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Abstract
The inhibition of the enzyme soluble epoxide hydrolase (sEH) has demonstrated clinical therapeutic effects in several peripheral
inflammatory-related diseases, with 3 compounds in clinical trials. However, the role of this enzyme in the neuroinflammation
process has been largely neglected. Herein, we disclose the pharmacological validation of sEH as a novel target for the treatment
of Alzheimer’s disease (AD). Evaluation of cognitive impairment and pathological hallmarks were used in 2 models of age-
related cognitive decline and AD using 3 structurally different and potent sEH inhibitors as chemical probes. sEH is upregulated
in brains from AD patients. Our findings supported the beneficial effects of central sEH inhibition, regarding reducing cognitive
impairment, neuroinflammation, tau hyperphosphorylation pathology, and the number of amyloid plaques. This study suggests
that inhibition of inflammation in the brain by targeting sEH is a relevant therapeutic strategy for AD.
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Introduction

Chronic inflammation is recognized as a key player in both the
onset and progression of Alzheimer’s disease (AD) [1–3].
Indeed, 16% of the investment in ongoing clinical trials for
AD is related to inflammation [4]. Neuroinflammation is inti-
mately linked to the oxidative stress associated with AD [5, 6],
controlling the interactions between the immune system and
the nervous system [7, 8]. However, several antioxidant ther-
apies and nonsteroidal anti-inflammatory drugs have failed in
clinical trials. Therefore, it is of vital importance to expand the
scope towards novel targets, preferably related to several path-
ophysiological pathways of the disease [9].

Epoxyeicosatrienoic acids (EETs) mediate vasodilatation,
reduce inflammation, attenuate oxidative stress, and block the
pathological endoplasmic reticulum (ER) stress response [10,
11]. The soluble epoxide hydrolase enzyme (sEH, EC
3.3.2.10, EPHX2), widely expressed in relatively high abun-
dance in murine and human brains [12, 13], converts EETs
and other epoxyfatty acids (EpFA) to their corresponding
dihydroxyeicosatrienoic acids (DHETs), whereby
diminishing, eliminating, or altering the beneficial effects of
EETs [14] (Fig. 1).

Highlights
• sEH levels are increased in the AD human brain and in murine models.
• Inhibition of sEH reduces oxidative stress and inflammation in murine
AD models.

• AD hallmarks in AD mice models are reduced after treatment with sEH
inhibitors.

• sEH inhibitors improve cognition in AD mice models.
• sEH can be proposed as a new pharmacological target for AD therapy.
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Considering that several lines of evidence underline a
broad involvement of signaling by EETs and other EpFA
in the central nervous system (CNS) function and disease
[15, 16] and that lack of sEH by genetic deletion improves
the signs of AD in a mouse model [17], we hypothesized
that brain-penetrant sEH inhibitors (sEHI) would stabilize
EETs in the brain, resulting in a reduction of reactive oxy-
gen species (ROS) and diminished neuroinflammation and
neurodegeneration, leading to a positive outcome in AD.
To this end, we studied the neuroprotectant role mediated
by sEHI in 2 models ofL AD: the senescence-accelerated
mouse prone 8 (SAMP8) and 5XFAD mice models.
Because SAMP8, a paradigm of late-onset AD and cogni-
tive impairment in age, is characterized by oxidative stress,
neuroinflammation, tau hyperphosphorylation, and
proamilodogenic APP processing, but lacks β-amyloid
(βA) plaques [18–22], we studied plaque load and cogni-
tive impairment in 5XFAD, a mouse model of early-onset
AD, to unveil the effect of sEHI on this AD hallmark [23,
24].

Methods

Details of the experimental protocols, including chemicals,
animals, novel object recognition test (NORT), biochemical
and molecular methods, target engagement, drug properties
characterization, and statistical analysis, are given in the
Supplemental information.

Results

Changes in sEH Expression in the Hippocampus
from AD Patients, SAMP8, and 5XFAD

The key question was to determine whether sEH expression
differs from healthy to pathological conditions. Results dem-
onstrated that sEH levels were higher in AD patients’ brains
(Braak III and V) in comparison with those of healthy indi-
viduals (Table S1 and Fig. 2a). Moreover, sEH expression
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Fig. 1 The arachidonic acid cascade. The arachidonic acid (AA) cascade is a
group of metabolic pathways in which AA and other polyunsaturated fatty
acids are the central molecules. Metabolism via the cyclooxygenase (COX)
and lipoxygenase (LOX) pathways gives rise to largely proinflammatory and
proalgesic metabolites. Both pathways have been pharmaceutically targeted.
CYP enzymes either hydroxylate or epoxidize AA leading to
hydroxyeicosatetranoic acids (HETEs) or epoxyeicosatrienoic acids (EETs),

