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Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) cur-
rently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets 
that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches 
that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. 
We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in 
discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but 
many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
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Introduction

Diabetes mellitus (DM) is a highly prevalent endocrine dis-
order with a substantial range of associated microvascular, 
metabolic, and other complications. Diabetic polyneuropa-
thy (DPN), one of the most prevalent of these complica-
tions, is a progressive neurodegenerative condition that 
targets axons within the peripheral nervous system (PNS). 
Symmetrical loss of the most distal axons is the most com-
mon presentation of DPN rendering a stocking and glove 
pattern of sensory damage. Over half of patients with DM 
experience DPN [1]. In addition to loss of sensation and 
gait instability, DPN predisposes diabetic persons to refrac-
tory neuropathic pain and to foot ulcers and amputation. 
These features create a tremendous burden on the healthcare 
system and on patients’ quality of life. Currently, the only 
treatment options available for DPN are tight glycemic con-
trol and pain management. There are no approved therapies 
for halting or reversing progressive damage to axons within 
patients suffering from neuropathy.

There is a large ensemble of cellular changes present 
in diabetic peripheral neurons that may contribute to the 
progressive loss of axons in DPN. Hyperglycemia in both 

type 1 and 2 DM leads to neuron oxidative damage, likely 
driven by overloading of metabolic pathways and elevated 
production of reactive oxygen species (ROS) [2]. Glucose 
also participates in the polyol pathway, adding osmotic stress 
along with depletion of NADPH that further accentuates 
oxidative damage [3]. Moreover, inflammatory cascades may 
also become activated through both intracellular hexosamine 
pathway activity and extracellularly from advanced glyca-
tion end products (AGEs) binding to receptors for AGEs 
(RAGE) [4]. These pathways are critical in the pathogenesis 
of DPN and are more extensively reviewed elsewhere [4–6]. 
We and others have postulated that the axon degeneration 
of DPN resembles and shares mechanisms with those of 
wider disorders including traumatic injury of axons or CNS 
neurodegenerative cascades [7, 8]. These ideas are based 
on the findings of morphological resemblances between the 
damage identified in diabetes (axonal loss and degeneration) 
and that of other conditions. A large body of recent work 
has also highlighted specific molecular cascades involved in 
axon degeneration, a topic not explored in depth here [9, 10]. 
While work dissecting potential differences in axon degen-
eration among these disorders is limited, new axonal signals, 
such as the participation of NAD + and SARM1, may be 
shared and may offer critical therapeutic opportunities.

In addition to the primary abnormalities of diabetic neu-
rons and axons that may lead to polyneuropathy, there is a 
concurrent regenerative deficit in diabetic axons [8, 11–13]. 
This means that once axon damage has occurred, attempts 
to regenerate are compromised, even if the original cause of  
damage was to be removed. Injury studies in diabetic mod-
els, for example, chronic type 1 streptozotocin-treated mice, 
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demonstrate a lasting deficit in histological and electrophysi-
ological indices of regeneration. Changes in the regenerative 
capacity of diabetic neurons likely contributes to the overall 
neurodegenerative process by impaired regrowth of fibers 
damaged through mechanisms mentioned above [14]. This 
fits with the concept that sensory axons, for example, those 
in the epidermis, are in an ongoing “growth” mode that 
must be sustained in normal skin that undergoes keratino-
cyte turnover.

Insulin signalling applied to neurons, independent of its 
role in glycemic control, is an example of a pro-regenerative 
mechanism compromised in diabetes. There is overt loss of 
insulin signaling or loss of insulin sensitivity in type 1 and 
type 2 DM, respectively. In non-diabetic dorsal root ganglion 
(DRG) neuronal perikarya, there is expression of the insulin 
receptor, and intrathecal injection of insulin after peripheral 
nerve injury promotes regenerative axon regrowth [15]. To 
this end, chronic type 1 diabetic rats treated with low-dose 
intrathecal insulin reversed motor and sensory conduction 
velocity slowing in the absence of an impact on glycemia 
[16]. This is but one example from a series of cellular altera-
tions that may be involved in pathogenesis of DPN and a 
lack of regenerative competency. Although treatment of 
DPN likely will involve multiple points of intervention, this 
review focuses on reversing features of DPN by promoting 
the intrinsic regrowth of axons.

New Targets to Support Neuron Growth: 
Tumor Suppressors

Tumor suppressor molecules prevent the development of 
oncogenesis under normal physiological conditions. They 
provide an important barricade for cellular growth and 
proliferation, a hallmark of cancer development. However, 
under conditions of tissue damage that require repair, the 
ongoing expression of this wide group of proteins may be 
counterproductive. In the case of stable, transmitting, and 
non-plastic neurons in adults, several molecules possessed of 
this property may hinder the regeneration of damaged axons 
[17]. Alternatively, strategically targeting specific tumor 
suppressor molecules within peripheral neurons may emerge 
as a strategy for the treatment of nerve injury, including that 
which occurs in DPN. Here, we will discuss several tumor 
suppressor molecules that have emerged as stably expressed 
in neurons after injury, but that restricts plasticity and can be 
manipulated to enhance intrinsic growth.

PTEN

The phosphoinositide 3 kinase (P13K) pathway is critical for 
axonal regeneration [18, 19]. Neurotrophin family members 
including nerve growth factor (NGF) and non-traditional growth 

factors, such as insulin, utilize this cascade to provide neuro-
trophic support to axons [20]. PI3K adds a phosphate group to 
generate phosphatidylinositol-3,4,5-triphosphate (PIP3) from 
phosphatidylinositol-4,5-bisphosphate (PIP2). PIP3 production 
activates phosphoinositide-dependent kinase (PDK) which in 
turn activates the kinase Akt through subsequent phorphoryla-
tion, allowing downstream activation of mTOR and inhibition of 
GSK3 [21, 22]. Although the importance of the mTOR pathway 
in axon regrowth is controversial, evidence in favor of mTOR as 
a pro-regenerative molecule can be seen within injured axons. 
Increases in phospho-mTOR(S2448), along with downstream 
mTOR effectors p-p70S6K and EiF4b, can be observed fol-
lowing damage [23]. It has been previously demonstrated that 
inhibition of mTOR by rapamycin is sufficient to ameliorate 
hyperalgesia in animal models of type 1 DM [24, 25]. Along 
these lines, mTOR was found to be hyperactive in the skin of 
diabetic patients with small fiber neuropathy [25]. There is evi-
dence implicating mTOR in the regulation of protein synthesis 
and growth cone formation following damage [26, 27]. Moving 
forward, understanding the role of mTOR in regeneration and 
diabetes within PNS neurons warrants further investigation.

There are also data suggesting that regeneration occurs 
independent of mTOR through GSK3-dependent transcrip-
tion factor activation within the perikarya [22]. Furthermore, 
it has also been demonstrated that GSK3 has a function 
locally within growth cones [21]. For example, semapho-
phorin 3a (Sema3A) is an axonal guidance molecule that 
functions through activation of neurophilin-1 receptors [28]. 
This interaction enriches phosphatase and tensin homolog 
(PTEN) in growth cones and suppresses the PI3K pathway 
[29]. This overall increases GSK3 activation, and conse-
quently growth cone collapse can be mitigated by GSK3 
inhibition [30].

PTEN is a ubiquitously expressed tumor suppressor 
that controls the PI3K pathway through dephosphoryla-
tion of PIP3 and subsequent Akt inactivation. This brake 
on growth is critical to prevent excessive growth and 
proliferation observed in tumor formation. Loss of func-
tion mutations and inactivation of PTEN are common in 
many types of tumors [31]. However, in the context of 
axon regeneration, overactivity of PTEN limits the PI3K/
Akt signalling cascade resulting in suboptimal functional 
recovery [32].

