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Abstract
In the past decades, many neuroimaging studies have aimed to improve the scientific understanding of human neurodegenera-
tive diseases using MRI and PET. This article is designed to provide an overview of the major classes of brain imaging and 
how/why they are used in this line of research. It is intended as a primer for individuals who are relatively unfamiliar with 
the methods of neuroimaging research to gain a better understanding of the vocabulary and overall methodologies. It is not 
intended to describe or review any research findings for any disease or biology, but rather to broadly describe the imaging 
methodologies that are used in conducting this neurodegeneration research. We will also review challenges and strategies 
for analyzing neuroimaging data across multiple sites and studies, i.e., harmonization and standardization of imaging data 
for multi-site and meta-analyses.
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Introduction

As magnetic resonance imaging (MRI) and positron emission 
tomography (PET) have become more widely available, the 
field has seen a proliferation of imaging studies designed to 
improve our scientific understanding of neurodegenerative 
diseases. Readers of findings from these studies who are not 
themselves in the brain imaging field may have a harder time 
understanding them because of the wide range of imaging 
and analyses types employed. In this review, we describe 
these most popular types of imaging used in neurodegenera-
tion research and what types of analyses they are primar-
ily used for. We do not attempt to review or summarize any 
research findings, but only to describe the major methodolo-
gies that drive them. We will also review and discuss one 
of the largest challenges in this field: heterogeneity across 
scanners, sites, and studies—both of the images themselves 
and how research groups analyze them.

We begin by discussing each image type individually: 
describing its reason for inclusion in neuroimaging research 
and how it is analyzed. These are arranged by modality: first 

with MRI, then PET, then computed tomography (CT). We 
also provide a summary in Table 1 and some examples in 
Fig. 1. Lastly, we describe the challenge of data heterogene-
ity and the major strategies employed to combat it.

MRI

Broadly speaking, brain MRI scans are used in neurodegenera-
tion studies to provide high-resolution imaging of brain structure 
and physiology. A participant is placed in a very strong magnetic 
field that forces the magnetic moments of protons in water and 
fat to become aligned, which allows these protons to absorb 
and emit pulses of radiofrequency (RF) waves. These pulses of 
energy are emitted by the scanner in various “pulse sequences” 
that are absorbed and emitted by body protons, which are then 
detected and localized by the scanner to image the density and 
locations of water and fat. By varying these pulse sequences, a 
wide variety of imaging contrasts may be obtained (which we 
describe below), making MRI highly versatile.

MRI is generally more expensive than CT, but less expensive 
than PET. All three modalities are generally considered mini-
mal risk to participants when performed within approved pro-
tocols, but they may require mild sedation for participants with 
severe claustrophobia, and some participants may be excluded 
by physical size/weight limitations. Unlike PET and CT, MRI 
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has additional contraindications for participants with metal-
lic implants and foreign bodies such as pacemakers, aneurism 
clips, neurostimulators, shrapnel/bullets, insulin pumps, metal-
lic intraocular foreign bodies, and some classes of tattoos or 
permanent make-up. However, unlike both PET and CT, MRI 
does not require the use of ionizing radiation that has been 
associated with an increased risk of cancer. In the following 
sections, we describe each of the major classes of MRI pulse 
sequences used in brain neuroimaging research and the types 
of analyses in which they are typically used.

T1‑Weighted (Structural) MRI

T1-weighted (T1-w) scans are the most standard of MRI 
contrasts/sequences. These show tissue anatomy and den-
sity, where roughly white matter (WM) is white, gray 
matter (GM) is gray, and cerebrospinal fluid (CSF) is 
dark (i.e., CSF < GM < WM). In neuroimaging research, 
these scans have two major uses: (1) localization of brain 
regions and (2) estimation of tissue density. We show 
example images of these processes in Fig. 2.

Table 1  Summary of major image types in neurodegeneration research

Modality Image type Primary usage in neurodegeneration research

MRI T1-weighted WM volume, GM volume, non-specific neurodegeneration, atrophy, TIV (head size), 
enabling regional or voxel-wise analyses of other imaging types

MRI T2-weighted / FLAIR vascular pathologies, WMH, MS lesions, strokes, TIV (head size)
MRI T2*-weighted, SWI, QSM microhemorrhages
MRI Diffusion MRI (dMRI, DTI) WM microstructure, structural connectivity, ischemic strokes, tractography
MRI fMRI (BOLD) functional connectivity, integrity of functional networks, task-related activation
PET FDG PET measuring and localizing hypometabolism associated with non-specific neurodegeneration
PET Amyloid PET measuring amyloid-beta associated with Alzheimer’s disease
PET Tau PET measuring and localizing tau proteins associated with Alzheimer’s disease
CT CT during reconstruction of PET scans from PET/CT scanners, but not analyzed directly

