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Abstract

Chronic pain is a major health problem and the effective treatment for chronic pain is still lacking. The recent crisis
created by the overuse of opioids for pain treatment has clearly shown the need for non-addictive novel pain
medicine. Conventional pain medicines usually inhibit peripheral nociceptive transmission and reduce central trans-
mission, especially pain-related excitatory transmission. For example, both opioids and gabapentin produce analgesic
effects by inhibiting the release of excitatory transmitters and reducing neuronal excitability. Here, we will review
recent studies of central synaptic plasticity contributing to central sensitization in chronic pain. Neuronal selective
adenylyl cyclase subtype 1 (AC1) is proposed to be a key intracellular protein that causes both presynaptic and
postsynaptic forms of long-term potentiation (LTP). Inhibiting the activity of AC1 by selective inhibitor NB0OI
blocks behavioral sensitization and injury-related anxiety in animal models of chronic pain. We propose that
inhibiting injury-related LTPs will provide new mechanisms for designing novel medicines for the treatment of
chronic pain and its related emotional disorders.
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PFC Prefrontal cortex

PKA Protein kinase A

PKC Protein kinase C

PKM( Protein kinase M(

RVM Rostroventral medial medulla
TBS Theta burst stimulation
Introduction

Basic research has provided a basic mechanism for our under-
standing of pain. From peripheral nociceptors to cortical re-
gions involved in pain perception, we have obtained cumula-
tive evidence for how pain is transmitted, modulated and pos-
sibly stored as one special experience in the brain.
Furthermore, we also recognize the importance of
distinguishing acute pain from chronic pain, and the differ-
ences between molecular mechanisms underlying these two
processes. Unfortunately, the colloquial terms “pain” and “an-
algesia” fail to distinguish acute and chronic pain, and even
cause confusion among the public. For example, a novel acute
pain receptor (or more appropriate, nociceptor) may not serve
well as a drug target for treating chronic pain; and drugs that
do not act on acute pain may be proved to be beneficial for
alleviating chronic pain. Although the discovery of selective
proteins and pathways for physiological pain or acute pain has
greatly improved our knowledge of pain, there are still limi-
tations for the treatment of chronic pain. Recent discoveries
from research have demonstrated that molecular and synaptic
mechanisms of chronic pain are different from that of acute
pain and simply reducing neuronal excitability or transmission
may not be enough to block chronic pain.

In this review, we will summarize recent progress made on
basic mechanisms of chronic pain, especially at the synaptic
level of cortical regions that play key roles in pain perception.
Synaptic potentiation plays a critical role in cortical excitation
in animal models of chronic pain. Neuronal adenylyl cyclase
subtype 1 (AC1), a key protein for producing activity-
dependent long-term potentiation (LTP), is a potential novel
target for treating chronic pain.

LTPs May Contribute to Exaggerated Chronic
Pain Responses

LTP was originally proposed as a key cellular mechanism for
learning and memory [1, 2]. Recent studies have consistently
indicated that LTP may also take place in memory-
independent excitatory synapses, and contribute to physiolog-
ical and pathological functions [1, 3]. For nociceptive trans-
mission and chronic pain, it has been reported that peripheral
injury can trigger LTP along somatosensory pathways con-
tributing to pain transmission, relay, and perception, including
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the spinal cord dorsal horn, thalamus, and cortical regions [1,
4, 5]. Depending on the type of injury, onset time and duration
of pain may be different.