PTEN is widely expressed in sensory neurons and is 
enriched in IB4-positive non-peptidergic neurons [33]. High 
expression of PTEN within the IB4 + population is perhaps 
a contributing factor for the lower growth potential of these 
axons following damage. In models of axonal injury, PTEN 
is downregulated and is coupled with a concurrent increase 
in miRNA-222, a PTEN-directed microRNA [32, 34]. This 
is the intrinsic response within peripheral neurons and likely 
contributes to the shift neurons undergo from a transmission 
to regenerative phenotype.
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Despite the intrinsic declines of PTEN following injury, 
there is further benefit from suppressing PTEN in the dam-
aged PNS [32]. Reductions of PTEN are correlated with 
enriched phosphorylated Akt and subsequent execution of 
regenerative programs. This indicates that the PI3K-Akt 
pathway can initiate axonal regrowth pathways more fully 
when PTEN expression is further reduced. Along these 
lines, deletion of PTEN in retinal ganglion cells of the CNS 
demonstrates enhanced growth properties [35]. Conversely, 
if PTEN is upregulated in regenerating axons through reduc-
tion of Nedd4, an E3 ubiquitin ligase responsible for target-
ing PTEN for degradation, there is impaired regeneration 
[36]. These studies suggest that PTEN, although important 
for limiting inappropriate growth and proliferation, provides 
an obstacle for optimal axonal growth following injury.

The growth inhibitory properties of PTEN extend to 
DPN as well. In vitro outgrowth assays of both diabetic and 
preconditioned non-diabetic cultured neurons have aug-
mented growth potential when PTEN activity is reduced 
[37]. Altered PTEN expression may be linked to specific 
regenerative deficits in diabetic neurons [14, 38]. Consist-
ent with this hypothesis, heightened PTEN expression has 
been reported in models of both type 1 and type 2 diabetic 
neuropathy [37, 39]. Models of DPN demonstrate behav-
ioral differences from non-diabetic littermates, the direc-
tion depending on the strain and duration of DM including 
mechanical and thermal sensitivity, as well as a reduced 
nerve conduction velocities and alterations, albeit less con-
sistent, in motor (CMAP-compound motor action potential) 
and sensory (SNAP-sensory nerve action potential) multi-
fiber amplitudes. Histologically, epidermal axon counts are 
reduced attributable to their retraction from the epidermis 
[40]. While less commonly studied, loss of dermal axons 
has also been documented [8]. Administration of either 
siRNA directed towards PTEN or a small molecule inhibitor 
of PTEN in experimental DM with a superimposed injury 
results in improvement in behavioral deficits as well as cuta-
neous sensory nerve innervation [37, 39]. It is therefore not 
unreasonable to hypothesize that overexpression of PTEN 
participates in the pathogenesis and progression of DPN.

Microangiopathic changes are included in the list of 
potential factors contributing to the development of DPN, 
although their primary role is controversial [41]. The nerve 
blood supply has redundancies that protect them from 
ischemic insults, making this hypothesis problematic, and 
not all models demonstrate early changes in nerve blood flow. 
Despite this caveat, there has been microvascular pathology 
observed within the endoneurium in human diabetic nerves 
including basement membrane thickening, hyperplasia of 
endothelial cells, and pericyte loss [42]. Microvascular dys-
function may be a parallel early target of DM, independent of 
direct neuronal targeting, but in later stages adding ischemia 
to the endoneurium. Microangiopathic changes have been 

demonstrated to correlate with increased CD40 overexpres-
sion coinciding with overexpression of PTEN in endothelial 
and inflammatory cells, an alternative non-neuronal role for 
the protein [43]. The alterations also correlate with fibrin 
deposition within blood vessels. These findings expand the 
potential role of PTEN among several cell types targeted by 
DM. While PTEN plays a critical role in limiting tumori-
genesis or aberrant axon growth in adults, in the context of 
nerve damage and DPN, it paradoxically may prevent the 
regrowth of retracted axons, a potential translational target 
for regenerative therapies [37] (unpublished data, Zochodne 
laboratory). This is based on the concept that loss of axons 
in DPN requires a regenerative response.

Rb1 and PPARϒ

Retinoblastoma 1 (Rb1) is a globally expressed tumor suppres-
sor molecule that is mutated in the development of retinoblas-
toma, a form of childhood eye cancer. Hypo-phosphorylated 
Rb1 suppresses cells from inappropriately traversing the G1/S 
phase checkpoint by binding to the transcription factor E2F 
[44–46]. This interaction prevents transcription of E2F target 
genes, a critical requirement for cell proliferation. Conversely, 
hyperphosphorylation of Rb1 by cyclin-dependent kinases 
(CDKs) releases E2F1 from Rb1, thus allowing E2F1 to 
interact with DNA [44–46]. Transcription of E2F target genes 
enables cell cycle progression, growth, and proliferation [46]. 
In cancer, loss of function mutations renders Rb1 unable to 
control cell cycle progression and ultimately leads to unfettered 
growth and tumorigenesis.

Rb1 is a critical protein for embryonic development with 
an important role specifically in the developing nervous sys-
tem. Mice deficient in Rb1 are non-viable and have critical 
deficits in neurogenesis with high levels of cell death in the 
brain and within the spinal cord [47]. If Rb1 is specifically 
knocked down in the telencephalon, these animals have an 
increased rate of neurogenesis [48]. Unlike the global Rb1 
knockout, conditional knockouts do not have the same level 
of cell death, and as a result, the animals are viable. The 
knockout experiments however highlight the importance of 
Rb1 to neuronal survival and proliferation.

Within the regenerating PNS, Rb1 limits the growth 
capacity of axons following damage [49, 50]. Rb1 is 
expressed in the cytoplasm and nuclei of adult DRG sen-
sory neurons and their axons with a decline following axot-
omy injury. Knocking down the expression of Rb1 through 
non-viral administration of siRNA resulted in improved 
functional recovery in rodent models of axonal injury. In 
adult sensory neuron DRG cultures, reductions in Rb1 led 
to reciprocal increases in peroxisome proliferator-activated 
receptor gamma (PPARϒ) expression and enhanced neurite 
outgrowth. Moreover, the addition of a PPARϒ antagonist 
to these cultured neurons appeared to attenuate the growth 
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benefit resulting from Rb1 knockdown. This observation 
indicates that an important mechanism of action of Rb1 
knockdown-induced growth involves activation of PPARϒ. 
In agreement with this, treating cultured DRG neurons with 
a PPARϒ agonist resulted in increased outgrowth. Applying 
Rb1 knockdown in a sciatic nerve crush model of regen-
eration yielded improvements in sensory nerve conduction 
velocity and grip strength, along with mechanical and ther-
mal sensitivity comparable to baseline values [49]. These 
data present Rb1 and PPARϒ as possible targets in the treat-
ment of nerve injury and neuropathies like DPN.

Thiazolidinediones (TZDs) or glitazones are a class of 
approved PPARϒ agonists used clinically to treat type 2 
DM [51, 52]. In the 1980s, this class of drugs was iden-
tified to have hypoglycemic and hypolipidemic effects in 
diabetic animals [53]. TZDs improve insulin sensitivity, 
induce adipocyte differentiation, and reduce inflammation 
[54–56]. Interestingly, TZD administration in animal mod-
els of neurodegenerative disorders including Alzheimer’s 
and Parkinson’s disease reduced brain degeneration and 
inflammation and protected against cognitive and behavioral 
changes [57, 58]. It is uncertain at this time whether TZDs 
might offer a benefit in DPN through its impact on glycemia 
or instead on intrinsic growth downstream of Rb1. Robust 
data connecting Rb1 knockdown, PPARγ agonists, and DPN 
in long-term models are not yet available. Similarly there 
are no known therapeutics that promote the dissociation of 
Rb1 from E2F1, its binding partner and transcription factor 
to facilitate growth.