respectively. The latter compounds, which are endowed with potent anti-
inflammatory properties, are rapidly subjected to hydrolysis to their
corresponding diols by the soluble epoxide hydrolase (sEH) enzyme.
Inhibitors of sEH block this degradation and stabilize EET levels in vivo
[14]. They also reduce the corresponding diols which have some
inflammatory properties. Major CYPs that oxidize AA are listed in the
figure, but many others make a contribution
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was also elevated in SAMP8 and 5XFAD hippocampus in
comparison with to their respective controls (Fig. 2b).

On-Target Drug Inhibition of sEH

We evaluated 3 structurally different sEH inhibitors as chem-
ical probes [25]: TPPU (UC1770, IC50 for human sEH =
3.7 nM) [26], AS-2586114 (IC50 for human sEH = 0.4 nM)
[27], and UB-EV-52 (IC50 for human sEH = 9 nM) [28] (Fig.
2c). Previous pharmacokinetic data suggest that TPPU, a very
well characterized sEH inhibitor, can enter into the brain [29].
It is known that AS-2586114 has a prolonged action in vivo
and an ability to cross the blood–brain barrier (BBB) [30, 31].
UB-EV-52 is a new inhibitor somewhat related with previous-
ly reported adamantane-derived sEH inhibitors such as t-
AUCB [32] and the clinically studied AR9281 (UC1153)
[33]. To determine whether UB-EV-52 possesses drug-like
characteristics, we performed in vitro ADMET assays. We

found that UB-EV-52 has excellent solubility (> 100 μM at
37 °C in 5% DMSO: 95% PBS buffer) and good microsomal
stability (Table S2), and does not inhibit drug-metabolizing
cytochromes or the hERG channel (Table S3). Of relevance,
some cytochromes are potential off-target effects of sEH (Fig.
1), because they are situated upstream in the arachidonic acid
cascade. UB-EV-52 showed less than 5% inhibition of the
studied cytochromes (CYP1A2, CYP2C9, CYP2C19,
CYP3A4, and CYP2D6) at 10 μM (Table S3). As a prelimi-
nary assessment of brain permeability, UB-EV-52 was sub-
jected to the parallel artificial membrane permeation assay-
BBB (PAMPA-BBB), a well-established in vitro model of
passive transcellular permeation [34]. UB-EV-52 was predict-
ed to be able to cross the BBB (Table S4), which anticipates its
ability to enter the brain. In order to characterize the toxicity of
UB-EV-52, we evaluated cell viability in human neuroblasto-
ma SH-SY5Y cells, using an MTT assay for cell metabolic
activity and a propidium iodide stain assay for cell death. In

a b

dc

Fig. 2 Soluble epoxide inhibition and its relevance in AD. a Immunoblot
of sEH (EPHX2) of human brains from AD patients (Braak stage III-V).
Groups were compared by Student t test (n = 4-7). *p < 0.05 vs. non-
demented. b Immunoblot of sEH (EPHX2) in the hippocampus of
SAMP8 mice (groups were compared by Student t test, n = 12-14,
**p < 0.01 vs. SAMR1) and 5xFAD mice (groups were compared by

Student t test, n = 12-14, ****p < 0.0001 vs. Wt). c Chemical structure
of the sEH inhibitors employed. d CETSA experiments to monitor brain
target engagement. Groups were compared by Student t test or 2-way
ANOVA and post hoc Dunnett’s, n = 3 per group, *p < 0.05,
**p < 0.01, and ***p < 0.001 vs. control
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both assays, UB-EV-52 showed no cytotoxicity at 1, 10, 50,
and 100 μM (Table 1).

To evaluate whether sEH is the direct binding target of the
inhibitors in brain tissue, we performed an in vivo thermal shift
assay (CETSA) [35]. The results showed a significant shift in
the sEH melting curve in the hippocampus of CD-1 mice
orally treated with TPPU, AS-2586114, and UB-EV-52, dem-
onstrating in vivo compound-induced target stabilization, pro-
viding also evidence of central action (Fig. 2d).