In spinal dorsal horn neurons, electrophysiological ex-
periments have generated some important findings related
to spinal LTP. Strong tetanic stimulation of the dorsal root
induces LTP of synaptic responses to presynaptic stimu-
lation [6]. Postsynaptic depolarization is critical for the
induction of dorsal horn neuron LTP. Pairing postsynaptic
depolarization also induces long-lasting enhancement of
synaptic responses in the spinal cord. The level of post-
synaptic depolarization may be important in determining
whether synaptic transmission will be potentiated or de-
pressed [7]. The induction of spinal LTP requires activa-
tion of N-methyl-D-aspartate receptors (NMDARSs) and/or
the substance P receptors (NK1). The contribution of neu-
ropeptide substance P to spinal LTP may act by enhanc-
ing NMDAR-mediated currents in spinal dorsal projecting
neurons [8]. The intracellular signal pathways of spinal
LTP remain to be fully mapped. Evidence from other
studies indirectly indicates that several protein kinases
may be important for spinal LTP, such as phospholipid-
dependent protein kinase C (PKC). Phorbol ester induces
long-lasting facilitation of evoked excitatory postsynaptic
potentials (EPSPs) or excitatory postsynaptic currents
(EPSCs) amplitude to stimulation of presynaptic fibers
[9, 10]. One possible mechanism for PKC-dependent spi-
nal LTP is through the recruitment of spinal silent synap-
ses or the insertion of 2-amino-3-(3-hydroxy-5-methyl-
isoxazol-4-yl) propanoic acid receptors (AMPARs).
Brain-derived neurotrophic factor (BDNF) can induce
NMDAR-dependent LTP in the spinal dorsal horn via
different signaling pathways [11]. Interestingly, the activ-
ity of AC1 has been found to be important for serotonin
(5-HT) induced potentiation [12].

Both in vitro and in vivo studies have consistently demon-
strated that cortical synapses that receive sensory inputs can
also undergo LTP. These cortical regions include the anterior
cingulate cortex (ACC), insular cortex (IC), somatosensory
cortex, and prefrontal cortex (PFC). The intracellular mecha-
nism for the induction and expression of LTP has been exten-
sively investigated in the ACC, but less so in other cortical
regions. Recent studies have begun to report evidence for
other pain-related cortical areas. In pain-related ACC and IC
of adult animals (mostly mice, but also rats and tree shews),
different stimulation protocols can induce long-lasting LTP
[5, 13, 14]. For example, it has been reported that the pairing
training protocol (synaptic activity paired with postsynaptic
depolarization), spike-EPSPs pairing protocol, and theta burst
stimulation (TBS) protocol all induce LTP in the ACC pyra-
midal neurons [15, 16]. Similar results have been recently
reported in the IC [14]. These findings indicate that excitatory
synapses in the ACC and IC are plastic and can undergo LTP.
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Lack of Selective Drugs for Inhibiting
Pain-Related LTP

Most of translational pain research is focusing on identifying
selective pain receptors or pain-related transmission. Drugs
that have been identified often target the release of transmit-
ters, postsynaptic receptors, and related neuromodulators (that
modulate excitatory/inhibitory transmission). In addition, re-
ducing neuronal excitability can also be used as a drug target
mechanism. For example, the popular drug gabapentin, is
used for treating neuropathic pain and its related compounds
act by inhibiting excitatory transmission (by inhibiting
voltage-gated calcium channels, for example). In the ACC,
we have recently reported that gabapentin reduced excitatory
synaptic transmission in layer II/IIl pyramidal cells [17].
Opioids are known to also reduce the release of transmitters
by inhibiting presynaptic calcium channels, as well as post-
synaptic plasticity [18, 19]. However, the addiction and toler-
ance effects accompanying the use of opioids have caused
significant medical and social problems, and have nearly lim-
ited the usage of opioids for long term care of chronic pain.
One possible avenue for reducing chronic pain that has not
been extensively explored so far is the central plasticity.
Although the potential side effects of targeting such key
mechanisms have been a major concern, its side effect profiles
are not more than those that are commonly used currently in
pain care such as gabapentin and opioids. Furthermore, it may
be possible to identify some selective molecular targets that
are preferentially involved in injury-related central plasticity
to avoid central side effects. Recent studies using genetic and
neuroscientific approaches have demonstrated that it is possi-
ble to target such novel proteins without causing side effects.
In this review, we will focus on one major protein AC1, which
has met most of these safety requirements.

Basic Mechanisms Contributing to Cortical
LTPs

Two major advances have been made regarding cortical po-
tentiation after injury. First, adult cortical synapses in the pain-
related cortical areas are highly plastic. Second, two key forms
of LTP have been identified: presynaptic and postsynaptic
forms of LTP (or called pre-LTP and post-LTP).

