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Abstract
Addiction to substances such as alcohol, cocaine, opioids, and methamphetamine poses a continuing clinical and public chal-
lenge globally. Despite progress in understanding substance use disorders, challenges remain in their treatment. Some of these
challenges include limited ability of therapeutics to reach the brain (blood–brain barrier), adverse systemic side effects of current
medications, and importantly key aspects of addiction not addressed by currently available treatments (such as cognitive
impairment). Inability to sustain abstinence or seek treatment due to cognitive deficits such as poor decision-making and
impulsivity is known to cause poor treatment outcomes. In this review, we provide an evidenced-based rationale for intranasal
drug delivery as a viable and safe treatment modality to bypass the blood–brain barrier and target insulin to the brain to improve
the treatment of addiction. Intranasal insulin with improvement of brain cell energy and glucose metabolism, stress hormone
reduction, and improved monoamine transmission may be an ideal approach for treating multiple domains of addiction including
memory and impulsivity. This may provide additional benefits to enhance current treatment approaches.
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Introduction

Addiction to substances such as alcohol, cocaine, opioids, and
methamphetamine poses a continuing clinical and public chal-
lenge globally. In the United States, 25% of adults report binge
alcohol consumption, and 7% (nearly 17 million) are diag-
nosed with alcohol use disorders [1]. Although the reported
numbers are smaller for other substance use, they result in
increased healthcare costs, utilization, and adverse health out-
comes [1]. In the last 15–20 years, there is a better understand-
ing of the pathological changes within the brain and its cir-
cuitry that promote substance abuse. However, challenges re-
main in the treatment of drug addiction that can potentially be
addressed by novel approaches such as intranasal drug deliv-
ery, specifically intranasal insulin as discussed here.

Currently, pharmacotherapy exists only for alcohol use dis-
orders (AUD) and opioid addiction, but has several limitations
including multiple adverse effects, compliance with dosing
regimen, availability/access, and utilization of treatment
[2–12]. A comprehensive review of the current treatment for
drug addiction is beyond the scope of this review. Briefly,
focus of treatment is largely dependent on managing with-
drawal symptoms, psychotherapy, and support groups.
Pharmacotherapy for AUD (FDA approved) includes
disulfuram, naltrexone, nalmefene, and acamprosate and a
few non-FDA-approved treatments such as topiramate, baclo-
fen, or gabapentin [2, 3]. Despite extensive research, there are
currently no effective pharmacological based treatments for
other addictive substances, including psychoactive stimulants
(cocaine, methamphetamines), marijuana or synthetic canna-
binoids, hallucinogens, phencyclidine (PCP), or drugs such as
methylenedioxymethamphetamine (MDMA) [13, 14].

Limitations to pharmacotherapy include treatment under
supervision, aversive reaction (disulfiram), precipitation of
opioid withdrawal in opioid users (naltrexone), dosing regi-
men compliance (acamprosate), specialized treatment
(topiramate), and multiple side effects, with some serious out-
comes. Opioid addiction is commonly treated with methadone
and buprenorphine [2]. Methadone is associated with multiple
adverse outcomes including constipation, respiratory depres-
sion, and heart rhythm abnormalities, whereas buprenorphine
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can precipitate opioid withdrawal [2]. Another important lim-
itation for an effective treatment is the blood–brain barrier
(BBB). The BBB severely limits the therapeutics that can be
used and use of high doses to overcome the BBB can lead to
systemic side effects.

Multiple aspects of both acute and long-term management
are neither targeted nor addressed by currently available phar-
macological and non-pharmacological therapies [10]. Recent
articles suggest that across all substance use disorders (SUD),
cognitive deficits exist that are known to predict treatment
response and sustained abstinence [14–18]. Most commonly
encountered cognitive deficits include impaired or poor
decision-making ability, impulsivity, impaired cognitive flex-
ibility, deficits in learning and memory, and heightened atten-
tion to drug-associated cues [14, 15]. In addition, both addicts
in abstinence with cognitive deficits and people with mood
disorders are at higher risk of substance use or relapse
[16–18]. This suggests that for a favorable outcome of treat-
ment or prevention of relapse or maintenance of abstinence, it
is essential to treat cognitive and behavioral deficits. We pres-
ent the rationale for using intranasal insulin, which has the
potential to treat multiple targets within the brain including
cognitive deficits and to address key limitations and chal-
lenges currently faced in the treatment of addiction.