Fig. 1  Examples of imaging sequences discussed in this work. MRI examples are from one participant in the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), while PET examples are from a different ADNI participant. PET scans are shown in false color to emphasize findings
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Localization of Brain Regions Arguably, the most fundamen-
tal research use of T1-w images is to automatically calcu-
late a mapping between every voxel (3D volumetric pixel) 
location and its analogous location in a standard template 
brain. This process is called registration or normalization, 
and its mappings can be either linear (e.g., rigid or affine) 
or nonlinear (sometimes called warping), depending on the 
application and accuracy needed. These mappings allow 
automatic localization of any number of named regions of 
interest (ROIs) from an atlas (each drawn/defined on the 
template brain) by propagating them through the mapping 
onto the participant scan, enabling comparison of analogous 
brain regions across participants. Such mappings can be gen-
erated by a wide variety of software, most of which were 
designed specifically for brain images [1–4].

The most ubiquitous brain template is MNI152 aka 
ICBM152, which was generated from averaging 152 scans 
at the Montreal Neuroimaging Institute (MNI) as part of 
an International Consortium for Brain Mapping (ICBM) 
initiative [5–7]. Many other templates have been created 
(e.g., for specific ages/populations [8–10] or image types 
[11–13]) but the most ubiquitous are MNI152 or MNI305 
(its predecessor). These “MNI coordinate spaces” are fun-
damental to each of the most popular software packages 
for MRI analyses, including FreeSurfer [14], SPM (Sta-
tistical Parametric Mapping [15]), FSL (FMRIB Software 
Library [16]), and AFNI (Analysis of Functional Neuro-
Images [17]).

Estimation of Tissue Density (Segmentation) Localizing 
brain regions via T1-w images enables many analyses of all 
kinds of MRI and PET, but analyses of T1-w images them-
selves are principally focused on estimating tissue density in 
each voxel (i.e., its estimated probability of being gray mat-
ter, white matter, CSF, etc.). This process is typically called 
tissue segmentation and commonly performed by many of 
the same software toolkits, e.g., SPM, FreeSurfer, and FSL. 
These softwares typically use T1-w image intensity (bright-
ness) in conjunction with tissue probability maps (TPMs: 
segmentation maps that are defined in template space and 
used as statistical priors that guide the segmentation). 
Mostly, these segmentations are used to measure gray matter 
volume: the total of all gray matter in a region or across the 
whole brain, in  mm3 or  cm3. The loss of a person’s brain tis-
sue over time, due to healthy aging and/or disease, is called 
atrophy. Measuring atrophy is the second core use of T1-w 
images; this can also include measurements of white matter 
volumes/atrophy, or atrophy of both GM and WM via expan-
sion of CSF volume [18]. Comparisons of volume measure-
ments across individuals are inherently confounded by head 
size (which itself is heavily correlated with sex). To avoid 
these biases, analyses typically normalize by or regress out a 
measurement of total intracranial volume (TIV or ICV) [19, 
20], which is also typically measured from T1-w images. 
Another alternative is to measure cortical thickness, which 
removes the surface area component of volume measure-
ments to directly capture the width of the cortical ribbon in 

Fig. 2  Examples of processing of T1-w MRI. The top row depicts 
images in “native space” and the bottom row depicts images in 
“template space”. All images in the top row, after the original input 

image, were automatically produced by the segmentation and non-
linear registration (warping) using the pre-defined template/atlas 
information in the bottom row
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millimeters [21–23], avoiding volumes’ confound with TIV/
head size. However, the resolution of most MRI (approxi-
mately 1 mm) limits the accuracy and precision of cortical 
thickness measurements relative to volume [24, 25], and it 
prevents measuring thickness in regions where the cortex 
is too small to resolve, e.g., hippocampus, amygdala, and 
cerebellum.

Comparative Analyses By combining estimates of tissue 
density with localization, researchers can compare meas-
urements across participants. Analyses typically occur either 
in “native space” or “template space”. In native space analy-
ses, software automatically propagates atlas regions from 
the template space to the “native” space of the individual 
participant scan. From there, one can sum the volume in 
each brain region to produce numeric values (i.e., spread-
sheets) and compare them across participants. In template 
space analyses, software transforms the “native space” MRI 
into the standard “template space” where every voxel loca-
tion across all participants/scans should be anatomically 
analogous. After this transformation, comparisons are per-
formed across participants in each voxel (e.g., voxel-based 
morphometry (VBM)) [26]. Typically, these transforma-
tions between native and template space are invertible, so 
for each scan, they can be computed once and then used in 
both directions for both types of analyses. Some software 
pipelines instead analyze transformations themselves (either 
participant-to-template or within-participant across time); 
these analyses are known as tensor-based morphometry 
(TBM), and they are considered the most powerful way to 
measure within-participant atrophy over time [27, 28]. Some 
analyses define their template space as a cortical surface, an 
“unfolded” model of the gray matter ribbon; these surface-
based analyses co-register and compare scans in each vertex 
of the surface model space, rather than in each voxel of an 
image-based template space [29–31].