To date, the role of Rb1 within diabetic neuropathy is 
largely unexplored. We have found that systemic administra-
tion of Rb1-directed siRNA is capable of reversing behavio-
ral and electrophysiological deficits of DPN (unpublished). 
Given that Rb1 knockdown mediates a growth accentuating 
response in damaged peripheral nerves through PPARϒ, 
the role of PPARϒ agonists as anti-diabetic agents, and the 
growing evidence suggesting that PPARϒ agonist have a 
positive effect on neurodegeneration, indicates that Rb1 
inhibitors and PPARϒ agonists warrant further investiga-
tion in DPN.

Other Tumor Suppressor Molecules

There are other tumor suppressor molecules that have dem-
onstrated utility in models of axonal damage or neuropathy. 
Adenomatous polyposis coli (APC) is another tumor sup-
pressor molecule that impedes the canonical Wnt/ β-catenin 
pathway through participation in the destruction of the tran-
scription factor β-catenin [59]. APC is commonly mutated in 
colorectal cancer [60]. During nerve injury, APC is highly 
expressed, while paradoxically β-catenin expression is 
low [61]. Knockdown of APC increased β-catenin expres-
sion and its translocation to the nucleus and improved the 

regeneration of axons following damage. APC has not been 
extensively studied in DPN, and its role in pathogenesis is 
unexplored. While speculative, APC, like its tumor suppres-
sor relatives, may enable peripheral neurons to regain their 
regenerative competency.

The Myc family of transcription factors has been exten-
sively studied for their role in neoplasm formation in many 
different types of tumors. However, Myc is vital for the 
development and growth of the nervous system [62, 63]. 
There are regulatory mechanisms that prevent aberrant Myc 
signaling and subsequent tumorigenesis. Myc-associated 
factor X (Max) is a bHLH protein and Myc dimerization 
partner, and together these proteins can bind to Myc tar-
get genes [64]. Max dimerization protein 1 (Mad1/Mxd1) 
competitively binds to Max and will bind to the same DNA 
sequence as Myc-Max dimers but will have opposite effects 
on their transcription [65, 66]. Within the CNS, overexpres-
sion of Myc in optic nerves after crush incurs a regenera-
tive benefit [67]. In the PNS, Myc has been largely unex-
plored, but recent data suggests that Myc plays a key role 
in upregulating regeneration-associated genes (RAGs) fol-
lowing a preconditioning nerve lesion [68]. Given the well-
established role of Myc in oncogenesis, therapies targeting 
Myc have been aimed at inhibiting it rather than increasing 
its activity, and to our knowledge, there are no established 
approaches to augment Myc activity. However, we have 
explored Mad1 knockdown in both the injured PNS and 
DPN as a strategy to augment Myc activity (Unpublished 
and Poitras, University of Alberta MSc thesis). There are 
no identified therapeutics that accomplish these actions or 
activate Myc that might be exploited in DPN.

Non‑coding RNA: miRNA + lncRNA

There are large-scale changes to global cellular expression 
of genes in both type 1 and type 2 DM [69–71]. Changes 
are not specific to mRNA, but also to non-coding RNAs, 
specifically microRNA (miRNA) and long non-coding RNA 
(lncRNA). miRNA are sequences of 18–23 nucleotides that 
are also non-coding. These short oligonucleotide sequences 
regulate post-translational gene expression through hybrid-
ization with a complementary mRNA sequence. mRNA-
miRNA complexes are subsequently degraded in cytoplas-
mic compartments called GW/P-bodies [71–73]. There has 
been a diverse repertoire of miRNAs with differences in 
expression noted in diabetic sensory neurons compared to 
controls.

A microarray analyzing over 1000 miRNA targets iden-
tified 19 and 123 that were, respectively, greatly or mildly 
differentially regulated in the DRGs of a chronic type 1 
DM model in comparison to littermates [71]. In particu-
lar, mmu-let-7i was among miRNAs found to be decreased; 
administration of exogenous mmu-let-7i in diabetic animals 
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improved NCV (nerve conduction velocity), cutaneous fiber 
density, and behavioral abnormalities typically observed in 
diabetes [71]. Another dysregulated miRNA was miR-155, 
upregulated in DM and coupled with a reciprocal change in 
the transcription nuclear factor erythroid 2-like 2 (NRF2) 
expression. Inhibition of miR-155 or restoration of NRF2 
expression in a model of type 1 DM reversed changes to 
NCV and structural axonal changes [74]. Along these lines, 
within the trigeminal ganglia, miR-34c has demonstrated 
upregulation in type 1 diabetic animals [75]. High expres-
sion of miR-34c was found to be coupled to reduction of the 
autophagic proteins LC3-II and Atg4B. In this study, antago-
mir targeting miR-34c improved the growth capacity of dia-
betic trigeminal neurons. Taken together, these early reports 
highlight the potential importance of post-translational gene 
expression by miRNA in pathogenesis of DPN.

lncRNAs, in contrast, are long sequences of nucleotides 
spanning from 200 bp to many kilobases in length. These 
strands of RNA exhibit control over the transcriptome 
through interactions with transcription factors, repressors, 
and coactivators [76, 77]. This can result in changes to the 
overall landscape of the transcriptome. lncRNAs have been 
implicated in neurodegenerative disorders such as Alzhei-
mer’s disease through control of genes that drive amyloid 
production [78, 79]. lncRNA disruptions have also been 
implicated within diabetic animal models [76, 80–82]. The 
lncRNA NONRATT021972 has been positively correlated 
with clinical neuropathic pain scores in patients presenting 
with type 2 DM [83]. In this study, high levels of NON-
RATT021972 were coupled to levels of TNF-α, a pro-
inflammatory marker that has been previously associated 
with DPN [84, 85]. In the same report, NONRATT021972 
silencing with siRNA in type 2 DM rats resulted in 
decreased metrics of neuropathic pain and reduced TNF-α 
levels. Additionally, clinical research has identified differ-
ences in lncRNA expression between type 2 DM patients 
and controls and presents the lncRNA, ENST00000550339.1 
as a potential diagnostic biomarker for pre-type 2 DM [86]. 
A more recent genome-wide screen of miRNA in sensory 
neurons identified 266 altered miRNAs in an animal model 
of type 1 DM with miR-33 and miR380 noted to be of par-
ticular importance in the development of neuropathic pain 
associated with DPN [87].

Non-coding RNAs and their potential therapeutic role in 
DPN and neuropathic pain have recently been extensively 
explored elsewhere [88, 89]. Here we have summarized a 
select few non-coding RNAs and the role they play in the 
pathogenesis and maintenance of DPN. Both miRNA and 
lncRNA are coded by sequences of DNA that were once 
believed to be “junk” since they are not translated into a 
protein product. Our current understanding of non-coding 
sequences including miRNAs and lncRNA demonstrates 
their critical role in the pathogenesis of human disease. 

miRNA and lncRNA present exciting novel targets for the 
treatment of DPN and warrant further clinical investigation.

Growth Cone Molecules: RhoGTPases

RhoA, Rac1, and Cdc42 are Rho GTPases that are constitu-
ents of the Ras super family (Figs. 1 and 2) [90]. Within this 
superfamily, a common characteristic is the use of guanosine 
triphosphate (GTP) to execute their function. Subfamilies 
have been identified and include Rab, Ras, ADP-ribosylation 
factor (ArF), RhoA, and Ran [91]. Proliferation, vesicle for-
mation, cytoskeleton remodeling, differentiation, and apop-
tosis are among some of the normal cellular processes under 
the control of this group of molecules. The link between Ras 
subfamily mutations and oncogenesis is well-known [92, 
93]. One of the first downstream targets of Ras to be identi-
fied was MAPK/ERK, a pathway that is frequently dysregu-
lated in neoplasms [92, 94, 95].