To demonstrate that the tested compounds reduced sEH ac-
tivity, we measured levels of regulatory lipid mediators in the
cortex of treated and control SAMP8mice. As shown in Fig. S1,
the levels of proinflammatory lipid mediators in the cortex such
as PGD2 and TXB2 are higher in the control group. At the same
time, the anti-inflammatory epoxy fatty acids, including those
from -linoleic acid (EpODE) and other polyunsaturated fatty
acids, are all higher in the treated groups, especially in the
TPPU-treated group. These differences also verified the target
engagement of inhibition of sEH in vivo.

Once demonstrated that the compounds tested were able to
inhibit sEH at the brain level, we evaluated the pathological
hallmarks and the cognitive impairment associatedwith AD in
SAMP8 and 5XFAD.

sEH Inhibitors Reduce Biomarkers of Inflammation,
Oxidative Stress, and Endoplasmic Reticulum Stress

Indicators of brain neuroinflammation were determined after oral
treatment with TPPU (5 mg/kg/day), AS-2586114 (7.5 mg/kg/
day), and UB-EV-52 (5 mg/kg/day) (Fig. 3a and Fig. S2). The 3
inhibitors reduced gene expression and brain protein levels of the
proinflammatory cytokines IL-1β (interleukin-β), CCL3 (C-C
motif ligand 3), and, importantly, TNF-α (tumor necrosis
factor-α) in SAMP8 (Fig. 3b) and in 5XFAD (data not shown).
IL-1β is intimately involved in neuroinflammatory processes in
the CNS [34], and its activity is thought to be closely tied to the
process of memory consolidation [34, 35]. Chemokines play a
critical role in phagocytic activity. Concretely, CCL3 is
expressed in astrocytes and is described as a component of the

inflammasome complex [36]. Of note, TNF-α not only is in-
volved in AD-related brain neuroinflammation [37] but also con-
tributes to amyloidogenesis via β-secretase regulation [38].
Additionally, these results suggest an involvement of the 2 main
inflammasome-signaling pathways, NF-kβ and NLRP3 [39].

To investigate the influence of the sEH inhibitors in the
oxidative stress process, we determined the concentration
of hydrogen peroxide in the brain of SAMP8 mice. The 3
inhibitors significantly reduce hydrogen peroxide (Fig.
3c). Moreover, determination of the brain oxidative ma-
chinery was addressed by evaluating the gene expression
of Hmox1, Aox1, and protein levels of SOD1 (Fig. 3c).
Hmox1 (antioxidant activity) [40] was significantly in-
creased by UB-EV-52 and TPPU, but not by AS-
2586114 (Fig. 3c). qPCR analysis also demonstrated that
treated SAMP8 mice had lower Aox1 expression (Fig. 3c).
Aox1 controls the production of hydrogen peroxide, and
under certain conditions, can catalyze the formation of
superoxide [41]. Furthermore, SOD1 (antioxidant activi-
ty) protein levels were significantly increased in all treat-
ed groups (Fig. 3c), indicating a reinforcement of the an-
tioxidant response after treatment with sEHI [42]. By con-
trast, in 5XFAD, a model with reduced oxidative stress,
no significant changes were determined in oxidative stress
parameters evaluated (data not shown).

It is known that the ER stress plays a role in the path-
ogenesis of neurodegenerative diseases, including AD
[43], and sEHI attenuate activation of the ER stress re-
sponse [10]. Therefore, we measured the levels of the ER
stress sensors ATF-6 and IRE1α (Fig. 3d). Especially,
UB-EV-52 was able to reduce the levels of either protein.
Furthermore, we evaluated XBP1, a major regulator of the
unfolded protein response, which is induced by ER stress
[44]. XBP1 was significantly reduced by UB-EV-52 and
slightly decreased by AS-2586114, but not by TPPU (Fig.
3d). Altogether, these results suggest that the inhibition of

Table 1 Cell viability in human neuroblastoma SH-SY5Y cells after
24 h exposure to UB-EV-52