Analyses of Other Sequences and Modalities In the previ-
ous paragraphs, we described how T1-w images are used 
both to measure a quantity of interest (tissue density) and 
to localize and compare these quantities in analogous brain 
regions. These same processes can be used to measure other 
quantities from other brain images (other MRI sequences, 
or PET, CT, etc.), by aligning (linear or affine registration) 
each image to the T1-w image and then using the existing 
T1w-to-template voxel mapping to perform the comparisons. 
In the research setting, analyses of most other image types 
described below are typically performed first by registering 
the image to the T1-w image and using this information 
to perform native-space or template-space analyses. Some 
image types have spatial distortions that can challenge 
achieving good alignment with T1, such as echo-planar 
imaging sequences (e.g., dMRI/fMRI); analyses of these 

modalities either use specialized distortion corrections to 
better match T1-w images or bypass T1-w and use modality-
specific templates directly [32].

T2‑Weighted and FLAIR MRI

While T1-weighted MRI is typically used to measure atro-
phy and localize tissue, T2-weighted MRI measures different 
tissue properties that are mostly associated with inflamma-
tion and edema. In T2-w, contrast is reversed from T1-w: 
in order of brightness, CSF > WM > GM. Inflammation and 
edema typically appear bright (brighter than or similar to 
CSF), along with white matter hyperintensities (WMH) that 
are associated with small vessel disease and demyelination 
in aging [33–35] or multiple sclerosis [36, 37]. To separate 
the signals of CSF from the pathologies of interest (both 
appear bright), FLAIR (fluid-attenuated inversion recovery) 
sequences were introduced. In this variant of T2-w imag-
ing, CSF signal is suppressed (appears dark). Consequently, 
the signal of interest (WMH, inflammation, etc.) is mostly 
brighter than the rest of the image, aiding both visual and 
quantitative analyses. FLAIR’s CSF suppression is particu-
larly helpful at the borders between tissue and ventricles, 
where WMH are very common and cannot be separated 
from CSF in standard T2-w images. FLAIR images have 
thus become the most popular sequence for clinical neurora-
diology for general pathology detection and cerebrovascular 
disease [38].

Compared with T2-w sequences, FLAIR scan times may 
be longer and/or noise levels may be higher. In research 
imaging studies of aging and dementia, FLAIR or T2-w 
sequences are typically used for (a) measuring WMH and 
(b) monitoring for exclusionary criteria or adverse events, 
such as infarcts or immune/inflammatory responses to treat-
ment [39, 40]. White matter hyperintensities are typically 
measured from FLAIR scans (sometimes in conjunction 
with T1-w scans) using automated or semi-automated algo-
rithms that compute regional or whole-brain volumes using 
tools such as Lesion Segmentation Tool and FSL BIANCA 
[36, 37, 41]. Another use of T2-w (but not FLAIR) images 
is to better estimate TIV than with T1-w alone because T2-w 
images have signal in extracranial CSF, which is suppressed 
in FLAIR and T1-w sequences but should be included in 
TIV measurements [42, 43].

Iron‑Sensitive Sequences: T2*, SWI, and QSM

MRI scans contain susceptibility artifacts in areas where 
the magnetic field is disrupted by magnetic materials; these 
occur in areas of interface between bone, blood, and air, and 
around metallic implants such as those common in dentistry. 
In the brain, hemorrhages and microhemorrhages also pro-
duce these local artifacts due to iron depots from the blood. 
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To measure the prevalence of these hemorrhages and micro-
hemorrhages, MRI sequences were developed that highlight 
these regions of magnetic susceptibility. These sequences are 
called T2*-w (“T2 star weighted”) or gradient-recalled echo 
(GRE) imaging. Later variants were developed that enhance 
resolution and sensitivity; these are known as susceptibility-
weighted imaging (SWI) [44]. Still-newer sequences allow 
quantitative susceptibility mapping (QSM), which have the 
additional benefit of providing quantitative measures of 
susceptibility rather than only relative intensities within the 
image (as in T1-w, T2-w, SWI, and T2*-w/GRE) [45]. All 
of these sequences are principally used in neurodegeneration 
research to measure microhemorrhages, primarily through 
manual marking/counting by image analysts and radiologists 
[38, 46–48].