Intranasal Drug Delivery

In 1989, William Frey II filed the first patent on his discovery
of the intranasal delivery method, which bypasses the BBB to
target therapeutics (including insulin) to the brain to treat brain
disorders including Alzheimer’s disease and stroke [19–22].
Subsequently,William Frey II received an additional patent on
the specific use of intranasal insulin to treat Alzheimer’s dis-
ease and Parkinson’s disease [23, 24].

Since its discovery, intranasal delivery of drugs to the cen-
tral nervous system (CNS) has been successfully demonstrat-
ed by numerous researchers worldwide, resulting in many
publications. Intranasal delivery has been studied extensively
with regard to mechanism of transport to the brain. Intranasal
therapeutics reach the CNS within minutes via extracellular
mechanisms including perineural and perivascular transport
[22, 25–34]. Intranasal drug delivery to the brain is dependent
on extracellular convection or bulk flow along the olfactory
and trigeminal neural pathways whereas delivery throughout
the brain involves passage through the perivascular spaces of
the cerebrovascular system on the brain side of the BBB [35].
Intranasal insulin can be found in the cerebrospinal fluid in
humans 10min after administration [27]. It is not essential that
drugs be modified for intranasal drug delivery to the CNS.
Key advantages of intranasal delivery include allowing for
direct delivery of large and/or charged therapeutics to the
CNS from the nasal mucosa while reducing systemic exposure

and adverse side effects for multiple brain therapeutics includ-
ing those that cross the BBB. In addition to peptides [36,
37], such as insulin, charged small molecules [38], adeno-
associated virus gene therapy [39], therapeutic cells including
stem cells [40, 41], T cells [42], macrophages, and microglia
[43] have all been delivered to the brain to treat CNS disor-
ders. Multiple intranasal therapeutics for treating brain disor-
ders have been developed [44–56], but this review focuses on
restoring brain cell energy and metabolism, and other actions
of intranasal insulin that can potentially be beneficial for the
treatment of addiction.

Intranasal Insulin

The use of intranasal insulin administration to non-invasively
deliver and target insulin to the brain could lead to advance-
ments in treatment for addiction. The intranasal insulin treat-
ment has been shown in multiple human clinical trials to safe-
ly improve memory, attention, and functioning in patients
with mild cognitive impairment (MCI) or Alzheimer’s disease
(AD), to improve memory, motor symptoms in patients with
Parkinson (PD), to improve memory in adults with type 2
diabetes, and even to improve memory in normal healthy
adults [57–70]. In addition, intranasal insulin has been studied
with regard to food/eating behavior, diabetes (insulin resis-
tance), stress axis, and sleep [71–79].

Study of the pharmacokinetics of intranasal insulin in mice
showed only 3% of intranasal insulin entered the circulation and
no peripheral metabolic effects were detected up to a day after
intranasal administration [80]. A single intranasal dose of 40 IU
insulin induces an increase in the cerebrospinal fluid concentra-
tion of insulin distinctly above the normal level in healthy indi-
viduals [27]. A recent review of safety of intranasal human
insulin trials revealed no safety concerns, with no serious ad-
verse events or symptomatic hypoglycemia in a total of 1092
individuals studied [81]. Though some studies with higher doses
(160 IU) have shown small detectable increase in insulin levels,
no significant change in blood glucose levels were noted [82].

Insulin and Substance Use Disorders

Multiple reviews by Koob and colleagues over the years have
provided extensive evidence for involvement of multiple neu-
rotransmitter systems and brain areas involved in develop-
ment, and evolution of different phases of the addiction cycle
[83–89]. Different classes of drugs are associated with dys-
functions in a range of overlapping brain regions including
midbrain dopamine pathways (ventral tegmental area [VTA],
substantia nigra [SN]), basal ganglia (ventral striatum, nucleus
accumbens [NAcc], and dorsal striatum) prefrontal cortex
([PFC]; dorsolateral prefrontal cortex [DLPFC], ventromedial
prefrontal cortex [vmPFC]), cingulate cortex, hippocampus,
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inferior frontal gyrus, insula, amygdala, and cerebellum in-
volved in drug reward, emotion, cognition, and behavior.

