysteine, a risk factor for vascular damage, 
has been linked to cognitive impairment and a greater likeli-
hood of dementia and VaD [213], findings supported by an 
evidence of increased neuropathological burden in individu-
als with high homocysteine levels [214]. Although earlier 
meta-analyses did not find supporting evidence that lowering 
homocysteine helps prevent cognitive decline and dementia 
[215–217], findings from clinical trials of sufficient duration 
[218] and in participants already cognitively impaired [219] 
support a beneficial effect of lowering homocysteine with 
vitamin B supplementation. This positive effect was found 
on cognitive performance [218] and on the slower rate of 
brain atrophy in individuals with MCI and particularly in 
those with total plasma homocysteine levels > 13 μmol/L 

[219]. However, the benefits of lowering homocysteine on 
VCI prevention or progression are yet to be determined [214, 
220].

Active smoking has detrimental effects on brain health. 
Early work had shown that nicotine, known for its short-
term effects on the neuronal cholinergic system, may have 
potential benefits in terms of enhanced cognitive perfor-
mance particularly on memory, cognitive functions that 
require sustained attention [221], and dementia risk [222], 
likely through inhibition of amyloid formation [223] and 
a modulation of choroid plexus function [224]. However, 
nicotine is just one among the thousands of compounds in 
tobacco smoke, with many having toxic effects on cardiovas-
cular and pulmonary systems and the brain. The first longi-
tudinal study to assess the impact of smoking on cognitive 
performance found smoking to increase the risk of cogni-
tive impairment over a 20-year period [225], finding letter 
supported by subsequent studies showing greater cognitive 
declines in memory and executive function [226, 227] and a 
greater risk for dementia [228]. Smoking appears to have a 
greater impact on cognition in women as compared to men 
[229], while its relationship to VCI is unclear, although there 
is some evidence for a greater risk in smokers [230]. Smok-
ing cessation is currently recommended as a reasonable 
(class IIa/level A) strategy for the prevention of VCI [132].

Due to a lack of homogeneity in the definition of alco-
hol intake, the use of reference groups, and outcomes, the 
impact of alcohol use on cognition is unclear [132]. How-
ever, there is reasonable evidence from large longitudinal 
prospective studies that drinking alcohol in moderation may 
have benefits in terms of a slower rate of decline in cog-
nition [231] and reduced risk of dementia, AD, and VaD 
[232], potentially through a reduction in the accumulation 
of neuropathologic changes among individuals with a life-
time history of moderate alcohol intake [233]. In contrast, 
heavy drinking as well as abstinence have been linked to an 
increased risk for cognitive impairment [132] and dementia 
[232]. These reports support a modest benefit (class IIb/level 
B) of moderate alcohol consumption in older adults and par-
ticularly in those at risk for VCI and is therefore considered 
a reasonable preventative approach [132].

Resilience Risk Factors

Education is positively associated with cognitive perfor-
mance. Older adults with higher education perform better 
on global and domain-specific measures of cognition such 
as working memory and reasoning [234], have a lower risk 
of dementia [235], and a lower risk of developing post-stroke 
dementia [236]. While education may not protect against 
vascular and other neurodegenerative pathologies [220], it 
may buffer the impact of the neurodegenerative pathology on 
clinical symptoms [237]. However, issues of confounding of 
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the education-VCI relationship by various factors including 
quality of schooling, socioeconomic status, and accultura-
tion have been raised [132], which together with a lack of 
its ability to prevent development of neuropathology suggest 
that educational interventions may not be very effective pre-
ventative approach for VCI.

Physical activity has been consistently linked to better 
performance on cognitive testing including global cogni-
tion [238] and executive function [239] and to a reduced 
risk of cognitive decline and dementia including VaD [220]. 
These effects may result from exercise-induced increases in 
expression of neurotrophic factors including brain-derived 
neurotrophic factor (BDNF) that promote neuro- and synap-
togenesis and improve brain perfusion [132]. Other mecha-
nisms include attenuation of age-related myelin reduction 
[240] and maintenance of white matter integrity [241]. The 
AHA/ASA guidelines gave physical activity class IIb/level B 
evidence as a reasonable prevention strategy for individuals 
at risk for VCI [132].