For post-LTP, NMDARs, including GIuN1 and GluN2
(GluN2A-D) isoforms, have been reported to contribute to
the induction of LTP. Since it is completely blocked by the
NMDAR antagonist, we also refer to post-LTP as NMDAR-
dependent LTP [1, 20]. LTP induction protocols such as TBS,
pairing training, and spike-EPSPs can induce NMDAR-
dependent LTP. The expression of NMDAR-dependent LTP
requires postsynaptic modification or insertion of GluAl-
containing AMPARs. AC1-dependent, protein kinase A

(PKA) phosphorylation of AMPARs GluAl contributes to
LTP [21-23]. A recent study using selective knock-in mice
demonstrates that phosphorylation of AMPAR GluAl plays
an important role in synaptic potentiation. However, the same
LTP did not require a CaMKII/PKC phosphorylation site ser-
ine 831 (Ser831). These results demonstrate that ACC LTP
employs a different mechanism than hippocampal LTP [24].

In addition to post-LTP, an NMDAR-independent form of
LTP can also be readily induced in the ACC by paired-pulse
low-frequency stimulation. This form of LTP is resistant to
NMDAR blockade and was inhibited in mice lacking the
kainate receptor (KAR) GluK1 subunit [25].
Pharmacological experiments using a potent GluKI1-
selective KAR antagonist, UBP310, further confirmed that
this form of LTP is KAR dependent. Both genetic and phar-
macological evidence consistently indicates that this form of
LTP is pre-LTP. Pre-LTP in the ACC is sensitive to a
hyperpolarization-activated cyclic nucleotide-gated (HCN)
channel inhibitor, ZD7288 [25]. In addition, p42/p44
mitogen-activated protein kinase inhibitors PD98059 and
U0126 suppressed the induction of pre-LTP and did not affect
the maintenance of pre-LTP. The activation of presynaptic
extracellular signal-regulated kinase (ERK) was required for
the induction of pre-LTP [26].

Top-down Cortical-Spinal Facilitation:
Positive Feedback for Chronic Pain

It is well known that spinal sensory transmission can be af-
fected by receiving top-down biphasic modulation. Integrative
studies using different experimental approaches reveal that
descending modulation of spinal sensory transmission is bi-
phasic, including inhibitory and facilitatory influences. Recent
studies have indicated that descending influences from the
ACC, IC, PFC, amygdala, periaqueductal gray (PAG), and
rostroventral medial medulla (RVM) may exert excitatory,
inhibitory, or mixed biphasic modulation of spinal nociceptive
transmission [27]. The RVM is a subcortical structure that is
thought to be one of key relays for descending modulation
from the supraspinal region to the spinal cord. The PAG-
RVM is known to play a key analgesic effect in descending
inhibition of pain. Few studies report that PAG may exert
descending facilitatory effects on spinal transmission [28,
29]. A key feature of descending facilitation is its intensity
dependence. At biphasic sites of stimulation, it is typical that
electrical stimulation facilitates spinal nociceptive transmis-
sion at lesser intensities and inhibits responses of the same
neurons at greater intensities [30]. 5-HT is the major neuro-
transmitter for triggering biphasic effects on spinal nocicep-
tive transmission [31]. In addition, it has been known that
cortical neurons could project to brainstem neurons and lead
to the excitation of descending facilitation. For the ACC,
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neurons in the deeper layers of the ACC send their axonal
projections to neurons in the RVM of the brainstem, which
then sends its modulatory projection to the spinal cord dorsal
horn [32]. Our recent studies imply that ACC neurons can
project to the spinal cord dorsal horn directly through
corticospinal pathways and that glutamate is likely to be the
transmitter. /n vivo electrophysiological experiments found
that activation of ACC enhances spinal sensory transmission,
and this facilitation is independent of RVM activity [32, 33].

In other pain-related cortical areas, such as IC, amygdala
and PFC were also reported to modulate pain in a top-down
manner. In the rostral agranular IC, locally increasing GABA
by using an enzyme inhibitor or gene transfer mediated by a
viral vector produced lasting analgesia by enhancing the de-
scending inhibition of spinal nociceptive neurons [34].
Recently, Huang et al. reported a BLA-PFC-PAG-spinal
cord pathway that alters pain behaviors by reducing descend-
ing noradrenergic and serotoninergic modulation of spinal
pain signals [35]. Our group recently found an ascending pro-
jection from locus coeruleus (LC) to the ACC modulating
pain behaviors. We found that the ascending noradrenergic
projection from the LC to the ACC may contribute to the
enhancement of pain/itching by potentiating glutamatergic
synaptic transmissions in the ACC, which is opposite to the
well-known descending LC-spinal inhibitory modulation (in
press). Consequently, cortical-spinal top-down facilitation, in-
cluding those relayed through brainstem neurons, provides
powerful positive feedback control for pain transmission at
the level of the spinal cord.