Insulin signaling has been determined to be instrumental in
the overall health and function of the central nervous system
(CNS) [59, 90]. Studies have demonstrated that insulin and
insulin receptors (IR) are expressed widely within the brain as
in peripheral tissues [91, 92]. Insulin levels in the brain when
compared to plasma can reach 10 to 100 times higher, espe-
cially in hippocampus, hypothalamus, cortex, olfactory bulb,
substantia nigra, and pituitary [92, 93]. Briefly, insulin binds
to the insulin receptor (IR) resulting in the phosphorylation of
insulin receptor substrate (IRS) resulting in activation of two
signaling pathways (phosphatidylinositol 3-kinase [PI3K]-
AKT/protein kinase B [PKB] and Ras-mitogen-activated pro-
tein kinase [MAPK] pathways) known to play pivotal roles in
normal brain function. Beginning from insulin levels in the
periphery to specific molecular and cellular targets within the
brain, impairments occur and span across different stages of
the addiction cycle. Specifically relevant to this review, we
discuss the current evidence for impaired insulin signaling in
SUD.

Reward and Habit Formation

The mesolimbic dopamine system (VTA, striatum) is gener-
ally considered the most important mediator of drug reward
and appears to be common to both acute and chronic effects of
SUD [83].

Dopamine Neurotransmission

Dopamine transporter (DAT), an enzyme associated with
clearing of extracellular DA, is a major target of substance
use (cocaine, amphetamine) associated with stimulant actions.
Insulin has been shown to increase DAT expression, suggest-
ing a key role in mediating the cognitive and motivational
effects [94–100]. Pre-clinical studies in animals and tissue
cultures suggest that persistent DAT function at DA nerve
terminals in striatum are due to activation of IRs, through
stimulation of the PI3K pathway [96, 97, 101]. In addition,
insulin modulates the pre-synaptic transporters sensitive to
cocaine in nucleus accumbens (NAcc) suggesting a target
for treatment of impulsivity in these patients [102]. In humans,
Akt has been found to be associated with MA abuse and
associated dysregulation of the DA system [103, 104].
Moreover, the insulin functions mentioned above suggest a
potential relationship between addiction and food intake pro-
cesses associated with DA neurotransmission and its pathway
[98, 105–107]. Application of insulin at the VTA reduces food
intake and consumption of high fat food, presumably affecting
the DA neurocircuitry [108–110].

Currently, multiple studies have targeted these mechanisms
using intranasal insulin in studying eating or food-related

behaviors. Intranasal insulin has been shown to reduce food
intake in adult men [111] and snacks in women if given in a
suitable time window [73]. Tiedemann and colleagues [78]
used intranasal insulin to demonstrate the link between feed-
ing systems, and modulation of mesolimbic pathways by in-
sulin with regard to food stimuli in humans. Thanarajah and
colleagues in 2019 [60] report the pharmacokinetics of intra-
nasal insulin and dose dependency of its modulatory effects
on the midbrain. Key findings of this study suggest that insu-
lin regulates feeding behavior through its action on midbrain
dopamine neurons and the ensuing consequences for reward-
related and motivational processes [110, 112]. With similar
mechanisms between SUD and impaired feeding systems, a
recent study shows the promise of intranasal insulin for SUD.
Briefly, Naef et al. studied the effects of intranasal insulin
along with intra-VTA insulin in rats and showed that DA in
NAc was suppressed by insulin and blocked by an insulin
receptor antagonist suggesting suppression of attention to
drug related cues with cocaine [113].

Insulin Signaling

Apart from DA in the VTA, insulin is thought to act on mul-
tiple targets through its downstream effects of signaling in the
CNS. For example, in long-term opioid (morphine) users, de-
creased levels of insulin growth factor-1 (IGF-1) and insulin
receptor substrate (IRS) proteins have been demonstrated in
the VTA [114, 115]. Studies in Drosophila of mutations of
insulin-like peptides showed that insulin signaling is involved
with toxic effects of alcohol by potentially engaging insulin
signal transduction mechanisms [116]. Similarly, the disrup-
tion of the phosphatidylinositol-3 kinase (PI3K) cascade in the
VTA by a dominant negative insulin receptor substrate 2
(IRS2) protein attenuates the rewarding properties of cocaine
and morphine in rodents [117, 118]. Animal studies with re-
peated administration of methamphetamine also showed ef-
fects on insulin signaling due to impaired expression of mul-
tiple components of insulin signaling such as IRs, PI3K and
glycogen synthase kinase 3-beta (GSK3β) [119, 120].
Overall, the studies mentioned above suggest the potential
use of intranasal insulin to address impaired insulin signaling
in the brain.