The Rho GTPase proteins are most well-known for their 
role in actin regulation and cell migration [96, 97]. When 
bound to GTP, RhoA is in its activated state and in turn acti-
vates Rho-associated kinase-1 (ROCK). This subsequently 
activates LIM kinase which donates an inhibitory phosphate 
to Cofilin, an important mediator of actin turnover [98]. The 
overall impact of RhoA in regrowing axons is growth cone 
collapse and reduced regeneration [99]. Rac1 and Cdc42 
have similar targets although their functions are distinct 
from RhoA and act to enhance lamellipodia and filipodia 
within growth cones, respectively. These structures allow for 
growth cones to sample their environment enabling naviga-
tion following injury [100].

Activation of RhoA within CNS growth cones can occur 
when interacting with myelin proteins Nogo-66 and Mag, 
in addition to other extracellular non-permissive substrates 
[101]. This is not the only mechanism for RhoA activation; 
there are other pathways by which RhoA can become active 
that are reviewed elsewhere [102]. In the PNS, chondroi-
ton sulfate proteoglycans (CSPGs) are important activators 
[103]. RhoA-mediated growth cone collapse and retraction 
also impair growth cone turning, also a sign of stalled regen-
eration [104]. Targeting RhoA within a spinal cord injury 
provides a growth and neuroprotective benefit to regrowing 
neurons [105]. Moreover, within the PNS, after injury, there 
is upregulation of both the mRNA and protein for RhoA and 
ROCK [99]. Like the CNS, there is a regenerative benefit 
demonstrated in peripheral neurons when the RhoA/ROCK 
pathway is inhibited.

The role of RhoA in the pathogenesis and progres-
sion of complications in models of DM has been largely 
explored. Retinopathy, neuropathy and nephropathy all have 
been reported to be ameliorated in diabetics when RhoA 
or ROCK is inhibited [106–108]. Furthermore, inhibition 
of ROCK corrects insulin insensitivity [109]. The current 
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Fig. 1   Schematic summarizing RhoA, PTEN, and Rb1 signaling in 
the perikaryal and/or the growth cone. Within the perikarya, growth 
factor signaling including insulin or NGF will result in activation of 
PI3K and consequently, conversion of PIP2 to PIP3. This will activate 
PDK resulting in Akt activation and subsequent inhibition or acti-
vation of Akt targets. The overall neuronal response of Akt  activa-
tion is regeneration and survival. PTEN antagonizes  Akt activation  
by the conversion of PIP3 to PIP2 and therefore hinders Akt activa-
tion and regeneration. The pocket protein Rb1 in a hypophosphoryl-
ated state binds and sequesters the E2F family of transcription factors. 
However, upon hyperphosphorylation by cyclin-CDK complexes, 
Rb1 releases E2F where it can act in the nucleus to transduce genes. 
One such gene that may be upregulated by E2F is PPARϒ. Height-
ened PPARϒ expression or activation by agonists like thiazolidin-
ediones (TZDs), overall result in cell cycle progression, increased 
glucose tolerance, axonal regeneration, and cellular growth. At the  

growth cone, Akt becomes activated through NGF/insulin signal-
ing as described above. Akt will inactivate GSK3 which when active 
can collapse the growth cone. Akt will additionally activate mTOR 
resulting in growth cone formation, local protein synthesis, and gen-
eration of a pro-regenerative microenvironment. Within this pathway, 
Sema3a can activate neurophilin-1 receptors that enhance PTEN 
activity and reduce downstream Akt activity and collapse the growth 
cone. RhoA is a GTPase that is activated by exchanging GDP for 
GTP through action of a Rho guanine exchange factor (Rho-GEF). 
Conversely, RhoA becomes inactivated by Rho-GTPase activating 
proteins that cause the RhoA bound GTP to be hydrolyzed to GDP 
and phosphate. Activation of RhoA leads to ROCK and subsequently 
LIMK activation. Active LIMK phosphorylates cofilin rendering it 
inactive. This influences the growth cone by promoting actin remode-
ling and growth cone collapse. This pathway can be inhibited through 
H1152 or Y-27632 that inhibit RhoA and ROCK, respectively
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Fig. 2   Integration of insulin, Akt, AMPK, and PGC1 alpha control 
of mitochondrial bioenergetics. Increased insulin-mediated activation 
of the insulin receptor substrate (IRS-1) membrane protein results in 
increased intracellular activity of phosphoinositide 3-kinase (PI3K).  
A phosphorylation target of PI3K is phosphatidylinositol 4,5- 
bisphosphate (PIP2), which PI3K converts into phosphatidylinositol 
3,4,5-triphosphate (PIP3). PIP3 activates phosphoinositide-dependent 
kinase (PDK) enabling PDK to activate Akt. Akt canonically inhibits 
glycogen synthase kinase 3 beta (GSK3β), but it has been reported 
by Suzuki et  al. that increased Akt activity increases GSK3β trans-
location to the mitochondria and repression of adenosine monophos-
phate protein kinase (AMPK) in a non-canonical manner. Glucose 
freely flows down its concentration gradient into neurons through the 
insulin-independent glucose transporter 3, allowing for cytoplasmic 
nutrient excess. Increased intracellular nutrients result in a decreased 
adenosine monophosphate/adenosine triphosphate ratio, which fur-
ther reduces AMPK activity. The activity of SIRT1 is also decreased 
in conditions of nutrient excess. AMPK and Sirtuin-1/2 (SIRT1/2) 

work synergistically to initiate peroxisome proliferator-activated 
receptor-gamma coactivator (PGC-1alpha) activity in the mitochon-
dria through phosphorylation and deacetylation respectively. AMPK 
and SIRT1 have a positive reciprocal relationship, where AMPK 
activity is enhanced through increases in SIRT1 activity as a conse-
quence of high concentrations of nicotinamide adenine dinucleotide 
(NAD +), and SIRT1 activity increases downstream AMPK phospho-
rylation. Resveratrol interacts with this pathway through SIRT1 acti-
vation. PGC1alpha is a transcription coactivator that works in concert 
with including transcription factor A, mitochondrial (TFAM), nuclear 
respiratory factor 1 (NRF1), nuclear respiratory factor 2 (NRF2), and 
peroxisome proliferator-activated receptor (PPAR) to increase mito-
chondrial biogenesis and respiration capacity. Notably, increased 
activity of AMPK, SIRT1, SIRT2, PGC1alpha, and TFAM has all 
been correlated with beneficial outcomes in models of DPN. Res-
veratrol, polydatin, berberine, and quercetin potentiate this pathway 
via increasing AMPK activity, while isoliquiritigenin potentiates this 
pathway through SIRT1 activation
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literature indicates that RhoA and ROCK are mediators of 
the pathogenesis and progression of diabetes.

Patients with DPN may experience profound neuropathic 
pain that can be disabling and can greatly impact their qual-
ity of life. Neuropathic pain arising from peripheral nerve 
damage has been shown to be mediated in part by RhoA/
ROCK signaling within the spinal cord [110]. Moreover, 
neuropathic pain can be prevented in animal models through 
intrathecal administration of the ROCK1 inhibitor H1152 or 
RhoA inhibitor Y-27632 [110, 111]. Addition of these inhib-
itors prevented activation of p38 mitogen-activated protein 
kinase (MAPK) in microglia, a pathway that participates in 
post-injury neuropathic pain [110, 112]. Interestingly statins, 
a class of cholesterol lowering drugs, can lower the amount 
of RhoA isoprenylation and localization to the plasma mem-
brane rendering RhoA functionally inactive [113]. Simvas-
tatin specifically has been associated with improved features 
of neuropathic pain in animal models including thermal and 
mechanical hypersensitivity [111, 114].