Diffusion MRI

Diffusion MRI or diffusion-weighted MRI (dMRI or DWI) 
measures the strength and direction of water molecules’ 
movement during the scan [49]. Clinically, dMRI is primar-
ily used to image pathologies that reduce diffusion (e.g., 
ischemic strokes). In the research setting, it is used primarily 
to image the structure and integrity of white matter. Water 
molecules travel predominantly along axons, and their 
motion becomes less one-directional (more omnidirectional 
or isotropic) as axons degrade. These diffusion changes can 
reflect multiple etiologies at the molecular level (below the 
resolution of MRI), and thus changes measured in dMRI are 
referred to nonspecifically as changes in tissue integrity or 
microstructure [50].

In dMRI, multiple 3D images are acquired sequentially 
that each measure motion in one specific direction and at a 
particular strength or b-value. These sets of diffusion vol-
umes are analyzed jointly to compute derived scalar quanti-
ties for each 3D voxel location. In its most basic form, typi-
cally six directions are acquired at a single b-value, and these 
are averaged to produce a trace image, which is a mixture 
of diffusion-weighted signal with underlying T2-w signal. 
This is the form most used clinically to image strokes, and 
in clinical contexts, the term DWI is sometimes used specifi-
cally to refer to these images.

In the research setting, more volumes (e.g., 30+ direc-
tions) are acquired to increase angular (directional) resolu-
tion, and this allows tensor-based analyses; such sequences 
are referred to as diffusion-tensor imaging (DTI). These 
sequences have become so standard in research neuroimag-
ing that sometimes all diffusion sequences are called DTI, 
but really DTI should refer only to this specific class of dif-
fusion sequences and their tensor-based analyses. In DTI 
analyses, a tensor model is estimated at each voxel location, 
and these are used to compute several derived scalars at each 
location. The most common are fractional anisotropy (FA) 

and mean diffusivity (MD). FA is designed to measure the 
degree (fraction from 0 to 1) of anisotropy (predominance 
in one direction). Functionally, FA images provide a map of 
major white matter tracts, which degrade (reduces FA) with 
age and pathology. In FA images, the order of brightness/
intensity is CSF < GM « WM. Sometimes, directional infor-
mation is added to FA images to produce a synthetic color 
FA image that coarsely shows whether each FA voxel flows 
primarily anterior–posterior, superior-inferior, or right-left. 
White matter hyperintensities (WMH), typically imaged in 
T2-w and FLAIR imaging, also reduce WM FA [51]. MD 
estimates the per-voxel average rate of diffusion across all 
directions, rather than its directionality. CSF is bright in 
MD, and WMH and other degradation cause an increase 
in MD signal toward resembling CSF [50]. Together, FA 
and MD are typically used to investigate nonspecific mostly 
vascular WM pathology associated with aging and neurode-
generative diseases [52–55]. Another class of dMRI analyses 
is tractography, which attempts to trace or follow diffusion 
along axons to produce maps of their locations (tractograms) 
[50]. Tractograms can be used to estimate the structural con-
nectivity (i.e., connection through WM) between pairs of 
cortical regions. The minimal or optimal configuration of 
directions/strengths/spatial resolution needed for accurate 
and reproducible tractography is a matter of considerable 
debate [56–59].

Several more-advanced forms of diffusion imaging exist 
in the research setting; these increase the number of direc-
tions and strengths (b-values) to enable more complex analy-
ses. These include multi-shell (multiple “shells” of b-values) 
dMRI, diffusion spectrum imaging (DSI), diffusion kurtosis 
imaging (DKI), high angular resolution diffusion imag-
ing (HARDI), and others. Such more-advanced sequences 
enable more-advanced (than tensors) diffusion models like 
neurite orientation dispersion and density imaging (NODDI) 
[60]. These models can enhance voxel-, region-, and tractog-
raphy-based analyses by allowing better separation of diffu-
sion-related changes from general tissue atrophy and better 
separation of signals from multiple WM tracts in regions 
where they overlap.

In the research setting, diffusion images are quantified 
using automated software pipelines. Some of the most popu-
lar include DTI-TK [61], DSI Studio [62], and multiple tools 
within the DIPY [63] and FSL packages [16, 64].