A healthy diet is another potential cognitively protective 
factor with evidence in support of the Mediterranean diet 
[242]. With its focus on fruits, vegetables, fish, nuts, whole 
grains, and monounsaturated oils, the Mediterranean diet 
provides adequate intake of antioxidants such as vitamins 
E and B12, folate, and n-3 fatty acids, the consumption of 
which either as part of diet or as supplements was linked to 
better cognitive function [220] and reduced risk of cognitive 
impairment [243]. These findings are however inconsistent. 
Several studies reported no cognitive benefit for antioxidants 
[244, 245] and fatty acids [246], while Mediterranean diet 
was not assessed specifically for VCI risk [132]. Higher cir-
culatory levels of vitamin D have also been linked to better 
cognitive function and may protect against cardiovascular 
disease and stroke [247], although the evidence is incon-
sistent [248]. Finally, intake of folic acid and vitamins B6 
and B12 may provide protection against cognitive decline 
by increasing production and metabolism of homocysteine 
[249]. The AHA/ASA guidelines place diet at class III/level 
A evidence and do not recommend diet for the prevention of 
cognitive impairment including VCI.

Although having an active social network and social sup-
port have been linked to better cognitive function [250] and 
may reduce risk of dementia [251], the quality of social sup-
port can have differential effects. While positive social sup-
port from the immediate family has been linked to reduced 
risk of dementia, negative social support has the opposite 
effect increasing the risk [252]. In addition, being married, 
having contact with friends, engagement in paid work, and 
participation in community groups may reduce the risk of 
incident dementia [253]. Testing these relationships in ran-
domized clinical trials and specifically in relation to VCI is 
needed before a recommendation for social support as a VCI 
preventative strategy can be made [132].

The Impact of Combinations of Risk Factors on VCI

While individual risk factors are important to consider 
when assessing risk of dementia and VCI, the combined 
effect of risk factors within an individual is a stronger pre-
dictor of cognitive decline than independent risk factors. A 
higher number of vascular risk factors within an individual 
were associated with greater impairment in executive func-
tion and processing speed [254]. In contrast, an increasing 
number of ideal cardiovascular health factors may protect 
against decline in processing speed, executive function, and 
memory [255]. The Cardiovascular Risk Factors, Aging and 
Dementia (CAIDE), a midlife composite vascular risk score 
that does not require labs and better reflects the age and 
education distribution of the study population, was asso-
ciated with greater cognitive decline [256] and found to 
predict dementia risk 20 years [257] and even 40 years later 
[258]. In addition, a higher CAIDE risk score was linked to 
lower performance on global and domain-specific cognitive 
tests and helped discriminate cognitive impairment from 
normal cognition, MCI and dementia cases, and particularly 
VCI cases from controls [259]. Other vascular risk scores 
such as the NOMAS GVRS (Global Vascular Risk Score) 
were found to be inversely associated with level of global 
cognition and shown to better predict declines in process-
ing speed and memory compared to CAIDE, likely because 
of an additional inclusion of smoking and glucose levels 
[260], further supporting the idea that a higher number of 
vascular risk factors within an individual better predicts 
cognitive decline.

Strategies for VCI Prevention

One strategy for the prevention of dementia and VCI is to 
address modifiable vascular risk factors, with particular 
interest in multimodal interventions.