AC1 Is a Neuronal Selective and Novel Protein
for Chronic Pain

Previous studies show that Ca®*-calmodulin (CaM) dependent
signaling pathways play crucial roles in biological systems, such
as learning and memory, chronic pain, and emotional fear.
Adenylyl cyclases (ACs) is the enzyme that catalyzes ATP to
cAMP and is activated by Ca®*-CaM. There are two major fam-
ilies of ACs expressed in the central nervous system: nine
membrane-bound ACs (AC1-9) and one soluble AC. Among
these ten ACs subunits, AC1 and ACS8 are two major ACs sub-
types that respond positively to Ca**-CaM. Compared with ACS8,
ACI is more sensitive to Ca>* increases [36, 37]. In the hippo-
campus, early studies using gene knockout (KO) mice have
shown that AC1 is not required for hippocampal LTP, Morris
water maze performance, anxiety-like behaviors, and motor
functions. It is likely that other signaling proteins such as
CaMKII, CaMKIV, cAMP response element (CRE)-binding
protein (CREB) contribute to hippocampal LTP and learning
memory [38]. Compared with the role of AC1 in the hippocam-
pus, AC1 KO mice showed reduced inflammatory, deep muscle
pain and neuropathic pain in the ACC (Fig. 1) [39]. AC1 is

@ Springer

highly expressed in pyramidal neurons located in most of the
layers of the ACC [39]. Gene deletion of AC1 does not affect
basal glutamate transmission in the ACC. However, AC1 activity
is required for TBS or pairing stimulation induced LTP in ACC
pyramidal neurons. Pharmacological inhibition of AC1 in the
ACC neurons also consistently abolished LTP induced by
pairing training [1, 17].

In addition to its contribution to the ACC, AC1 activity is
likely to contribute to other pain-related cortical areas, such as
PFC, IC, and somatosensory cortex. In AC1 KO mice, we
found that the amount of synaptic GluA1 and its phosphory-
lation at the Ser845 site remained unchanged in the IC after
the injury. Furthermore, no upregulation of AKAP79/150 and
PKA was detected from the AC1 KO mice with nerve ligation
[40]. It has been reported that AC1 activity is required for
injury-activated immediate early gene activity in these areas.
Similar LTP induction protocols also induce LTP in PFC,
somatosensory cortex, and IC areas. Considering that AC1 is
mainly expressed in the central nervous system, we propose
that AC1 may be a suitable neuron-specific drug target for
treating chronic pain.

AC1 Versus NMDA GluN2B Receptor

NMDAR is one type of ionotropic glutamate receptors and is
known to be important for triggering long-lasting changes in
synapses. NMDAR-dependent synaptic plasticity plays a role
not only in physiological functions such as learning and memory
but also in unwanted pathological conditions such as chronic
pain. A previous study using genetic overexpression mice pro-
vides the first direct evidence that forebrain GluN2B-containing
NMDARSs may contribute to chronic pain [41]. Subsequent in-
vestigation has found that the forebrain, including ACC and IC
GluN2B can undergo upregulation after peripheral injury
[42—44]. For example, after peripheral nerve injury, GluN2B-
mediated responses in the ACC neurons were significantly en-
hanced and inhibiting NMDA GIuN2B receptors within the
ACC produced analgesic effects in animal models of neuropathic
pain [43]. Due to its fewer side effects, NMDA GluN2B recep-
tors have been selected as a potential target for treating chronic
pain, especially neuropathic pain. In addition to being upregulat-
ed after the injury, GluN2B has been found to be critical for
producing LTP in different brain areas related to the pain process,
including ACC, IC, spinal cord, and amygdala [16, 42, 45].
Basic investigations using animal models have revealed
that AC1 is likely acting downstream of NMDARs, including
GluN2B receptors. In central neurons, activation of NMDARSs
can activate several key intracellular pathways, including
CaMKI], tyrosine kinase, PKC, etc. For cognitive functions,
genetic deletion of ACI failed to impair key memory func-
tions, indicating that such functions can be taken over by other
signaling pathways [38, 46]. Thus, targeting ACI is likely to
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Fig. 1 Inhibition of AC1
activitycan reduce behavioral a
sensitization on neuropathic pain.
(a) A model shows that AC1 acts
downstream of the glutamate
NMDARsand is activated in a
calcium-dependent manner. (b)
Chemical structure of NB0OO1. (¢)
Reduced both ipsilateral and
contralateral sides mechanical
allodynia in AC1 KOmice with
nerval ligation. (d) Effectof
NBO0O1 on allodynia after nerve
ligation. Intraperitoneal adminis-
tration ofNB0O1 (0.1mg/kg body
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cause fewer cognitive side effects compared with GIuN2B
receptors. Finally, recent studies show that AC1 activity is
required for LTP of GluN2B-containing NMDARs [42—44].
Therefore, AC1 plays an essential role in postsynaptic upreg-
ulation of both AMPARs and NMDA GIluN2B receptors.