Similar to injury-induced neuropathic pain models, the 
spinal cord of diabetic animals has been found to have 
enriched active membrane bound RhoA [107]. Moreover, 
the development of thermal hyperalgesia in diabetics is 
associated with RhoA/ROCK and can be ameliorated with 
simvastatin [107, 115]. A clinical trial evaluating the utility 
of statins in DPN has revealed that patients’ neuropathic 
pain scores can be improved with simvastatin and rosuv-
astatin treatment [116]. Although proposed mechanisms in 
this trial focused on oxidative stress, RhoA signaling should 

also be considered. Given the literature supporting a role for 
RhoA/ROCK signaling in complications of DM as both a 
regenerative target and a mediator of thermal hyperalgesia, 
this pathway may also offer translational opportunities for 
diabetic patients (Table 1).

On the Diversity of Sensory Neurons

Before considering direct Schwann cell targets in this 
review, it is worth offering a short pause to put “neuronal” 
therapies into further context. DRG sensory ganglia com-
prise diverse cell types and constituent molecules that may 
require separate consideration. Recent RNA seq work has 
highlighted how specific neuron subtypes have specific-
ity clusters of differentially expressed mRNAs [117, 118].
While there have been attempts, with varying success, to 
subclassify human DPN into predominant “small fiber” or 
“large fiber” disease, most patients have mixed involve-
ment. Small unmyelinated axons or smaller Aδ myelinated 
axons classically transmit pain and thermal sensation [119]. 
These neurons express differing peptide content and recep-
tors for growth factors likely to influence their response to 
molecular manipulation. For example, small isolectin “IB4” 
non-peptidergic neurons mentioned earlier, also known as 
Mrgprd (Mas-related G-protein coupled receptor member 
D) or P2X3 (Purinoceptor 2X3) neurons, express high lev-
els of PTEN and may be slower growing [32, 120]. They 
may also penetrate more superficially into the epidermis 
to act as thermal or pain sensors. They are distinguished 

Table 1   A selective listing of molecular targets in models of DPN discussed in this review

Regenerative targets

PTEN ·PTEN is a negative regulator of the P13K/ Akt pathway, a critical growth, and survival pathway [262, 263]
·Knockdown of PTEN within diabetics restores the regenerative capacity of axons after injury [37]

Rb1 ·Rb1 is a critical cell cycle control protein that prevents inappropriate cellular growth by sequestering E2F proteins [44–46, 264]
·Our unpublished data indicates that siRNA directed towards Rb1 can improve features of DPN in animal models of type1 DM

RhoA/ROCK ·RhoA is a GTPase and member of the Ras superfamily of proteins responsible for actin regulation and cellular migration and 
activation in neurons results in growth cone collapse and retraction [96, 97, 99]

·Blocking RhoA/ ROCK in DM animal models prevents the development of neuropathic pain [108, 110]
miRNA ·miRNA are short nucleotide sequence that are involved in the post-translational regulation of target genes with complementary 

sequences [72, 73]
·miR-155 and miR-34c are upregulated in DPN, and their knockdown improves features of DPN [74, 75]
·mmu-let-7i expression is reduced in DM animals. Exogenous replacement of mmu-let-7i restores NCV and behavioral deficits 

observed in a DPN model [71]
lncRNA ·lncRNA regulate transcription through interactions with transcription machinery [76, 77]

·NONRATT021972 expression in DM patient is correlated to neuropathic pain and heightened levels of the pro-inflammatory 
cytokine TNFα [83]

PGC-1α ·PGC-1α is an important regulator in the biogenesis and homeostasis of mitochondria through interactions with the regulatory 
factors TFAM, NRF1/2, and PPAR [170–175]

·Knockout of PGC-1α further accentuates features of DPN, while overexpression improves the capacity for oxidative stress [216]
HSPs ·HSPs are chaperone proteins involved in the protein folding in addition to targeting misfolded proteins for degradation[265]

·Inhibition of HSP90 using small molecules offer improvements in behavioral and electrophysiologic deficits observed in DPN 
[233]

·Overexpression of HSP27 prevents axonal damage in models of peripheral neuropathy including DPN [255–257]
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from more classical SP (substance P) containing peptider-
gic nociceptive unmyelinated axons that express TrkA, the 
high affinity receptor for nerve growth factor (NGF). The 
latter appear to terminate within and innervate deeper epi-
dermal layers. Moreover, “large fiber” sensory neurons that 
are mechanoreceptors and subserve touch have a yet wider 
diversity of types that include large and small receptive 
field afferents and those that innervate hair follicles [121]. 
In general, these axons interface with receptor organelles 
such as Merkel discs, Ruffini endbulbs, Pacinian corpuscles, 
and Meissner’s corpuscles, each of which also has unique 
physiological properties. All of this diversity impacts thera-
peutics that target specific molecules and pathways, although 
many explored to date act widely on adult sensory neurons. 
The differential anatomical distribution of sensory endings 
and their relative targeting in DPN has not been extensively 
examined in models of DPN. If a topical therapeutic were 
to be identified for DPN, the accessibility of axon terminals 
in the skin may become relevant.

Schwann Cell Therapeutics

Schwann cells (SCs) are the critical supporting glial cells 
of the PNS. Given this intimate partnership, their viability 
may be critical in discovering new translational approaches 
to DPN. They form an important supporting partnership 
with axons in uninjured nerves, but also play a critical role 
in recovery after damage. These glial cells can be catego-
rized into myelinating SCs that wrap large calibre axons in 
electrically insulating myelin enabling saltatory conduction 
and non-myelinating SCs which are associated with many 
unmyelinated fibers that together form Remak bundles [122]. 
They play a key role in the development of the PNS during 
embryogenesis through axon-SC communication, critical for 
the survival of both the axon and the SC [123–125]. During 
development, SCs provide support to axons through neuro-
trophins, in addition to signalling nearby connective tissue to 
organize into the peri-, epi-, and endoneurium [124].

SCs also play an essential role in axonal regrowth after 
injury. When peripheral axons become damaged through 
transection, for example, SCs undergo change in pheno-
type that involves enhanced mobility and participation 
in axonal degeneration. SCs breakdown myelin debris 
through a recently characterized form of autophagy termed 
myelinophagy [126, 127]. Pharmacologic inhibition of 
autophagic pathways results in sluggish myelin debris 
removal after injury [127]. This may be important given 
the role of myelin in inhibiting growth cone advancement. 
Furthermore, in diabetic SCs, there are reductions in the 
autophagic capabilities, perhaps contributing to the lack 
of reinnervation in DPN [128]. The autophagic process is 
necessary for clearance of myelin and axonal debris fol-
lowing damage, and impairment of this process results in 

poor regenerative outcomes [129]. Additionally, SCs coor-
dinate release of signaling molecules like neurotrophic fac-
tors to support regrowing axons, as well as cytokines and 
chemokines to attract hematologic immune cells to aid in 
promoting axonal and myelin degradation distally to the 
injury site [130–132].

Augmenting nerve repair has mainly been focused on 
enhancing axon capacity to regenerate. However, the piv-
otal role of SCs in the regenerative response in combination 
with their close partnership with axons presents a unique 
approach to supporting recovery after damage by injury or 
neuropathy. For example, SCs acquire attractive and repul-
sive netrin-DCC-Unc signaling capabilities in adulthood. 
During development, this pathway is important in signal-
ing attraction or repulsion of axon growth. Expression of 
the netrin-1 receptor deleted in colorectal cancer (DCC) is 
upregulated, while the uncoordinated (Unc) 5H2 receptor 
is reciprocally downregulated in SCs following axotomy 
[133]. siRNA-induced reduction of DCC reduces SC acti-
vation, consequently reducing axon regrowth, while siRNA 
targeting of Unc5H2 coincided with improved regenerative 
outcomes. Another target specifically within SCs is the tran-
scription factor c-Jun. Lack of c-Jun within SCs prevents 
their transition to a repair cell phenotype that overall com-
promises regeneration [130, 134, 135]. Therefore, block-
ing mechanisms that repress c-Jun like HDAC2 are viable 
strategies to alter SC behavior and improve axonal regrowth 
[136].