Other Neurotransmitters

Along with DA, multiple neurotransmitters are involved in
mediating the drug reward effects in SUDs. Independent neu-
rotransmission involving the opioid peptides, GABA, and
endocannabinoids are known to affect the mesolimbic system
[84, 88]. Insulin is also known to modulate the effect of a
number of these neurotransmitters such as GABA by activat-
ing synaptic IR and may reduce symptoms in depression and
sleep regulation [121–125]. In addition, insulin induced long-

Intranasal Insulin: a Treatment Strategy for Addiction 107



term depression (LTD) of AMPA-mediated excitatory post-
synaptic transmission by synthesis of endocannabinoids, and
glutamate release onto VTA dopamine neurons [126, 127].
Although this shows the potential of insulin affecting these
systems, further studies are required to establish the interplay
with insulin signaling, especially in the midbrain.

Cognition and Behavior

Neurocognitive impairments are common to all SUD [128,
1 2 9 ] . C o c a i n e , m e t h a m p h e t a m i n e , 3 , 4 -
methylenedioxymethamphetamine (MDMA), and nicotine
are associated with neurocognitive changes including learning
and working memory deficits with acute or chronic exposure,
present during abstinence [130–137] and associated with poor
treatment outcomes. It is hypothesized that pre-existing work-
ing memory deficits increase vulnerability to drug addiction
[14]. In AUD, deficits are observed in executive functioning
(such as abstract reasoning, problem solving skills, and cog-
nitive flexibility), visuospatial abilities, and perceptual-motor
integration, and these deficits are persistent beyond several
weeks of abstinence (45%) or a year of abstinence (15%;
[138–141]). In the sections below, we discuss mechanisms
known to be involved in SUD which may possibly be im-
proved with intranasal insulin.

Cerebral Hypometabolism

Cerebral hypometabolism with reduced glucose uptake and
related neuro-structural changes are key factors involved in
acute and long-term cognitive impairment or deficits in indi-
viduals with SUD, including AUD. Preclinical studies in an-
imals undergoing withdrawal after chronic extended access to
cocaine showed decreased glucose utilization of brain regions
involved in learning and memory such as the PFC, hippocam-
pus, and striatum [142]. Significant reduction of glucose uti-
lization in some of these regions lasts longer and may facilitate
continued drug use even if associated with tolerance and neg-
ative effects. Moreover, consistent with human studies, ani-
mals with impairedmemory showed significantly higher seek-
ing behavior for drugs than do controls. For example, neonatal
ventral hippocampal lesions in rats, which lead to working
memory deficits, resulted in increased reinstatement of nico-
tine seeking [143]. In addition, chronic exposure to nicotine,
methamphetamine, and cocaine, or cocaine withdrawal result-
ed in changes in neurogenesis in the hippocampus [144–148].

In 1966, Roach and colleagues provide the initial sugges-
tion that impaired glucose metabolism may be an underlying
cause for alcoholism [149]. Decades later, brain imaging stud-
ies have shown reduced glucose utilization by the brain, in
both resting and sensory stimulation during acute alcohol ad-
ministration, including with low doses of alcohol in humans
((with or without behavioral abnormalities) [89, 150–158]).

Studies using 18F-2-fluoro-deoxy-glucose (FDG)-positron
emission topography (PET) in patients with AUD show that
there is 20% global reduction in glucose uptake [159], similar
to results in neurologically intact patients with AUD [152,
155]. In addition, regional changes in hypometabolism were
observed in the frontal cortex including the anterior cingulate
cortex (ACC) when compared to controls [159–162].
Regional changes in hypometabolism have been suggested
to be linked to cognitive dysfunction, as reduced frontal and
anterior cingulate metabolism are reported to correlate with
mental control, category subset scores [155, 161], four-
dimensional neurocognitive model (verbal memory, visual
memory, verbal knowledge, and attention/executive function-
ing, [163]) and Wisconsin Card Sorting Test scores in alco-
holics respectively [139, 164]. To further elucidate changes in
glucose metabolism in AUD, Ritz et al. showed grey matter
shrinkage and hypometabolism in the fronto-cerebellar circuit
and several nodes of Papez’s circuit, along with some regions
showing disproportionate increase in hypometabolism when
compared to grey matter shrinkage [165]. In addition, AUD
with Korsakoff’s syndrome results in cerebral glucose
hypometabolism with particular severity in the middle cingu-
late cortex [166]. AUD is frequently associated with anxiety
and depression. Clinical studies have shown altered posterior
cingulate cortex functions in patients with mood disorders,
including decreases in cerebral glucose metabolism [167,
168] and activation during emotional processing [169], rela-
tive to healthy controls.