UB-EV-52 concentration Metabolic activity (%)
MTT
(mean ± SEM)*

Cell death (%)
propidium iodide
(mean ± SEM)*

0 μM 100.00 ± 3.72 0.00 ± 0.78

1 μM 96.84 ± 5.01 1.47 ± 1.42

10 μM 105.13 ± 4.75 0.95 ± 1.31

50 μM 118.26 ± 8.09 − 0.59 ± 1.34

100 μM 120.43 ± 7.30 1.80 ± 0.97

*Results of 3 independent experiments performed in quadruplicated wells

�Fig. 3 Role of sEH inhibitors in neurodegenerative biomarkers. a Scheme of
experimental procedures in in vivo experiments. b Gene expression of
neuroinflammatory markers (Il-1β, Tnf-α, and Ccl3) and protein levels of
proinflammatory cytokines IL-1β, TNF-α, and CCL3 in the hippocampus
of SAMP8 mice after treatment with sEH inhibitors. c Oxidative stress
measured by hydrogen peroxide concentration in homogenates of the
hippocampus. Representative gene expression of Hmox1 and Aox1 and
representative Western blot and quantification of protein levels for
(antioxidant enzyme) SOD1 in the hippocampus of SAMP8 mice after
treatment with sEH inhibitors. d Representative Western blot and
quantification of protein levels for ER stress markers ATF-6, IRE1α, and
XBP1 in the hippocampus of SAMP8 mice after treatment with sEH
inhibitors. Gene expression levels were determined by real-time PCR,
cytokine protein levels by ELISA, and SOD1 by immunoblotting. Results
are expressed as a mean ± SEM and were significantly different from the
control group. Groups were compared by Student t test or by 1-way
ANOVA and post hoc Dunnett’s, n= 4-6 per group, (*p< 0.05, **p< 0.01,
***p < 0.001, and ****p < 0.0001) vs. control. See partial correlations
between selected variables in Fig. S2 and Table S7
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sEH protects against oxidative stress and the associated
ER stress in the brain.

sEH Inhibitors Modify the 2 Main Physiopathological
Hallmarks of AD

The brains of patients with AD contain 2 main physiopatho-
logical hallmarks: tangles of hyperphosphorylated tau protein
and βA plaques. As mentioned, considering that SAMP8 has
disturbances in tau hyperphosphorylation and APP processing
but lacks βA plaques, 5XFAD was used to support the pro-
tective effect of sEHI in AD hallmarks studied. On the one
hand, after oral treatment of SAMP8 and 5XFAD mice with
TPPU (5 mg/kg/day), AS-2586114 (7.5 mg/kg/day), and UB-
EV-52 (5 mg/kg/day), sEH inhibition provoked a reduction of
the tau hyperphosphorylated species (Ser396 and Ser404),
especially Ser404 (Fig. 4a, b), in agreement with the idea that
oxidative stress can promote tau hyperphosphorylation and
aggregation [45, 46]. On the other hand, we examined the
ability of the sEHI to modify the amyloid processing cascade.
Whereas the 5XFAD transgenic mouse model develops early
aggressive hallmarks of amyloid burden and cognitive loss
[47], SAMP8 is characterized by an abnormal amyloid pre-
cursor protein (APP) processing, with a misbalance to the
amyloidogenic pathway. Importantly, C-terminal fragment
(CTF) levels are strongly implicated in neurodegeneration
and the cognitive decline process in SAMP8 [21, 22]. We
observed a substantial decrease in the ratio of CTFs/APP pro-
tein levels in both mice models after treatment with sEHI (Fig.
4c, d). In addition, an increase of the sAPPα and a decrease of
sAPPβ supported that sEHI are able to shift the APP process-
ing towards the nonamyloidogenic pathway, thereby reducing
the probability of increasing βA aggregation. Finally, treat-
ment of 5XFAD mice with sEHI had a strong effect in reduc-
ing the number ofβA plaques stained with thioflavin-S (by an
average of 40%) (Fig. 4e), indicating the prevention of amy-
loid burden in a model characterized byβA plaques formation
at early ages such as 2 months.

sEH Inhibitors Reduce Cognitive Impairment

To demonstrate the efficacy on the cognitive decline of the
sEH inhibitors, we performed a NORT to obtain a measure of
cognition for short- and long-termmemory. Treatment of both
murine models with the 3 sEH inhibitors drastically increased
the discrimination index (DI). The significant increase indi-
cates clear preservation of both memories (Fig. 5a, b). In both
models, we add a comparator arm of mice treated with
donepezil, which is a standard of care in the treatment of
AD. As expected, donepezil treatment (5 mg/kg/day) also
shifted the DI to values significantly higher than zero.
Remarkably, in all the conditions, the sEH inhibitors reduced
cognitive decline better than donepezil.

Discussion

Our results suggest that the pharmacological stabilization of
EETs in the brain has the potential to address multiple etiolo-
gies and physiopathological processes of AD, i.e., neuroin-
flammation, ER stress, and oxidative stress, increasing the
chances of success of future therapies based on sEH inhibi-
tion. Although the decisive role of sEH inhibition in multiple
inflammation-related diseases has been studied, only a few
investigations have been conducted about its crucial role in
the neuroinflammation process [15, 16, 30]. Besides, the ques-
tion of if neuroinflammation is the malicious driver or “just” a
consequence still represents an important conundrum in the
AD field. Our findings reinforce the idea that neuroinflamma-
tion might drive the pathogenic process in AD. A partial cor-
relation calculation has demonstrated that the anti-
inflammatory effects of sEH inhibitors correspond with
changes in AD hallmarks, slowing the progression of the dis-
ease and pushing up the cognitive capabilities in the studied
animal models (Fig. S3-S4 and Table S5-S6).