BOLD: Functional and Resting State MRI

MRI sequences in the previous sections all image brain 
structure. By contrast, functional MRI (fMRI) images 
function, by using a mechanism called the blood-oxygen-
level-dependent (BOLD) signal. Oxygenated and deoxy-
genated blood have different magnetic susceptibility, 
and this can be used to track the hemodynamic response 
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function (HRF), where oxygenated blood is delivered 
to replenish recently fired neurons [65]. BOLD fMRI 
sequences rapidly image the brain while a stimulus is 
presented repeatedly, and statistical analyses (temporal 
correlations of regional activations) can use this signal 
to infer which regions of the brain were involved (“acti-
vated”) during that stimulus by measuring the HRF (i.e., 
the BOLD signal after a delay of several seconds).

In resting state (RS-) or task-free (TF-) fMRI, these same 
scans are performed without any stimulus; the participant is 
instructed to lie awake in the scanner without any particular 
thought. These analyses are used to identify and measure the 
strengths of the brain’s functional networks, large spatially 
disconnected regions of co-activation which typically cycle 
and change throughout the total imaging time. The strength 
of the temporal correlations between pairs of brain regions is 
called their functional connectivity [66]. Together, functional 
connections and structural connections (measured from dMRI) 
are called the brain’s connectome and their study is called con-
nectomics. The most well-known functional network is the 
default-mode network (DMN) and its variants, thought to be 
active when the brain is at wakeful rest [67, 68]. Measurable 
changes in DMN integrity have been associated with Alz-
heimer’s disease, schizophrenia, autism-spectrum disorders, 
and others [68]. How long of a time series (scanning time) 
is required to produce clinically meaningful RS-fMRI data is 
itself an area of debate, but typical times in the research setting 
may be between approximately 5 and 20 min [69]. In recent 
years, fMRI and RS-fMRI analyses have come under some 
controversy due to concerns that their statistical significance 
may be inflated or findings may be unreproducible [70–72].

Other MRI Sequences

MRI is extremely versatile and there are a variety of more 
experimental, less common sequences that also play a role in 
neurodegeneration research. Arterial spin labeling (ASL) is 
one such sequence, where blood flowing into the brain through 
the neck is “tagged” with an RF pulse, which changes its MRI 
signal. After a variable delay of several seconds, subtraction 
between tagged and un-tagged images can be used to produce a 
map of cerebral blood flow (CBF) or perfusion [73, 74]. Others 
include magnetic resonance angiography (MRA) and 4-D flow 
MRI, used to image blood vessels and blood flow [75, 76], 
and magnetic resonance elastography (MRE), which meas-
ures tissue stiffness, akin to palpitation [77]. MRI with intra-
venous gadolinium-based contrast agents (GBCA) has also 
been proposed for measuring the integrity of the blood-brain 
barrier, which may be implicated in several neurodegenerative 
diseases, but this is rarely included in large imaging studies 
due to participant discomfort, concerns of adverse reactions, 
and potential long-term gadolinium retention in the brain [78].

Nuclear Medicine (PET and SPECT)

Positron emission tomography (PET) scans use radioac-
tive tracers or ligands that are injected intravenously and 
co-localize in the body with a specific target of interest. 
These tracers then release positrons that collide with local 
electrons to produce gamma rays that are imaged by the 
scanner. These are used to image the density and location 
of specific targets, e.g., amyloid-beta, tau, and metabolic 
demand, which is not (currently) possible with MRI.

Compared with MRI, PET is significantly more expen-
sive, has much lower resolution (approximately 5–8 mm 
vs. approximately 1 mm with clinical MRI), and it carries 
different participant risks in the form of ionizing radiation. 
However, these scans are currently the only way to image 
amyloid, tau, metabolism, and dopamine transporters in liv-
ing brains, which are of critical interest to neurodegeneration 
research and clinical trials [79–81].

PET measurements can be quantitative if they are 
acquired using full-dynamic scans (participant is in the 
scanner for approximately 1–2 h, depending on the tracer 
used) in conjunction with arterial sampling. These scans 
allow better accuracy and precision (particularly impor-
tant for longitudinal measurements) by avoiding the 
influences of perfusion and blood flow [82–84], but the 
costs of these scans are prohibitive in terms of participant 
burden and risk (via arterial sampling), and the practi-
cal costs of using the PET scanners for so long. More 
commonly, research studies acquire static or late-uptake 
scans, where after tracer injection, participants wait (in 
a waiting room, not in the scanner) for an uptake time 
period (e.g., 30–90 min depending on the tracer) before 
being scanned for approximately 20 min [85]. These late-
uptake scans are quantified using standardized uptake 
value ratio (SUVR), which measures PET signal as a 
ratio over the signal in a reference region that is thought 
to be free of the target pathology. SUVR measurements 
are only semiquantitative [83, 84], in contrast to quantita-
tive distribution volume ratio (DVR) measurements from 
full-dynamic PET scans. There is much debate over the 
best SUVR reference region for each tracer and type of 
analyses, but most common choices are cerebellar, pon-
tine, or white matter [86–90]. Middle-ground approaches 
between quantitative and late-uptake scans include full-
dynamic scans without arterial sampling [91], or coffee-
break protocols where participants are in the scanner 
for the first 5–10 min after injection, but then leave and 
return in time to acquire the typical late-uptake periods. 
For some tracers, this “coffee break” period is sufficient 
to allow scanning another participant, while producing 
DVR measurements closer in quality to full-dynamic than 
late-uptake scans [84, 92].
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FDG PET