AC1 Is Essential for Cortical LTPs

Recent studies consistently demonstrate that excitatory synap-
ses within the ACC and IC are highly plastic. Both pre-LTP
and post-LTP have been reported in excitatory synapses in the
ACC and IC [21, 25, 26, 47]. Using genetic and selective
pharmacological inhibitors, it has been demonstrated that
ACI is essential for both forms of LTPs in these cortical areas.

Liauw et al. (2005) reported that genetic deletion of AC1
completely abolished LTP induced by TBS and forskolin per-
fusion [23]. Wang et al. further showed that LTP was also
blocked by a selective AC1 inhibitor NB0O1 [46]. This data
consistently suggests that AC1 activity is required for LTP (or
post-LTP) in the ACC. Similar results have been reported in
the IC recently [21, 22]. Furthermore, Chen et al. reported that
strong TBS-induced late-phase LTP (L-LTP) also requires
ACI1 activity (Fig. 2 and Table I) [17]. Since NMDAR-
mediated responses were not affected by AC1 deletion or
NBOO1, it is thus likely that AC1 acts downstream of
NMDARs or KARs to contribute to LTPs. Recent studies
using gene knock-in mice showed that AC1 likely acts up-
stream of PKA. The phosphorylation of AMPARS at Ser845 is
critical for the potentiation in the ACC [24].
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Fig. 2 ACl is required
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AC1 Is Required for the Upregulation
of PKMzeta (PKMJQ) in Chronic Pain

Among several protein kinases that may contribute to the ex-
pression of L-LTP, protein kinase M{ (PKMJ() is mostly re-
ported. Inhibiting PKM( activity reduced L-LTP and long-
term memory. In the ACC, the expression of PKM( can be
detected [48-50], PKM( peptide inhibitor can erase L-LTP
[51]. The possible contribution of PKM( to neuropathic pain
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has also been investigated. Interestingly, we found that PKM(
and its phosphorylation were upregulated within the ACC
after peripheral nerve injury. The ACI activity is critical for
such upregulation. By contrast, the baseline level of PKM(
expression was not affected by ACI deletion, indicating that
ACI is not topically regulating the expression of PKM(. In
ACI1 KO mice, such injury-induced increases in the protein
expression of PKM( and/or phosphorylation of PKM({ was
abolished. PKM( inhibitory peptide (ZIP) can reduce
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Table |  The role of AC1 in different forms of central synaptic plasticity in the ACC and IC

AC1 KO NBO001 References
Post-LTP Attenuated LTP in the ACC and IC Blocked LTP in the ACC and IC [22, 23, 46, 78]
Pre-LTP Attenuated pre-LTP in the ACC and IC Blocked pre-LTP in the ACC and IC [21, 25]
L-LTP Attenuated L-LTP in the ACC Blocked L-LTP in the ACC [17,76]
LTD No data No data No data
Depotentiation No data No data No data

mechanical allodynia responses in mice with 1-month-old
nerve injuries. Inhibition of PKM( in the ACC reduced the
GluAl trafficking in the synapse, but not postsynaptic GluA2
levels [52]. However, some studies report that the conse-
quences of PKM( inhibition within the rostral ACC are not
permanent in neuropathic pain, possibly because the re-
establishment of amplification mechanisms by ongoing activ-
ity of injured nerves [53]. The activity-dependence of PKIM({
in the ACC is also needed in other chronic pain model, in-
cluding inflammatory pain [54] and diabetic neuropathic pain
[55], and AC1 activity is critical for these kinds of chronic
pain [46, 56].