Given the close and interconnected function of SCs with 
axons in the uninjured PNS, it is not surprising that within 
DPN there are morphological and functional disruptions 
within SCs. Examination of the ultrastucture of human dia-
betic SCs reveals basement thickening and aggregate for-
mation within the cell in combination with myelin sheath 
abnormalities [137]. SCs cultured in mild hyperglycemic 
conditions lose their proliferative capacity, even when 
neuregulin-β1 is included in the media [138]. Functionally, 
neurotropic support is impaired in diabetic SCs with reduc-
tions present in NGF and NT-3 [139]. A clinical trial evalu-
ating the efficacy of recombinant human NGF replacement 
showed no improvement in DPN patients, indicating that the 
underlying pathophysiologic factors are multifactorial [140].

Targeting diabetic SCs in models of DPN have shown 
promise. Exosomes purified from non-diabetic SCs and 
delivered intravenously to db/db mice showed improvements 
in epidermal nerve fiber density, NCV, and sensitivity to 
mechanical and thermal stimuli [141]. These SC-derived 
exosomes contained miRNAs including miR-21, -27a, and 
-146a predicted to target PTEN, NFκB, RhoA, and SEMA 
and were internalized by SCs and axons. Treatment normal-
ized RhoA and PTEN, among other mediators. It is likely 
that reducing expression of these proteins through miRNAs 
delivered by the exosomes is the underlying mechanism for 
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the improvement in features of DPN associated with exo-
some treatment. To further support this, a similar experiment 
was performed in a nerve injury model where SC-derived 
exosomes improved nerve regeneration following a crush 
injury [142]. Moreover, there was improved growth cone 
morphology achieved by attenuating RhoA. Given these 
results, perhaps delivery of SC-derived exosomes in diabetic 
patients may be a viable approach to change the molecular 
landscape within diabetic neurons, favoring regrowth and 
recovery. These findings underscore the requirement for 
normally functioning SCs to support regrowth of retracted 
axon fibers in DPN.

Mitochondria and DPN

As the sources of metabolic energy support to neurons, mito-
chondria have long been an appropriate source of attention 
in understanding diabetic pathophysiology. Deficits in their 
depolarization, fission, and fusion and protein function have 
all been considered, briefly reviewed here.

Mitochondrial abnormalities have been documented in 
both human patients as well as experimental models of 
diabetic polyneuropathy (DPN). Abnormal mitochondria 
are present in the intraepidermal and dermal nerve fibers 
responsible for innervating the skin in patients with neu-
ropathies such as DPN. These alterations appear prior to 
the onset of nerve degeneration [143, 144]. Further, axonal 
swellings which are thought to contain mitochondria are 
present both prior to degeneration and during regeneration 
in human DPN patients [145–148]. Findings of abnormal 
mitochondria are mirrored in several experimental models of 
DPN. In a feline model of DPN, swellings containing accu-
mulations of neurofilaments and mitochondria are present 
in peripheral sensory axons, with mitochondria developing 
inner membrane inclusions [149]. Moreover, mitochondrial 
accumulations precede the onset of autonomic fiber degen-
eration in the Akita mouse [150]. Finally, the development 
of axonal swellings may not be exclusively linked to hyper-
glycemia or inflammation but instead represent an early and 
common feature of slowly progressive axonal degeneration 
[151]. Therefore, it can be concluded that the pathogenesis 
of DPN includes alterations in mitochondrial morphology.

Hyperglycemia in diabetes is thought to contribute to 
mitochondrial dysfunction and to be central to the patho-
genesis of DPN. Acute hyperglycemia results in an increase 
in mitochondrial fission, which is compensated for by 
increased biogenesis in chronic hyperglycemia. The imbal-
ance between fission and biogenesis may play a role in 
the abnormal mitochondrial findings documented in DPN 
patients and animal models [152]. Notably, neurons are 
particularly sensitive to hyperglycemia due to the presence 
of GLUT3, an insulin-independent glucose transporter that 

allows extracellular glucose to flow down its concentration 
gradient into neurons, which is of particular concern in 
hyperglycemic states like DM [153, 154]. Elevated concen-
trations of several nutrients have been linked to abnormal 
mitochondrial function. High concentrations of palmitate, 
a fatty acid, impaired mitochondrial trafficking in DRG 
axons, highlighting that glucose is not the only nutrient 
factor impacting the mitochondria in diabetic neuropathy 
[155, 156]. An excess of nutrients, including glucose, leads 
to reduced mitochondrial respiratory activity through the 
downregulation of adenosine monophosphate-activated pro-
tein kinase (AMPK) [157]. The excess extracellular nutrients 
present in DM likely play an important role in the dysregula-
tion of mitochondrial activity.

Expression of proteins important for mitochondrial res-
piration and homeostasis is also relevant in models of DPN 
[158–162]. For example, mitochondrial uncoupling protein 
3 (UCP3) is an uncoupling protein that is downregulated 
in DRG mitochondria during hyperglycemia. UCP3, along 
with other uncoupling proteins, play integral a role in pre-
venting inner membrane hyperpolarization, reducing ROS 
production, and decreasing cell death [162]. The citric acid 
cycle (CAC) and the mitochondrial electron transport chain  
(ETC) are essential for aerobic ATP production and respiratory  
capability in the mitochondria through the production of 
high-energy molecules, and key enzymes and complexes 
of the ETC are downregulated in diabetic neuropathy 
[158–161]. Reduced protein expression in these funda-
mental respiratory pathways contributes to a reduction in  
the respiratory activity of mitochondria in diabetic neurons.

Further impacting respiratory rate is depolarization of the 
mitochondrial inner membrane, since the proton gradient 
present across the mitochondrial inner membrane is essential 
for generation of adenosine triphosphate (ATP) through the 
electron transfer complex V [163–166]. In several studies, 
reversal of mitochondrial inner membrane depolarization 
was sufficient to rescue conduction defects in diabetic neu-
rons [163, 164]. Taken together, downregulation of key citric 
acid cycle enzymes, mitochondrial electron transport chain 
complexes, and mitochondrial inner membrane depolariza-
tion contribute to reduced mitochondrial respiration in DPN. 
Reduced mitochondrial respiratory activity is, in turn, linked 
to reduced ROS production, indicating that mitochondria 
are likely not the source of increased ROS present in DPN 
[158, 167]. However, reduced mitochondrial respiration 
pushes glucose towards the polyol and hexosamine path-
ways which are the likely sources of ROS and inflammation 
in DPN [168].

Excessive nutrient availability leads to poorly functioning 
mitochondria with reduced respiratory activity, leading neu-
rons to turn to the polyol and hexosamine pathways to sat-
isfy their large energy demands. The energy demand at the 
terminus of long axons is hypothesized to be significantly 
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greater than demand in the DRG, and therefore, the abnor-
mal mitochondria produced in the perikarya are thought to 
be insufficient to meet the energy demands of the nerve end-
ing, leading to degeneration [169]. Compounding this, mito-
chondrial morphological abnormalities increased in severity 
with increased distance along the axon in the legs of DPN 
patients [143]. In conclusion, the inability of abnormal mito-
chondria to satisfy high axonal energy requirements is an 
essential component of DPN pathophysiology.

SIRT1/AMPK/PGC‑1α Signaling

An interesting target for manipulation in diabetic neuropathy 
is the transcription coregulator PPARγ coactivator 1 alpha 
(PGC-1α), which is an essential regulator of mitochondrial 
respiratory activity and transcription. PGC-1α exerts its con-
trol over mitochondrial respiration through regulating fac-
tors relevant to mitochondrial transcription and biogenesis, 
including transcription factor A mitochondrial (TFAM), 
nuclear respiratory factor 1 and 2 (NRF1/2), and peroxisome 
proliferator-activated receptor(PPAR) [170–175]. TFAM, for 
example, functions to protect mitochondrial DNA (mtDNA) 
from free radicals by playing a histone-like role in mito-
chondrial genome packing [176, 177]. It is notable that an 
increase in TFAM activity elevates mtDNA transcription, 
which is in turn linked to increased respiratory activity [170, 
172, 176, 178, 179]. Furthermore, increased PPAR signal-
ing results in an increased expression of genes related to 
mitochondrial fatty acid oxidation [175]. As a compensatory 
mechanism to increase mitochondrial respiration, PGC-1α 
activity upregulates the expression of free radical scavengers 
such as superoxide dismutase 2 (SOD2) and thioredoxin 2 
(Trx2) to tolerate increased free radical production associ-
ated with increased respiration [180].