Insulin and insulin signaling transduction play a key role in
modulating cognition. Central insulin and IRs have been
established as differing from that of the systemically occurring
counter parts that specifically regulate glucose utilization.
Energy metabolism in the CNS is largely dependent on glu-
cose uptake and its utilization. Glucose metabolism is essen-
tial for both neuronal and non-neuronal physiological func-
tions, regulation of cerebral blood flow, cell death pathways,
and neurotransmitter synthesis [170]. Although there are mul-
tiple regulators of glucose metabolism in CNS [170], one of
the key regulators is insulin, especially in certain brain
regions.

In rodents, IRs and insulin-sensitive glucose transporters
are selectively co-localized in brain areas responsible for
memory, thus providing a platform for insulin signaling
whereby selective increases in cerebral glucose utilization
could modulate memory [171]. Consistent with evidence of
insulin functioning as a neuromodulator for memory-related
function is the high density of IRs in the hippocampus and
cerebral cortex, brain regions integral to the formation, reten-
tion, and recall of information [90, 172]. Systems with im-
paired insulin signaling pathways have demonstrated inhibi-
tion of acetylcholine biosynthesis and subsequently have in-
curred debilitating effects on neuronal plasticity [173, 174].
Increased insulin resistance and glucose intolerance has been
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observed in a multitude of neurodegenerative processes in-
cluding Alzheimer’s disease [175], Parkinson’s disease
[176], and Huntington’s disease [177] suggesting a common
pathway.

Intranasal insulin in animal studies using Alzheimer’s and
Parkinson’s disease models has been shown to improve cog-
nitive function [178] [179] [80]. Fluorodeoxyglucose (FDG)-
PET imaging studies have demonstrated a reduction in the loss
of glucose uptake and utilization after intranasal insulin treat-
ment in patients with AD or amnestic MCI in the bilateral
frontal, right temporal, bilateral occipital, and right precuneus
and cuneus regions of the brain [63]. Specifically, clinical
trials with intranasal insulin (both short and long term) in
memory-impaired subjects (AD, MCI) have shown improve-
ment in declarative memory tasks [70], greater story recall,
improved word list recall with sustained benefit (21 day treat-
ment) [180], and improved delayed memory during a 4-month
treatment trial [63]. Improvement of cognitive function in-
cluding glucose uptake and metabolism suggests that intrana-
sal insulin may provide an opportunity to target specific cog-
nitive deficits that may improve long-term outcomes with
SUD. In support are the recent studies with intranasal insulin
showing improvement in cognitive impairments and craving
associated with addiction in smokers [181–183].

Stress and HPA Axis

Stress is an important trigger of relapse, and the brain systems
that respond to stressful stimuli are thought to be important in
maintaining the addicted state. Animal studies suggest activa-
tion of the stress/aversion systems (hypothalamic-pituitary ax-
is [HPA], corticotrophin releasing factor [CRF], and
dynorphin) and impairment of anti-stress systems (neuropep-
tide Y) are associated with chronic drug relapse [83, 85, 88,
184]. Insulin is a known actor in HPA axis regulation by
binding to IR in hypothalamus, hippocampus, and amygdala
[112, 185–189]. Studies in humans suggest central insulin
causes reduction in morning HPA axis activity and effectively
lowers psychological stress induced HPA axis response by
reduction in the level of cortisol [69, 190, 191]. Moreover,
the insulin HPA axis response may be related to regulation
of the arcuate nucleus of the hypothalamus, including its ef-
fects on energy homeostasis [192–194].

Intranasal insulin has been shown to attenuate the HPA axis
and reduce cortisol in adult men exposed to stress [190],
which is significant as cortisol blocks glucose uptake into
the hippocampus [195]. In addition, intranasal insulin has
been discussed as a potential intervention to ameliorate post-
traumatic stress disorder (PTSD) [47]. Collectively, these
studies provide rationale for testing intranasal insulin as a
viable therapeutic in extending drug abstinence or reducing
episodes of drug relapse in SUD.