In other brain regions, the mouse was also reported in the
modulation of chronic pain. In the IC, the mechanical
allodynia was significantly decreased by ZIP microinjection
into the IC after nerve injury. The levels of GluAl, GluA2,
and p-PKM( were decreased after ZIP microinjection [57].
Our recent results suggested that AC1, but not ACS8, can be
a trigger of the induction and maintenance of LTP in the IC.
Inhibition of PKM( reduced the expression of LTP [22]. In
the spinal cord, Asiedu et al. reported that spinal inhibition of
PKM( completely abolished prolonged allodynia induced by
hindpaw injection of prostaglandin E(2) [58]. Inhibition of
PKCZ/PKMC activity decreased the expression of c-Fos in
response to formalin and complete Freund’s adjuvant (CFA)
in both superficial and deep laminae of the dorsal horn. Recent
studies have shown that PKM( was also implicated in the
formation of visceral hypersensitivity with irritable bowel
syndrome (IBS). The expression of hippocampal p-PKM(
significantly increased in rats of visceral hypersensitivity gen-
erated by neonatal maternal separation (NMS). ZIP could in-
hibit the maintenance of CA1 LTP and attenuate the visceral
hypersensitivity in rats of NMS [59, 60]. In addition, the ex-
pression of p-PKM( also increased in the thoracolumbar and
lumbosacral spinal cord in the IBS-like rats with notable con-
comitant chronic visceral pain [61]. And more notably, recent
studies provide novel behavioral evidence that there is a sex
difference in PKM( involved in the maintenance of nocicep-
tive sensitization. Pharmacological inhibition or genetic abla-
tion of PKM( effectively reduced referred visceral and muscle
pain in males, but not in female mice and rats [62, 63]. These
findings suggest that females may rely on a factor independent
of PKM( for the maintenance of nociceptive sensitization.

Future studies are needed to be carried out to determine
whether AC1 is important or not for the upregulation of
PKMC( in female mice in chronic pain.

AC1 Is Required for Injury-Induced Changes
in the Cortical Regions

Injury-induced changes in excitatory transmission, including
postsynaptic and presynaptic changes, have been investigated
in the ACC. AMPAR-mediated responses recorded from
ACC pyramidal cells were significantly enhanced after pe-
ripheral nerve injury or inflammation [64, 65]. This enhance-
ment is mainly mediated by GluA1-containing AMPARsS, in-
cluding phosphorylation at Ser845 site [64] and increased
membrane expression of GluAl. ACI1 activity is absolutely
required for this postsynaptic modulation [1]. In AC1 KO
mice, injury triggered the upregulation of GluAl, and
AMPAR-mediated responses were blocked [40, 64]. In addi-
tion to the enhancement of AMPAR-EPSC:s, peripheral nerve
injury, and inflammation also led to increased GluN2B-
containing NMDAR-mediated responses in the ACC [16,
43, 66]. The upregulation of NMDARs after inflammation is
relatively selective for the GluN2B subtype; GIuN2A-
mediated responses were not significantly affected [43]. The
expression enhancement of GluN2B, p-CREB, and CREB
after visceral pain was reduced in AC1 KO mice in a visceral
pain model of IBS [44]. Recent studies of the IC have shown
that upregulation of GluN2B-containing NMDARSs after