Thioredoxin-interacting protein (TXNIP) is a protein 
that reduces the activity of the antioxidant thioredoxin 
[181]. Interestingly, TXNIP miRNA is upregulated in the 
DRG of diabetic rats in a manner that precedes the onset of 
DPN symptomology, including reduced nerve conduction 
[71, 182]. Of note, there is an interaction between TXNIP 
and PGC-1α in hepatocytes, where TXNIP signals through 
PGC-1α to regulate lipid metabolism [183, 184]. Abnormal 
TXNIP/PGC-1α signaling is implicated in the development 
of non-alcoholic fatty liver disease (NAFLD)[183]. Given 
the associations between metabolic syndrome, NAFLD, and 
type 2 DM, this interaction is of particular importance.

Upstream regulation of PGC-1α is multifactorial. Key 
players are sirtuin 1 (SIRT1) and sirutin 2 (SIRT2), which 
increase the activity of PGC-1α through deacetylation, and 
AMPK, which increases PGC-1α activity through phos-
phorylation [185–190]. AMPK/SIRT1/PGC-1α signaling 
is tightly regulated by nutrient availability and metabolic 

signaling. AMPK is activated by an increase in the AMP/
ATP ratio, which occurs due to reduced respiration in cir-
cumstances of nutrient deficiency, driving the cell towards 
catabolic activities [191, 192]. Similarly, SIRT1 activity is 
also increased during periods of nutritional deficiency [193]. 
Elevated levels of nutrients such as glucose will decrease 
AMPK/SIRT1 activity both through a decreased AMP/ATP 
ratio, but also through elevated insulin signaling contributing 
to AMPK inhibition mediated by AKT/GSK3 [194–200]. 
Contrary to insulin, insulin-like growth factor 1 (IGF-1) 
increases AMPK activity in diabetic neurons [201]. There 
is a reciprocal signaling dynamic present between SIRT1 
and AMPK. A target of SIRT1 deacetylation is liver kinase 
B1 (LKB1) that targets AMPK through phosphorylation 
to enhance its activity [202, 203]. Conversely, high levels 
of NAD + as seen during periods of nutritional deficiency 
directly increase SIRT1 activity and consequently AMPK 
activity [202]. In summary, an increase in nutrients and insu-
lin signaling will drive cells towards anabolic metabolism 
through inhibition of AMPK/SERT1 signaling, allowing for 
increased mTOR-mediated protein synthesis, while nutrient 
deficiency leads to an increase in PGC-1α-mediated cata-
bolic metabolism and therefore increased mitochondrial res-
piration [204, 205]. As PGC-1α is integral for increasing 
aerobic mitochondrial respiration, its regulation is contin-
gent on nutrient availability and catabolic signaling.

PGC-1α has been linked to the pathogenesis of DM 
itself. In South Asian and Caucasian populations, a single-
nucleotide polymorphism in PGC-1α was correlated with an 
increased risk of the development of type 2 DM [206, 207]. 
Mechanistically, a decrease in the activity of AMPK leads to 
a reduction of PGC-1α-mediated mitochondrial gene expres-
sion and therefore a reduction in oxidative phosphorylation 
[208, 209]. In particular, type 2 DM patients have impaired 
mitochondrial fatty acid oxidation, which is directly linked 
to reduced PGC-1α activity [208]. To further highlight the 
importance of this pathway, SIRT1 activity is decreased 
in experimental models of hyperglycemia and DPN [210]. 
Therefore, manipulation of PGC-1α signaling has become a 
common target to ameliorate DPN in experimental models.

AMPK/SIRT/PGC‑1α/TFAM Manipulations

Modulation of the AMPK/SIRT/PGC-1α/TFAM signaling 
pathway has been demonstrated to be beneficial in various 
experimental models of DPN. Resveratrol is a naturally 
occurring phenol that has been observed to increase the activ-
ity of AMPK, and has been demonstrated to improve various 
indices of diabetic neuropathy in vitro and in vivo, including 
a rescue of mitochondrial biogenesis, reductions in oxida-
tive stress, increased neurite outgrowth, improved nerve con-
duction velocity, and improved thermal hyperalgesia [157, 
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211–213]. Along these lines, SIRT1 and SIRT2 overexpres-
sion are both sufficient to prevent and reduce features of DPN 
in an AMPK/PGC-1α-dependent manner [214, 215]. Further 
downstream, PGC-1α overexpression has been demonstrated 
to reduce oxidative stress in DPN, while knockout increases 
the severity of DPN. Knockouts demonstrate increased lipid 
levels and decreased TFAM and NRF1 expression [216]. 
TFAM overexpression is also protective in diabetic mice and 
prevents the development of nerve conduction deficits, hyper-
algesia, and the loss of intraepidermal nerve fibers [217]. 
Moreover, the development of neuropathic pain in DPN can 
be ameliorated through activation of the mGluR2/3 presynap-
tic glutamate autoreceptor which leads to downstream SIRT/
PGC-1α activation [218]. This finding is particularly signifi-
cant given the suspected role of glutamate in the development 
of neuropathic pain.

Clinically, resveratrol has demonstrated several promis-
ing treatment effects for neurological disorders and DM. A 
number of clinical trials have demonstrated that resvera-
trol appears safe for human patients with mild or moderate 
Alzheimer’s disease and can cross the blood–brain barrier. 
Resveratrol treatment is associated with reduced matrix met-
alloprotease 9 (MMP-9) activity and increased amyloid-beta 
(Aβ) in the cerebrospinal fluid, which respectively imply 
reduced cerebral ECM degradation and brain Aβ accumu-
lation [219, 220]. For stroke patients, resveratrol was able 
to improve outcomes with delayed access to recombinant 
tissue plasminogen activator (r-tPa), again correlated with 
reductions in MMP-9 and MMP-2 activity [221]. While no 
clinical trials regarding resveratrol use in DPN have been 
completed to date, its use has been explored generally in 
DM with mixed results. However, a meta-analysis performed 
in 2015 highlighted that resveratrol supplementation was 
superior to placebo for control of blood pressure, hemo-
globin A1c, and creatinine and therefore was suggested as 
an adjunct therapy for type 2 DM [222].

Recently, several other treatments have been employed 
to increase AMPK/SIRT1/PGC-1α activity in experimen-
tal DPN models. Isoliquiritigenin, a compound found in 
licorice, was able to ameliorate NCV and sensory abnor-
malities through increasing SIRT1 activity, in addition to 
reversing mitochondrial depolarization and decreasing ROS 
generation in vitro [210]. Polydatin, a compound related 
to resveratrol, and berberine, an activator of AMPK, aug-
mented PGC-1α/Nrf2 signaling to rescue similar deficits 
in rats with STZ-induced type 1 DM [223, 224]. Lastly, 
6 weeks of quercetin, a plant pigment, was able to restore 
mitochondrial counts in sciatic axons, in addition to ame-
liorating the above-mentioned correlates of DPN through 
increased AMPK signaling [225]. The apparent efficacy of 
AMPK/SIRT/PGC-1α pathway manipulation further high-
lights the integral role of mitochondria in the pathogenesis of 
DPN and provides an exciting target for potential treatment.

