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Abstract
We review state-of-the-art monitoring techniques for acute, severe traumatic spinal cord injury (TSCI) to facilitate targeted
perfusion of the injured cord rather than applying universal mean arterial pressure targets. Key concepts are discussed such as
intraspinal pressure and spinal cord perfusion pressure (SCPP) at the injury site, respectively, analogous to intracranial pressure
and cerebral perfusion pressure for traumatic brain injury. The concept of spinal cord autoregulation is introduced and quantified
using spinal pressure reactivity index (sPRx), which is analogous to pressure reactivity index for traumatic brain injury. The U-
shaped relationship between sPRx and SCPP defines the optimum SCPP as the SCPP that minimizes sPRx (i.e., maximizes
autoregulation), and suggests that not only ischemia but also hyperemia at the injury site may be detrimental. The observation that
optimum SCPP varies between patients and temporally in each patient supports individualized management. We discuss
multimodality monitoring, which revealed strong correlations between SCPP and injury site metabolism (tissue glucose, lactate,
pyruvate, glutamate, glycerol), monitored by surface microdialysis. Evidence is presented that the dura is a major, but unappre-
ciated, cause of spinal cord compression after TSCI; we thus propose expansion duroplasty as a novel treatment. Monitoring
spinal cord blood flow at the injury site has revealed novel phenomena, e.g., 3 distinct blood flow patterns, local steal, and
diastolic ischemia. We conclude that monitoring from the injured spinal cord in the intensive care unit is a safe technique that
appears to enable optimized and individualized spinal cord perfusion.
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Each year, about 23 million people worldwide have a traumat-
ic spinal cord injury (TSCI) [1], which is a major, life-
changing event that leaves most people paralyzed or wheel-
chair bound. Apart from paralysis, TSCI also causes loss of
sensation, loss of voluntary control of the urinary bladder and
bowel, sexual dysfunction, and, in the case of cervical TSCI,
impaired breathing and thermoregulation as well as hypoten-
sion. Other than the human suffering, there are economic im-
plications; e.g., in the USA, the estimated lifetime cost of
caring for a patient with severe cervical TSCI is estimated at
$1,400,000, excluding loss of income [2]. Currently, there is
no treatment proven to improve outcome after TSCI [3]. Here,
we discuss novel concepts that may improve the clinical man-
agement of acute TSCI.

Current Management

Surgical

After TSCI, patients are transferred to neurosurgical or ortho-
pedic units and most undergo spinal surgery to correct defor-
mity and stabilize the fractured spine by placing screws,
plates, and rods. Several surgical controversies exist, e.g., an-
terior versus posterior approach, number of levels to be fixed,
timing of surgery, and the role of laminectomy [4–10]; thus,
operative management largely relies on surgeons’ preferences
rather than robust evidence. Substantial literature has been
devoted to the timing and role of surgery; currently, most
surgeons opt for early surgery, once the patient is medically
stable [8, 10].

Anesthetic and Medical

TSCI is a multisystem disease that impairs ventilation and
causes pulmonary infections (from diaphragmatic or intercos-
tal muscle paralysis), bradycardia and hypotension (from
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damage to sympathetic cord pathways), as well as decubitus
ulcers and deep venous thrombosis (from immobility) [11].
Patients with cervical or upper thoracic TSCI are generally
admitted in intensive care units (ICUs) where there is wide
variability in their management. For example, in the UK, the
optimum blood pressure to maintain is unclear [4], whereas in
the USA, the AANS/CNS joint guidelines are followed. These
guidelines recommend maintaining mean arterial pressure
(MAP) at 85–90 mmHg for the first week after TSCI, but
without robust evidence of benefit [12]. There is no consensus
on the use of arterial or central venous lines during surgery
and in ICU and in the type of vasopressor or anesthetic to be
administered [4].

Analogy with Traumatic Brain Injury

The management of traumatic brain injury (TBI) fundamen-
tally differs from the management of TSCI. Patients with se-
vere TBI are intubated and transferred to an ICUwhere probes
are inserted intracranially to monitor parameters such as intra-
cranial pressure (ICP), cerebral perfusion pressure (CPP =
MAP minus ICP), vascular pressure reactivity index (PRx),
optimum CPP (CPPopt), as well as injury site metabolites
using microdialysis (MD), tissue oxygen, and spreading de-
polarizations [13, 14]. Though the extent of monitoring varies
between ICUs, 2 parameters (ICP and CPP) are a key to the
TBI management and are commonly monitored [14]. The fo-
cus is to reduce ICP and increase CPP to prevent secondary
brain damage from cerebral ischemia and brain herniation.
There are several treatments to reduce ICP and increase CPP,
e.g., osmotic diuretics, reducing arterial pCO2, increasing the

dose of vasopressors, cerebrospinal fluid (CSF) drainage, hy-
pothermia, barbiturates, evacuation of hematoma, and decom-
pressive craniectomy [14–16]. These treatments are widely
used in TBI patients, but their efficacy in TSCI is largely
unexplored. Until recently, the lack of spinal cord monitoring
in TSCI patients has made it impossible to evaluate the effect
of such therapies on spinal cord physiology and metabolism.