Fig. 3 Upregulation of AC1 in chronic visceral pain. (a) Representative P>
Western blots for total, membrane, and cytosol AC1 in the ACC of
control and zymosan-induced chronic visceral pain mice. Total, mem-
brane, and cytosol AC1 levels in the ACC were markedly increased on
Day 7 and 14 after zymosan injection. (b) Representative Western blots
for AC1, p-CREB, and CREB in the ACC of chronic visceral pain mice
treated with saline or NB0OO1. NBOO1 injection reduced the levels of AC1
and p-CREB in the ACC, but not total CREB of model mice. (c)
Signaling pathways of the AC1-dependent LTP in the ACC of chronic
pain. Synapses in the ACC undergo long-term presynaptic and postsyn-
aptic changes after chronic pain. The presynaptic glutamate release, ex-
pression of GluA1-GluA2 containing AMPARs and GluN2B-containing
NMDARS are upregulated in models of chronic pain. AC1 is essential for
both long-term presynaptic and postsynaptic potentiation. NB0O1
inhibited the AC1-dependent LTP as a drug target for the treatment of
chronic pain. (Adapted from Shuibing Liu et al., 2019)
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nerve injury also occurred. Injury-induced upregulation of the
synaptic NMDARSs subunit was completely blocked in AC1
KO mice in the IC. The phosphorylation of GluN2B at the
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Tyr1472 site was also blocked [42]. These results indicate that
ACI1 contributes to the upregulation of synaptic NMDARs
after nerve injury in the IC. In AC1 KO mice, the amount of
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synaptic GluA1 and its phosphorylation at the Ser845 site
remained unchanged in the IC after the injury. Furthermore,
no upregulation of AKAP79/150, PKA Cx, or PKA RIIf3 was
detected from the AC1 KO mice with nerve ligation [40].

In addition to postsynaptic changes, the presynaptic en-
hancement of excitatory synaptic transmission in the ACC
after neuropathic pain and inflammation pain also depends
on ACI. In AC1 KO mice, the decrease of the paired-pulse
ratio after nerve injury or inflammation was blocked in the
ACC. Furthermore, no increase of miniature EPSCs
(mEPSCs) frequency or amplitude of AMPAR-mediated
mEPSCs occurred in the ACC neurons in AC1 KO mice after
peripheral nerve injury or inflammation [64, 67]. In suffering
chronic pain, long-term changes in intrinsic electrical proper-
ties have also been noted in ACC neurons. The temporal pre-
cision of action potential firing in the ACC is reduced after
peripheral inflammation or nerve injury, as reflected in in-
creased jitter (the standard deviation of spikes latency).
Activation of ACs by bath application of forskolin increased
jitter, whereas genetic deletion of AC1 eliminated the change
of jitter caused by CFA inflammation [68].

In addition to its important roles in cortical LTP related
to injury, there are several reports that AC1 may also
contribute to injury-related facilitation or potentiation.
For example, it has been known that 5-HT is involved
in spinal facilitatory modulation of sensory transmission
[9, 27, 69]. The application of 5-HT produces facilitation
of synaptic transmission between primary afferent fibers
and dorsal horn neurons. Such facilitation requires AC1
activity in the spinal cord [12]. Furthermore, Wei et al.
reported that AC1 activity is required for the spinal acti-
vation of ERK induced by inflammation. AC1 and AC8
act upstream of ERK activation in spinal dorsal horn neu-
rons and the calcium-AC1/AC8-dependent ERK signaling
pathways may contribute to spinal sensitization, an under-
lying mechanism for the development of persistent pain
after injury [70]. In a recent study, Corder et al. reported
that AC1 may contribute to hypersensitivity induced by
long term activation of p-opioid receptors [71].

New Cellular Mechanism: AC1 Positive
Feedback Mechanisms

ACI1 is thought to be an activity-dependent signaling protein
that is essential to produce the second messenger cAMP.
However, there is less knowledge about whether it is also
regulated in the disease condition. A recent study demon-
strates that AC1 itself is also activity-dependent for regulation
in cortical neurons. Liu et al. (2019) reported that AC1 signif-
icantly increased in the ACC in an animal model of IBS and
persisted for at least a few weeks. By contrast, acute pain did
not affect the protein level of AC1. Inhibiting AC1 activity by
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NBOOI significantly reduced the upregulation of AC1 protein
in the ACC, suggesting that AC1 activity itself is critical for
ACI1 protein upregulation [44]. This finding indicates that
ACI1 may form a positive regulation in the cortex during
chronic visceral pain. Fig. 3 is a proposed model for AC1
positive feedback control in disease conditions.