Fluorodeoxyglucose (FDG) is a form of glucose modi-
fied to emit positrons. When used in brain PET imag-
ing, FDG measures the glucose metabolism associated 
with neuronal and synaptic activity. In the brain, reduced 
FDG signal (hypometabolism) is associated with neuro-
degeneration from all causes. FDG is highly effective 
at capturing spatial patterns that discriminate between 
diseases and clinical subtypes of diseases at the individ-
ual level [93–96], making it especially useful in clinical 
differential diagnosis. In the research setting, FDG can 
also be used to measure non-specific neurodegeneration 
(atrophy) when MRI is unavailable [79]. It is also rela-
tively inexpensive (compared with other PET tracers) 
and widely available due to its widespread use in can-
cer imaging. However, as more research imaging studies 
begin using amyloid and tau PET imaging, their use of 
FDG is declining because study participants can only 
tolerate (for both practical and radiation-safety reasons) 
a finite number of PET scans.

Amyloid PET

With the introduction of the Pittsburgh Compound B (PiB) 
tracer in 2004, researchers first became able to image 
brain amyloid pathology in living people [97], and amy-
loid PET has become a cornerstone of the imaging and 
diagnosis (in the research setting) of Alzheimer’s disease 
(AD) and related dementias [79, 80]. PiB uses the 11-C 
isotope, which has a half-life of approximately 20 min. 
Consequently, facilities using PiB must manufacture it 
on-site, which requires a costly cyclotron and significant 
nuclear expertise. Since then, many other amyloid PET 
tracers have been developed using F-18, which has a half-
life of 109.7 min and is thus more practical to manufacture 
centrally and distribute to smaller facilities. These tracers 
include Florbetapir (aka FBP, AV-45, Amyvid), Florbeta-
ben (aka FBB), Flutemetamol (aka FMT), and Flutafuranol 
(aka AZD4694, NAV4694) [98]. Each of these F-18-based 
amyloid tracers has comparable utility to PiB but their 
measurements are confounded by relatively more off-
target binding (nuisance signal) in WM; the exception is 
Flutafuranol, which is relatively recent and has approxi-
mately identical WM binding with PiB [99]. Because the 
distribution of amyloid in the brain is relatively homoge-
neous, amyloid PET is often analyzed to produce only a 
single numeric measurement of total “global” amyloid 
[100, 101], which can be thresholded to produce a binary 
measure of amyloid positivity [79, 100, 102]. Individuals 
typically become amyloid-positive 10–15 years before the 
clinical onset of AD symptoms [103, 104]. In AD, amyloid 
PET and other amyloid biomarkers (such as from cerebral 

spinal fluid obtained via lumbar puncture) typically become 
abnormal prior to tau biomarkers (PET or CSF), and both 
typically occur prior to related neurodegeneration (FDG 
PET, MRI, or CSF) [79, 103–105].

Tau PET

Approximately a decade after the introduction of PiB,  
tracers were developed to image tau proteins associated 
with Alzheimer’s disease. First-generation tracers include 
Flortaucipir (aka FTP, AV-1451, Tauvid, T-807) [106], 
THK5317, THK5351, and PBB3. Second-generation trac-
ers include MK-6240, RO-948, PI-2620, GTP1, and PM-
PBB3 [107]. All of these tracers (in both generations) are 
F-18-based, and thus, they can be transported more practi-
cally than PiB. FTP and MK-6240 have emerged as argu-
ably the most common tau tracers in AD research. Each 
of these tracers has varying binding affinity (i.e., signal 
strength) to AD-associated tau and varying levels of prob-
lematic off-target binding in other regions, such as the basal 
ganglia, choroid plexus, and even skull/bone surrounding 
the brain, which can “bleed into” regions of interest and 
make quantification/interpretation a challenge [107, 108]. 
Despite these challenges, tau PET has become widespread 
and crucial to AD research [79, 109–113]. Spatial patterns 
of tau PET are much more heterogenous across individuals 
than amyloid PET [114–116]. Within the time continuum 
of Alzheimer’s disease, highly elevated levels of tau PET 
signal typically occur only after substantial elevation of 
amyloid PET, and compared with amyloid they are more 
strongly associated (both in time and spatially within the 
brain) with neurodegeneration (atrophy) and with clinical 
symptoms [105, 117].