Several large clinical trials have assessed the impact 
of antihypertensive medications on cognitive outcomes 
including risk of dementia and VCI in patient populations 
with various risk conditions. One of the first and most 
compelling studies is the Dementia Study of the Systolic 
Hypertension Europe (Syst-Eur), which randomized 2418 
dementia-free 60 + years adults with seated SBP between 
160 and 219 mmHg and DBP < 95 mmHg to either an active 
treatment receiving nitrendipine (a dihydropyridine) com-
bined or replaced by enalapril (an ACE inhibitor) and/or 
hydrochlorothiazide (a diuretic) or a control group [261]. 
After an average of 2 years of follow-up, a 50% reduction in 
the incidence of dementia was reported for the active treat-
ment group. In an open-label follow-up study, a significant 
reduction in both AD and VaD was reported for the active 
treatment group [262]. The Dementia Study of the Systolic 
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Blood Pressure Intervention Trial (SPRINT–MIND) rand-
omized 9361 50 + years patients with SBP between 130 and 
180 mmHg and increased cardiovascular risk to an intensive 
BP lowering regimen (< 120 mmHg) or the standard regi-
men of < 140 mmHg [263]. A significant 20% reduction in 
the risk of MCI and 15% in a composite outcome of MCI 
or probable dementia was reported, as well as a smaller 
increase in cerebral white matter lesion volume in the inten-
sive treatment group was observed [264]. In the Dementia 
study of the Prevention Regimen for Effectively Avoiding 
Second Strokes (PRoFESS), another large trial comparing 2 
antiplatelet treatments (ASA + dipyridamole vs. clopidogrel 
and telmisartan) in 20,332 patients with prior stroke, there 
was no difference in the rates of cognitive decline between 
the 2 treatment groups, which also did not differ in risk of 
recurring stroke or major vascular events that were the pri-
mary outcomes [265, 266]. Additional support for a benefit 
of lowering BP on cognition comes from the Perindopril 
Protection Against Recurrent Stroke Study (PROGRESS), 
in which 6105 older adults with a history of cerebrovascular 
events were randomized to either perindopril (ACE inhibi-
tor) and indapamide (diuretic) vs. placebo [267]. Receiving 
the BP lowering treatment was associated with significant 
reductions in the risk of dementia and cognitive decline in 
patients with recurrent stroke and delayed progression of 
WMHs [268] in addition to substantial reductions in stroke 
risk [269]. The AHA/ASA guidelines gave class I/level A 
evidence to BP lowering as a preventative strategy in people 
at risk for VCI [132].

Existing evidence points to a negative contribution of 
midlife hypercholesterolemia to cognitive function and 
increased risk of dementia and VCI. Early statin trials, how-
ever, failed to demonstrate an effect on cognitive decline. 
The Prospective Study of Pravastatin in the Elderly at Risk 
(PROSPER) reported no differences between a pravastatin 
and a control group in rates of decline in cognitive tests dur-
ing the 3-year follow-up [270]. This was in line with data 
from the Heart Protection Study, which found no benefit of 
simvastatin on cognition [245]. Some evidence for a ben-
efit for atorvastatin in improving cognitive function in older 
adults with dementia was reported in a small trial [271]; 
however, other statin clinical trials in patients with mild to 
moderate AD did not show cognitive benefits [272]. A ben-
efit of simvastatin in preserving white matter microstructure 
was reported in cognitively normal middle-aged adults, sug-
gesting a potential for VCI prevention [273]. Larger trials 
are however needed to establish a clinical benefit for statins 
in preventing or treating VCI. Nevertheless, maintenance 
of normal plasma cholesterol levels remains an important 
health promotion strategy. Treatment for hypercholester-
olemia is currently recommended as a reasonable preventa-
tive modality for individuals at risk for VCI (class IIb/level 
B evidence) [132].

There was some initial evidence of an effect of diabetes 
treatments on cognition in small trials [274]; larger trials 
have been largely negative. Intensive glucose lowering in 
the ACCORD study in participants with type 2 diabetes 
mellitus (T2DM) did not significantly reduce major cardio-
vascular events over a period of 3.5 years and was found to 
increase mortality [275]. In the ACCORD MIND sub-study, 
intensive lowering of lipid and BP levels did not affect cog-
nitive decline and was associated with greater decline in 
brain volume compared to standard therapy [276]. The latter 
finding could be explained by compromised brain perfusion 
and impaired autoregulation during intensive BP lowering, 
suggesting that intensive lowering of BP in older adults with 
T2DM may not be safe or beneficial [277]. In the largest 
study to date testing the efficacy of low-dose pioglitazone in 
delaying onset of MCI, there was no effect on delaying onset 
of MCI due to AD [278]. A recent meta-analysis of T2DM 
randomized clinical trials also found no robust evidence that 
T2DM treatment prevents or delays cognitive impairment 
[279]. Trials to assess impact of diabetes control on cogni-
tive decline are needed in middle-aged individuals at risk 
for VCI as they may be able to assess benefits in preventing 
development of VCI. Treatment of hyperglycemia is cur-
rently considered a reasonable preventative strategy for indi-
viduals at risk for VCI (class IIb/level C of evidence) [132].