Preclinical Studies of AC1 and AC1 Inhibitor
NBO0O1

The original discovery of the requirement of AC1 in chronic
pain was made using AC1 KO mice. The lack of phenotype in
learning-related LTP and behavioral memory made it more
attractive for candidates of chronic pain [12]. Like other cog-
nitive, emotional, and motor functions, acute sensory func-
tions are intact in AC1 KO mice. However, Wei et al. reported
that behavioral responses to peripheral injection of two in-
flammatory stimuli, formalin and CFA, were reduced or
abolished in AC1 KO mice [39]. In a neuropathic pain model,
several studies show that behavioral allodynia and synaptic
changes were also reduced in AC1 KO mice [39, 42, 46,
64]. By using an acute persistent inflammatory muscle pain
model, Vadakkan et al. showed that behavioral nociceptive
responses of both the late phase of acute muscle pain and
the chronic muscle inflammatory pain were significantly re-
duced in AC1 KO mice [72]. In a zymosan-induced chronic
visceral pain model of IBS, the pain behaviors and vertical
counts are markedly attenuated in AC1 KO mice [44]. In the
diabetic neuropathy model, AC1 KO mice abolished
methylglyoxal-induced hyperalgesia (Table II) [56, 73].
While genetic deletion provides direct evidence for the
involvement of a selective gene in behavioral functions be-
fore selective inhibitors can be identified, selective pharma-
cological inhibitors are the most effective way to translate
animal discovery to potential clinical applications. Through
rational drug design and chemical screening, Wang et al.
(2011) identified a lead candidate AC1 inhibitor, NB0OI,
which is relatively selective for AC1 over other AC iso-
forms. Using a variety of behavioral tests and toxicity stud-
ies, Wang et al. showed that NBOO1, when administered
intraperitoneally or orally, had an analgesic effect in animal
models of neuropathic pain, without any apparent side ef-
fects [46]. Except in neuropathic pain, NB0OO1 was reported
to have analgesic effects on other pain models. NB0OO1
markedly decreased the amount of spontaneous lifting and
increased the mechanical paw withdrawal threshold in mice
suffering bone cancer pain by injecting osteolytic murine
sarcoma cell NCTC 2472. The upregulation of cAMP,
GIluN2A, GluN2B, p-GluAl (Ser831), p-GIluAl (Ser845),
and GluA1 were decreased by NBOO1 in bone cancer pain
mice [74]. NB0OO1 also produced a significant analgesic ef-
fect in both acute persistent and chronic inflammatory

muscle pain [72]. Zhang et al. reported that NBOO1 pro-
duced inhibition of injury-induced behavioral anxiety and
spontaneous pain in a visceral pain model of IBS [75]. In
addition, Taylor’s group reported that spinal inhibition of
AC1 by NB0O1 reduced hypersensitivity using db/db mice,
an animal model of type 2 diabetes [56]. Recent human
brain imaging studies showed that ACC activities increased
during or after chronic headache. Our latest studies on cal-
citonin gene-related peptide (CGRP), a critical molecule for
inducing headache, suggest that AC1 may be a potential
target for the treatment of headache. We found that
CGRP-induced chemical LTP and recruited inactive circuit
are AC1 activities dependent in the ACC. Both genetic de-
letion of AC1 using AC1 KO mice or AC1 inhibitor NB0OO1
can block CGRP-induced LTP [76]. In addition, these ef-
fects were also found in the IC, another cortical area related
with headache (Table II) [77]. Finally, these results indicate
that AC1 inhibitor NBOO1 may be a potential drug for the
treatment of chronic pain.

Conclusion and Future Directions

Recent progress made in basic research of chronic pain have
clearly demonstrated that chronic pain is different from acute
pain. Unpleasantness can be caused by non-noxious stimuli
that normally do not cause pain, or can be triggered by emo-
tional discomfort, anxiety or depression. Cortical excitation or
LTP in cortical synapses are likely to play important roles in
the amplification or generation of central pain. Inhibiting sig-
naling pathways that contribute to cortical excitation is a key
to treat chronic pain. Among several potential targets, AC1 is
a good candidate with few or no side effects. We hope that
future studies of AC1 inhibitors in patients with different types
of chronic pain will provide firsthand information about the
function of sensory LTP in chronic pain, and the use of novel
ACI1 inhibitors may help to treat patients with different ill-
nesses such as chronic pain and drug addiction.

Required Author Forms Disclosure forms provided by the authors are
available with the online version of this article.
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