The use of current tau PET tracers for non-AD tauopa-
thies, such as primary supranuclear palsy (PSP), corticoba-
sal degeneration (CBD), chronic traumatic encephalopathy 
(CTE), and some subtypes of Frontotemporal lobar degen-
eration (FTLD), is much more controversial. Studies with 
early tracers (mainly Flortaucipir) have shown relatively 
weak signal in these diseases that is detectable on the group-
level, but individual measurements are in ranges much 
lower than in AD patients [112, 118, 119]. The location 
of this weak signal is typically in white matter regions that 
are adjacent to the cortex where signal would be expected 
[119], and autoradiography studies have repeatedly found 
minimal binding of these tracers to non-AD tau ex-vivo 
[120, 121]; consequently, the specific pathology underly-
ing this signal in non-AD tauopathies is uncertain and its 
related findings must be interpreted with caution [107, 120]. 
Some tracers (PI-2620, PM-PBB3) have reported relatively 
more signal in these diseases [122, 123], but no tau PET 
tracers have been widely accepted for non-AD tau [107].
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Other Tracers

Although none has become as common as amyloid, tau, 
and FDG, several other classes of PET tracers are being 
explored to study the molecular pathology of dementing 
illnesses. These include tracers for synaptic density (e.g., 
UCB-J) [124] and neuroinflammation (e.g., ER176, PBR28, 
SMBT-1) [125126, 127].

Alpha-synuclein is the key protein of interest for Par-
kinson’s disease, Dementia with Lewy bodies (DLB), and 
other parkinsonian disorders. There are currently no released 
PET tracers for imaging alpha-synuclein in vivo. Some early 
results from in-development tracers (e.g., ACI-3847) have 
been presented at research meetings, but none is yet avail-
able. However, DaTScan (aka Ioflupane) is a single photon 
emission computed tomography (SPECT) tracer that images 
dopamine transporters (DaT); the appearance of these images 
in the striatum can be used to differentiate “true” parkinso-
nian disorders from essential tremor or drug-induced par-
kinsonism [128, 129]. These scans are also sometimes used 
for differential diagnosis in the research setting, particularly 
in imaging studies of parkinsonian disorders, but they do 
not allow directly studying the underlying alpha-synuclein 
pathology. Similarly, tracers for TDP-43 (TAR DNA-binding 
protein 43) would be of high interest for neurodegeneration 
research, but none have yet become available.

Quantifying PET Scans

Quantifying PET scans in neurodegeneration research is typ-
ically based on registration with T1-w MRI (which is almost 
always also performed) to allow the same types of tem-
plate- and atlas-driven region- and voxel-based approaches 
as above, with largely the same sets of software packages, 
e.g., SPM, FreeSurfer, and FSL [31, 100]. Once PET scans 
are registered to T1-w MRI, nonlinear registrations between 
MRI and standard templates allow propagation of PET scans 
into template space, or atlas regions onto the native PET 
images. There are also specialized pipelines for PET-only 
measurements, and these can achieve similar performance 
with MRI-based approaches [130, 131], but MRI-based 
approaches are considered the gold standard because they 
have higher resolution to more accurately segment tissue and 
localize regions, and they can better adjust for partial volume 
(described below).

A large concern in PET quantification is partial volume: 
PET signal is reduced in regions of tissue loss (atrophy), 
and it is impossible from PET alone to determine whether 
a target (e.g., glucose, amyloid, or tau) is sparsely present 
within dense underlying tissue vs. densely present within 
sparse underlying tissue (i.e., regions of atrophy). There 
are many algorithms for partial volume correction (PVC) 
that use corresponding T1-w MRI to estimate hypothetical 

PET signal in each voxel or region as if there were no 
atrophy. PVC methods inherently boost measurement 
noise because they amplify signal in areas with relatively 
low signal. Determining which (if any at all) PVC method 
should be applied for a given study is a very active area of 
research and discussion [132133–135]. Applying PVC to 
PET analyses comparing two groups typically increases 
the statistical power of their differences; proponents of 
PVC argue that this supports it having corrected the bias-
ing effects of atrophy from the PET signal. However, 
opponents of PVC argue that it effectively multiplies PET 
signal with MRI, so increased group differences come 
from increased information content from combining the 
MRI (atrophy) and the PET (molecular) signals together. 
Studies examining correlations between in vivo amyloid 
scans and quantitative pathology at autopsy have found 
that these correlations were reduced by application of all 
major classes of PVC [134], which works against the pro-
PVC hypothesis that its increased group-differences are 
the result of more accurately quantifying the underlying 
molecular pathology.