DPN is not the only neurodegenerative condition that may 
have benefits from modulation of AMPK/SIRT/PGC-1α/
TFAM pathway. PGC-1α null mice develop lesions in sub-
stantia nigra pars compacta resembling those of Parkinson’s 
disease [226]. Moreover, PGC-1α overexpression is benefi-
cial against the MPTP-induced experimental model of Par-
kinson’s disease [227]. The pathophysiologic changes in the 
SIRT1/TFAM/PGC-1α pathway presented in DPN are mir-
rored in hippocampal degeneration present in Alzheimer’s 
disease, and indeed, overexpression SIRT1 and PGC-1α is 
protective against degeneration in an experimental model of 
Alzheimer’s disease [216, 227, 228]. Furthermore, TFAM 
overexpression is protective against beta-amyloid oxidative 
stress in mitochondria and in CA1 hippocampal neurons fol-
lowing ischemia [229, 230]. Finally, autoimmune encepha-
lomyelitis is a condition where retinal ganglion cells (RGCs) 
are vulnerable to damage and heightened SIRT1 activity 
in response to resveratrol treatment protects against RGC 
degeneration in experimental models [231]. Taken together, 
the above studies demonstrate the centrality of mitochon-
drial respiration to various neurodegenerative conditions 
and provide strong support AMPK/SIRT/PGC-1α pathway 
manipulation as a potential target to ameliorate neuronal 
impairment, including that of DPN.

HSPs and Chaperones

Due to the rises in the content of protein adducts and mis-
folds that result from increased oxidative stress in DPN, it 
has been hypothesized that chaperones are a possible thera-
peutic target in DPN [232–234]. Of particular note, mito-
chondrial proteins appear particularly vulnerable to oxida-
tive modifications [232]. Chaperones such as heat shock 
protein 70 (HSP70) and heat shock protein 90 (HSP90) 
function to fold and stabilize proteins, as well as direct 
improperly folded or noxious proteins to the proteosome to 
be cleared [235, 236]. There is a notable interaction between 
HSP70 and HSP90 as well. HSP90 is bound to heat shock 
factor 1 (HSF1), which releases upon conditions of cellu-
lar stress to upregulate various aspects of the heat shock 
response and includes increased expression of various chap-
erones including HSP70 [237, 238]. The heat shock response 
is impaired in both type 1 and type 2 diabetes, correlating 
with a decrease in cellular stress tolerance [238–240]. The 
increased volume of abnormal proteins, and reduced capac-
ity to deal with cellular stress implicates chaperones as an 
interesting target in the treatment of DM.

The roles of HSP70 and HSP90 have been well-characterized  
in models of DPN. Small molecule inhibitors that bind the 
c-terminus of HSP90 are sufficient to reduced hyperglycemia-
mediated neuronal cell death in an HSP70-dependent man-
ner [233]. Moreover, this treatment allows for the rescue of 
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mitochondrial respiratory capacity and is linked to an increase 
in mitochondrial chaperone expression and decrease the tran-
scription of factors linked to cellular inflammation [233, 
241–244]. Importantly, the rescue of mitochondrial biodynam-
ics was linked to an increased expression of the free radical 
scavenger manganese superoxide dismutase (MnSOD)[244]. 
Ultimately, small molecule modulation of HSP90 led to a res-
cue of various features of DPN in model animals, including the 
reversal of sensory abnormalities and restoration of conduction 
velocity [233, 242, 243]. Therefore, increasing cellular stress 
tolerance through augmentation of the heat shock response 
appears to rescue the DPN phenotype in experimental models.

HSP70 has been demonstrated to be beneficial in sev-
eral models of neuropathy and neurodegeneration, particu-
larly those related to aberrant protein accumulation [245]. 
Exogenous HSP70 delivery is sufficient to prevent motor 
and sensory neuron death following sciatic nerve transection 
[246]. The inhibition of HSP90 was able to rescue motor 
impairment in a mouse model of spinal and bulbar muscu-
lar atrophy due to increased clearance of mutant androgen 
Receptor protein [247]. Further, it has been demonstrated 
that HSF1-mediated upregulation of HSP70 is beneficial 
in Drosophila models of spinocerebellar ataxia and Hun-
tington’s disease, where it reduced protein inclusions and 
the severity of eye degeneration [248]. Lastly, the inhibition 
of HSP90 is sufficient to reduced accumulation of hyper-
phosphorylated tau protein and maintain Tau’s solubility to 
prevent protein inclusions, findings that are promising for 
Alzheimer’s disease and other Tau opathies [249–251].

Another chaperone extensively studied in periph-
eral axon regeneration is heat shock protein 27 (HSP27). 
HSP27 mRNA is upregulated in the DRG following periph-
eral nerve injury in rats and in chronic DPN of rats and is 
strongly expressed in regenerating axons and partnering SCs 
[252, 253]. HSP27 functions to prevent apoptosis in neurons 
downstream of cytochrome C and plays a role in growth 
cone actin dynamics during axonal outgrowth [254, 255].

Our laboratory has demonstrated that transgenic human 
HSP27 overexpression in peripheral neurons prevents fea-
tures of neuropathic pain in long-term type 1 diabetic mice 
up to 6 months following the induction of diabetes as well 
as features of epidermal innervation and nerve conduc-
tion velocity [256]. These findings are supported in human 
patients with DPN that exhibit an increased serum HSP27 
level associated with better neurological functionality, 
including reduced neuropathic signs and improved conduc-
tion velocity [257].

HSP27 has been targeted in various models of peripheral 
nerve disease. Overexpression of human HSP27 in a mouse 
model of chemotherapy-induced peripheral neuropathies 
preserved mitochondrial respiratory function and prevented 
axonal loss, SC cell loss, and apoptosis [258]. Further, 

increased HSP27 resulted in expediated reinnervation of 
motor endplates following sciatic crush and increased motor 
unit recovery following peripheral nerve injury [259, 260]. 
HSP27’s pro-regenerative effect on motor axons was mir-
rored in a rodent model of Guillain–Barre Syndrome [261]. 
Therefore, HSP27 appears to be a viable target to preserve 
mitochondrial function and encourage axonal regeneration 
in DPN and other peripheral neurodegenerative conditions. 
To our knowledge, there are no direct therapies yet available 
aimed to enhance activity or expression of HSP27.

Oxidative stress leads to protein modifications in diabetic 
neurons, particularly proteins localized to the mitochondria. 
As such, potentiating the heat shock response is an interest-
ing target to preserve mitochondrial biodynamics, encourage 
axon regeneration, and reverse negative clinical aspects of 
diabetic neuropathy such as nerve conduction and sensory 
abnormalities.

Conclusions

No single mechanism or target has been identified in the 
pathogenesis of DPN despite several decades of work in the 
field. Nonetheless, pathways explored in diabetic neurons and 
SCs have included many that are common to other disorders 
and other diabetic complications. Mitochondrial dysfunction 
is an important example of this despite the lack of a myo-
pathic phenotype in diabetic persons, unlike other mitochon-
driopathies. A separate approach emphasizes the molecules 
and pathways that support neurons and their regrowth and 
how they may bypass the variety of abnormalities that DM 
imposes on them. While this review emphasizes selected 
regenerative therapeutic approaches, we believe these will be  
of potential therapeutic relevance; it is a large list and only 
addresses some of the possibilities. High priority might also 
be placed on specific targeting that may treat human neuro-
pathic pain, probably among the most important disabilities 
with DPN. For example this might include specific targeting 
of aberrant ion channels. Not discussed in depth here are 
alternative therapies to interrupt not only the metabolic medi-
ators of damage but also intrinsic pathways within axons to 
lead to their degeneration. An open-minded approach toward 
directing new clinical trials should emerge from the variety of 
targets available, guided by findings from separate research 
programs and verified in rigorous preclinical studies using 
longer term models of more than one species. Our list is by 
definition not comprehensive but emphasizes several newer 
targets that we have focused on in this review.
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