Multimodal interventions such as in the Finnish Geri-
atric Intervention Study to Prevent Cognitive Impairment 
and Disability (FINGER), a 2-year multicenter RCT that 
enrolled 1260 adults 60–77 years of age into an intervention 
including diet, exercise, cognitive training, and vascular risk 
monitoring or a control group, provided strong evidence for 
positive cognitive change and potential for prevention of AD 
and VCI [280]. The FINGER model with multiple vascular 
risk factors control seems to be most promising brain health 
strategy and currently is being tested in diverse populations 
worldwide.

Strategies for Symptomatic Treatment

Symptomatic treatment for VCI requires a multifaceted 
approach that involves pharmacological therapies to directly 
address cognitive and behavioral symptoms as well as non-
pharmacological modalities that focus on optimizing quality 
of life for both patients and caregivers [281].

Several clinical trials had tested the effect of cholinest-
erase inhibitors and NMDA receptor antagonists on cogni-
tion, global and physical functions with modest support for 
their efficacy in VCI [132]. The first 2 large trials of done-
pezil reported benefits on cognition and to a lesser extent on 
global function and activities of daily living outcomes, with 
similar side effects as observed in AD [282, 283]. A meta-
analysis of 12 studies provided support for the efficacy of 
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donepezil in improving cognitive function [284], although 
the improvements failed to reach clinical significance [285]. 
Galantamine in comparison to placebo did not show clini-
cal significance, but showed some benefits on cognition, 
improved functionality measures, and reduced behavio-
ral symptoms in mixed AD/VaD, not in pure VaD [286]. 
A trial that included only patients with pure VaD reported 
improvement in cognition, with 40% of participants in the 
galantamine group having a clinically significant change in 
ADAS-Cog score of  ≤  − 4 points versus 27% in the placebo 
group [287]. Evidence for rivastigmine and memantine is 
even less robust, with two studies showing a slight improve-
ment in executive function and behavior for rivastigmine in 
patients with subcortical VaD [288], in executive function 
in VCI patients [289], and in cognition for memantine in 
mild to moderate VaD patients [290, 291], although these 
improvements were not clinically significant. A recent meta-
analysis found moderate to high evidence that donepezil has 
the greatest effect on cognition followed by galantamine, 
although effects were not of clinical significance [292]. 
Despite its slight effects and in the absence of other treat-
ments, this meta-analysis supports the use of donepezil in 
people with VCI, which is in line with the AHA/ASA rec-
ommendations regarding the use of donepezil for cognitive 
enhancement in VCI [132].

Caregivers need a support system to address the chal-
lenges posed by a dementia diagnosis and clinicians are well 
posited to guide them as they learn to navigate the formal 
care system, identify community resources to address chal-
lenges in various aspects of health, assess transportation 
needs, plan for future care needs including placement and 
palliative care, and help in the management of psychologi-
cal symptoms and neurobehavioral complications [132]. 
Another important goal is to reduce caregiving-related 
stress, burden, and strain, and improve their quality of life. 
As caregiver and patient experiences with dementia care and 
their impact on health are closely related and often reinforce 
each other, reducing caregiver stress, addressing their sup-
port needs, and improving their coping skills have the poten-
tial to elicit positive effects in VCI patient outcomes [293] 
and delays in nursing home placement [294].

Concluding Thoughts

Vascular cognitive impairment (VCI) includes the whole 
spectrum of cognitive impairment ranging from clinical 
mild cognitive difficulties that are evident only on cognitive 
testing to MCI and clinical dementia. The neuropathology 
of cognitive impairment in later life is often a mixture of 
vascular, AD, and other neurodegenerative pathology, which 
overlap and increase risk of cognitive impairment. Deter-
mining the contribution of vascular disease to VCI is greatly 

facilitated by neuroimaging, particularly by novel MRI tech-
niques and advancements in magnetic field strength. Cere-
brovascular risk factors are common among older adults and 
are major contributors to VCI. Currently, no specific treat-
ments for VCI exist, but standard stroke preventive measures 
are recommended. Multimodality interventions that include 
the modifications of vascular risk factors and lifestyle are 
currently most promising VCI treatment and prevention 
strategy. VCI has been increasingly recognized as most 
prominent concept of vascular and mixed dementias and has 
received major attention worldwide with the opportunities 
for collaborative actions. VCI clinical and scientific frame-
work that accounts for complexity of vascular factors and 
overlaying diagnoses will help drive translational research 
for improved understanding and ultimately lead to effective 
prevention and treatment of VCI in clinical practice.
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