Neurogenesis

Hippocampus is a key brain region involved in learning
and memory. Impairment of hippocampal neurogenesis
has been associated with cognitive deficits in neurode-
generative disorders including AD [196, 197]. Multiple
animal and clinical studies in addiction and other psychi-
atric disorders, such as depression and schizophrenia,
suggest that altered hippocampal neurogenesis is a key
contr ibutor of these complex cl inical disorders
[198–200]. Similarly, it is thought that a persistent de-
crease in hippocampal neurogenesis may increase suscep-
tibility to engage in and maintain drug-seeking behaviors
[201]. Briefly, self-administration studies of drugs have
shown that reduced hippocampal neurogenesis is associ-
ated with increased drug taking and drug-seeking behav-
ior, whereas increasing neurogenesis by exercise or treat-
ment with anti-depressants reduces drug-taking and drug-
seeking behaviors [199, 200]. The insulin signaling cas-
cade plays a key role within the hippocampus. Insulin,
insulin-like growth factors, IRs, and downstream activa-
tion of PI3 kinase and GSK3β are key players in den-
dritic sprouting, neuronal stem cell activation, cell
growth, repair, synaptic maintenance, and neuroprotection
[173, 175, 202–204]. Specifically within the hippocam-
pus, insulin facilitates neuronal plasticity by modulating
long-term potentiation or long-term depression at synap-
ses [205]. These effects are mediated by PI3 kinase by
modulating expression of glutamate receptors including
AMPA and NMDA [206]. Further studies are required
to elucidate the role of insulin signaling in SUD within
the hippocampus.

Preclinical and neuroimaging evidence suggest involve-
ment of PFC and its circuitry in direct effects of drugs,
craving, response to cues, inhibitory control, and reward-
based decision-making. Using multiple approaches includ-
ing intranasal insulin, all the PFC regions have been shown
to be sensitive to changes in response to insulin, suggesting
that insulin signaling may play a role with regard to crav-
ing and response to cues in SUDs [75, 82, 207, 208]. This
speculation arises from studies using intranasal insulin
showing reduced food intake by a) decreased response of
the PFC to food cues [208] and a decrease in orbitofrontal
cortex resting state activity [75]; b) increasing brain cell
energy (ATP and phosphocreatine) using phosphorus-31-
magnetic resonance imaging [209].

In summary, studies presented here suggest that insulin
is a key modulator in all SUD and targets multiple mech-
anisms specifically energy metabolism, glucose uptake,
neurotransmission, synaptic plasticity, and HPA axis regu-
lation. This suggests that intranasal insulin could play a
significant role in the treatment of addiction and associated
cognitive deficits in SUD.
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Future of Treatment in Addiction—Intranasal
Insulin

Intranasal insulin offers an exciting and viable approach to
addressing some of the key aspects of SUD, including im-
proving rates of treatment use due to its ease of use and safety.
As described in the sections above, intranasal insulin treat-
ment for cerebral glucose hypometabolism has been studied
in multiple clinical trials, and benefits related to cognitive and
memory impairments have been reported. In summary, intra-
nasal insulin studies show that it 1) safely improves memory
in normal healthy adults and in patients with mild cognitive
impairment or Alzheimer’s disease; 2) reduces cerebral glu-
cose hypometabolism in patients with AD; 3) increases both
brain cell energy, ATP, and phosphocreatine in normal healthy
adults; 4) attenuates the HPA axis and cortisol response to
psychosocial stress in healthy adults; and 5) can be safely
tested in patients. The safety and efficacy of intranasal insulin
to improve memory, executive functions, drug-seeking behav-
iors, and control impulsivity in individuals with SUD needs to
be assessed in clinical trials.

According to the 2015 National Survey on Drug Use and
Health (NSDUH), of the 20.8 million people aged 12 or older
who had a SUD during the past year, about 2.7 million (13
percent) had both an alcohol use and an illicit drug use disor-
der, and 41.2 percent also had a mental illness. With this
significant level of polysubstance use, it is important to focus
on therapeutics such as intranasal insulin that may provide a
practical strategy to improve the treatment of multiple SUD
[210].
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