Monitoring Spinal Cord Pressure

Monitoring Technique

In 2014, we described a technique (Fig. 1a–d) for placing a
probe intradurally at the injury site to monitor the pressure of
the injured cord as it is compressed against surrounding struc-
tures, which we termed intraspinal pressure (ISP) [17, 18]. We
monitor ISP using the Codman ICP probe, because its cable is
thinner and longer than that of other probes, e.g., Camino, and
is licensed for use in humans. The probe is inserted intraoper-
atively during posterior surgical approach to the spine. Under
the operating microscope, after laminotomy or laminectomy,
the theca is perforated 1 spinal level below the injury with a
90°-angled needle to avoid damaging the underlying cord; the
perforation is then widened with a blunt hook. The probe is
tunneled into the wound, inserted through the thecal perfora-
tion, and advanced parallel to the cord to the point of maximal
cord compression based on pressure measurements and the
preoperative MRI. Several techniques reduce the risk of post-
operative CSF leak and wound infection: The skin is sutured
with nylon and sprayed with Opsite, a silk suture is used to
tighten the skin around the probe, a wound drain is placed on
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gravity to divert CSF away from the wound, and an Ioban
drape is adhered over the wound and probe exit site. Data from
42 patients indicate that ISPmonitoring is safe [19]. Themajor
drawback of ISP monitoring is that the probe can only be
inserted during a posterior surgical approach. Depending on
the location of the spine fracture and the surgeon’s preference,
acute spinal decompression and fusion may be done from an
anterior approach, which would preclude probe insertion.

Physiological Parameters

The ISPwaveform is similar to ICPwith 3 characteristic peaks
(P1 percussion, P2 tidal, P3 dicrotic) and comparable Fourier
spectra that have prominent cardiac and respiratory peaks. By
analogy with CPP for TBI, in the TSCI patients, we compute
the spinal cord perfusion pressure (SCPP) as MAP-ISP
(Table 1). SCPP more accurately measures cord perfusion
than the currently used MAP because patients with the same
MAP have different SCPPs depending on ISP. Aiming to op-
timize SCPP, rather than MAP, in TSCI is the first step to-
wards individualized patient management.

Optimum SCPP

We applied the concept of vascular pressure reactivity, based
on the autoregulation curve for brain [20], to the injured cord
to obtain the spinal pressure reactivity index (sPRx) as the
running correlation coefficient between ISP and MAP [17,
18]. sPRx ranges from − 1 to + 1; sPRx ≤ 0 indicates intact
vascular reactivity, whereas sPRx > 0 indicates impaired reac-
tivity. sPRx plotted against SCPP, using data from several
TSCI patients, yields a U-shaped curve, which defines the
optimum SCPP (SCPPopt) as the SCPP that minimizes sPRx
and is similar to the PRx versus CPP plot for TBI [17, 18, 21].
The concept of SCPPopt is clinically important because it sug-
gests that not only hypoperfusion but also hyperperfusion at

the injury site may be detrimental. Potential mechanisms of
hyperperfusion-induced cord injury include cord swelling,
cord hemorrhage, and a local steal phenomenon [22].

sPRx versus SCPP plots for individual patients, rather than
pooled patient data, yield SCPPopt values that differ markedly,
by up to 60 mmHg, between patients [23]. The patient-
dependent SCPPopt suggests that individualized patient man-
agement is required to achieve targeted perfusion therapy.
This makes sense because several factors, which differ be-
tween TSCI patients, likely determine SCPPopt, e.g., level
and mechanism of injury, extent of microvascular damage,
tissue ischemia, tissue acidosis, and pre-TSCI baseline blood
pressure. Two further modifications were introduced to refine
the concept of SCPPopt: First, since many SCPPopt-determin-
ing factors vary with time (e.g., cord ischemia, edema, or
acidosis), SCPPopt must also vary with time in each patient.
Second, there is often a range of SCPPs, rather than a single
value (minimum of the sPRx versus SCPP curve), associated
with intact autoregulation. We thus extended the concept of
SCPPopt to represent a range of pressures, computed from a
sliding window of the preceding 4 h, updated each minute
[23]. An enhanced display technique allows the SCPP and
SCPPopt to be visualized in real time in a clinically meaningful
way on the ICU monitors (Fig. 1e) [23]. Future studies are
required to allow computation of SCPPopt using a time win-
dow shorter than 4 h so that the injured cord is not exposed to
a long course of ischemia before treatment is initiated.