A characteristic feature of acute inflammatory processes is
a general increase in the levels of classic proinflammatory
eicosanoids (prostaglandins, leukotrienes, and thrombox-
anes). In neurodegenerative diseases, there is a basal, chronic,
and silent inflammation that is more related to a disbalance in
proinflammatory and anti-inflammatory cytokines, such as
those studied IL-1β [36], CCL3 [49], and TNF-α, as well as
by acting on different mechanisms implied in neurodegenera-
tion (e.g., increase of the oxidative stress, increase in the glu-
tamate pathway, among others). Importantly in our landscape,
βA activates inflammasomes that, in turn, mediate IL-1βmat-
uration in microglial cells [47]. This allowed us to anticipate
different biological and therapeutic outcomes for sEH inhibi-
tion than for the COX and LOX pathway inhibition.

Two structurally different sEH inhibitors have been proven
to be safe in human clinical trials for other peripheral indica-
tions (AR9281 for hypertension and GSK2256294 for diabe-
tes mellitus, chronic pulmonary obstructive disease, and sub-
arachnoid hemorrhage) [26, 50]. A third inhibitor, EC5026, is

�Fig. 4 AD hallmarks in both SAMP8 and 5xFAD mice models after
treatment with sEH inhibitors. a and b Representative Western blot and
quantifications for p-Tau Ser396 and p-Tau Ser404. c and d
Representative Western blot and quantifications for CTFs/APP ratio,
sAPPα, and sAPPβ. e Histological images and quantification of
amyloid plaques stained with Thioflavin-S in Wt and 5xFAD. Values in
bar graphs are adjusted to 100% for a protein of the control group from
each strain. Results are expressed as a mean ± SEM and were
significantly different from the control group. Groups were compared
by Student t test or by 1-way ANOVA and post hoc Dunnett’s, n = 12
per group (*significant at p < 0.05, **significant at p < 0.01,
***significant at p < 0.001, and ****significant at p < 0.0001). See
partial correlations between selected variables in Fig. S2, Fig. S3,
Table S7, and Table S8
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in a human safety trial on a clinical path to chronic pain. This
fact, undoubtedly, accelerates the development of new sEHI
for the treatment of AD and avoids uncertainties about the
possibility of angiogenic effects when inhibiting sEH. Of rel-
evance, for this study, we have employed 3 structurally dif-
ferent sEH inhibitors, supporting the hypothesis that the bio-
logical outcomes observed are not because of off-target effects
related to a particular inhibitor.

In summary, we have demonstrated that sEH levels are
altered in AD mouse models and, more importantly, in the

brain of AD patients. We have further shown that the inhibi-
tion of sEH has a plethora of beneficial central effects, such as
reducing inflammation, ER stress, oxidative stress markers, p-
tau pathology, and the amyloid burden. Consequently, sEHI
improves the functional efficacy endpoint for cognitive status
in neurodegeneration and AD animal models.

The anti-inflammatory effect of sEHI has been demon-
strated in different pathologies [16, 17, 30]. Nevertheless,
considering the results obtained in this work, we cannot
rule out the beneficial effects of inhibition of sEH by
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Fig. 5 Characterization of the effect of sEH inhibitors and donepezil on
cognitive status in both SAMP8 and 5xFAD mice models. a Short-term
memory evaluation after 2 h acquisition trial by discrimination index and
b long-term memory evaluation after 24 h acquisition trial by
discrimination index after exposure to novel objects. Results are
expressed as a mean ± SEM and were significantly different from the

control group. Groups were compared by Student t test or by 1-way
ANOVA and post hoc Dunnett’s, n = 12 per group (*significant at
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regulating the processes of proteostasis and OS. Those
effects should be implicated in the β-amyloid plaque re-
moval and tau hyperphosphorylation reduction. Based on
the results presented in this work, we firmly believe that
inhibitors of sEH could represent an entirely new stand-
alone treatment for the treatment of AD. However, herein,
we do not demonstrate, because is it beyond the scope of
this study, if inhibition of sEH could also represent an
add-on therapy together with more symptomatic-like
drugs, i.e., donepezil.
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