CT

Computed tomography (CT) scans have a limited role in 
neurodegeneration research because CT has poor contrast for 
differentiating brain tissues when compared with MRI. How-
ever, most PET scanners are actually PET/CT scanners that 
acquire a low-dose CT used for attenuation correction (com-
pensation for signal loss due to structurally dense areas such 
as bone) during reconstruction of the PET images. These CT 
scans are typically not analyzed after on-scanner PET recon-
struction is completed. PET/MRI scanners have been slowly 
growing in popularity; these replace the low-dose CT with 
MRI- and artificial intelligence-based substitutes to elimi-
nate the CT’s dose of radiation to the participant. However, 
achieving CT-like bone contrast with MRI is not straightfor-
ward [136], and in neurodegeneration research studies PET/
CT scanners still far outnumber PET/MRI scanners.

Challenges to Multi‑site and Meta‑analyses: 
Data Standardization and Harmonization

One huge challenge in neuroimaging is the inability to 
directly compare images and imaging-derived measure-
ments across differences in imaging protocols (pulse 
sequences, PET tracers, scan times), imaging hardware 
(scanner vendor/model, head coil, on-board reconstruc-
tion software/version), and analyses software/measure-
ments. Each imaging site or research group typically per-
forms these tasks according to their own preferences and 
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hardware availability, which makes the images and meas-
urements unable to be compared directly without some 
transformation for harmonization [100, 137] to remove 
non-biologic sources of variability. In an ideal study, every 
participant would be imaged on the same scanner with the 
same protocols and data would be analyzed identically, but 
very large studies are typically multi-site and even within a 
single site, practical concerns often necessitate the use of 
multiple scanners. With longitudinal studies, maintaining 
participants on the same scanner over time can become 
impossible over long periods, as scanners naturally age, 
break down, and are replaced with newer technology. In 
multi-site trials, each typically has a different mix of scan-
ners of varying ages and manufacturer/models, and images 
from these are rarely directly comparable.

To reduce these challenges, researchers first reduce as many 
technical sources of variation as they can, i.e., using the same 
hardware and methods as much as possible. Pulse sequences and 
imaging protocols have been designed that attempt to produce 
relatively more-comparable results across a wide range of manu-
facturers and models for many imaging sequences [138, 139]; 
these protocols have been shared for use by other research stud-
ies and are designed to reduce compatibility issues, but they do 
not eliminate them. Scanners can also be validated (repeatedly) 
for use in a research study, such as by scanning standardized 
hardware phantoms and ensuring that resulting measurements 
are within expected ranges [140]. Within a study, analyses soft-
ware/pipelines can also be harmonized; images can always be 
re-analyzed retrospectively with consistent software, but this is 
costly in both human and computational resources. Even from 
identical images, differences in software/analyses (even very 
small ones like minor version or operating system changes) can 
produce very different findings [141–143], which is a large chal-
lenge for scientific reproducibility and meta-analyses.

When standardizing all technical aspects of imaging and 
analyses is not feasible, statistical approaches can reduce 
(but not eliminate) the effects of these confounding factors. 
For example, a coalition of amyloid PET researchers has 
made specific efforts to correct for the effects of different 
tracers and analyses by using linear regressions to trans-
form every individual combination to a standard “centiloid” 
0–100 scale [87, 144]. Nonlinear mappings for amyloid PET 
have also been proposed to increase agreement across tracers 
and methods [145]. Other techniques involve post-processing 
images to better match each other, e.g., blurring or adding 
random noise to images of higher quality to match a com-
mon lower standard, which can be effective but inherently 
reduces the quality of the data that is deliberately degraded 
[146, 147]. Researchers are also increasingly applying tech-
niques designed for generic numeric data (i.e., not specific 
for images) to reduce non-biologic factors, such as ComBat 
[148]. These methods can reduce, but do not eliminate, the 
effects of non-biologic sources of variance [149].

Conclusion

In this review, we have summarized the major types of brain 
images acquired in neurodegeneration research studies, their 
major purposes, and how they are analyzed. We also discussed 
some of the larger technical challenges in this area and how 
researchers are working to address them. We hope that this work 
will help readers who are relatively less familiar with neuro-
imaging technology to gain a better understanding of the wide 
breadth of imaging-based neurodegeneration research studies.
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