The main drawback of a continuous SCPPopt is that the
SCPP has to vary widely within each 4-h window to define
both arms of the U-shaped sPRx versus SCPP curve. The con-
cept of a real-time SCPPopt range for TSCI is analogous to the
concept of a real-time CPPopt for TBI [24, 25]. There is now
strong evidence that CPPopt correlates with outcome. One study
[25] divided patients with acute TBI into 3 groups: those man-
aged with CPP close to CPPopt (group 1), those managed with
CPP lower than CPPopt (group 2, ischemia), and those managed
with CPP greater than CPPopt (group 3, hyperemia). Compared
with group 1 patients, those in group 2 had higher mortality and
those in group 3 had higher disability. Further work from large
numbers of patients is needed to validate the concepts of ISP,
SCPP, sPRx, continuous SCPPopt, etc., and to determine wheth-
er upward and downward deviations of SCPP from SCPPopt are
associated with worse neurological outcome.

Complexity of ISP Signal

For a simple introduction to the concepts described in this
section including complexity, edge-of-chaos dynamics,
detrended fluctuation analysis, and multiscale entropy
(MSE), the reader is referred to the presentation in the supple-
ment that accompanies the article by Chen et al. [26]. The ISP
signal is complex because it is influenced by many local and
systemic factors that interact over different timescales, e.g.,

Table 1 Comparison of physiological parameters in TSCI and TBI

TSCI

ISP Intraspinal pressure

SCPP Spinal cord perfusion pressure

sPRx Spinal pressure reactivity index

sRAP Spinal compensatory reserve

SCPPopt Optimum spinal cord perfusion pressure

TBI

ICP Intracranial pressure

CPP Cerebral perfusion pressure

PRx Pressure reactivity index

RAP Compensatory reserve

CPPopt Optimum cerebral perfusion pressure

TBI = traumatic brain injury; TSCI = traumatic spinal cord injury
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spinal cord blood flow (SCBF), tissue oxygen, tissue metab-
olism, and cardiac and respiratory pulsations. Complexity is a
fundamental property of healthy biological systems that ren-
ders them resistant to external stress [27, 28]. Complex bio-
logical signals are characterized by self-affinity and “edge-of-
chaos” dynamics. Edge of chaos means that systems transition
between order and disorder, which, unlike periodicity or ran-
domness, facilitates self-organization, evolution, and adapt-
ability [29–33]. After TSCI, factors influencing the ISP signal
become disrupted with more severe TSCIs causing more se-
vere disruption; therefore, TSCI may be viewed as a loss of
ISP signal complexity.

The nonlinear ISP dynamics can be quantified by comput-
ing hourly the detrended fluctuation exponent α [29, 30], the
MSE [31, 32], and the maximal Lyapunov exponent λmax

[33]. Such analyses revealed that pathological processes at
the injury site including cord swelling (high ISP), hypoperfu-
sion (low SCPP), or impaired pressure reactivity (high sPRx)
were associated with increased α and decreased MSE, which
render the cord less adaptable to external changes [26].
Increased α indicates disrupted fractality, and decreased
MSE indicates decomplexification of the ISP signal. We
found negative correlations between the % of hours with
edge-of-chaos dynamics (− 0.01 ≤ λ ≤ 0.01) versus high ISP
and versus low SCPP [26]. This means that secondary insults
render the ISP more regular or chaotic [26]. In a multivariate
logistic regression model, better neurological status on admis-
sion, higher ISP MSE, and more frequent edge-of-chaos ISP
dynamics predicted long-term functional improvement. To
further access the hidden information within the complex fluc-
tuations of the ISP signal, we mapped each ISP time series
into a visibility graph [34] and quantified the topology of these
graphs using concepts from complex network theory such as
diameter, modularity, eccentricity, and small worldness [35].
Our data show that the topological structure of ISP graphs is
highly sensitive to adverse events at the injury site, e.g., cord
compression (increased ISP), hypoperfusion (reduced SCPP),
and impaired vascular pressure reactivity (increased sPRx).
These findings suggest that ISP signals contain clinically im-
portant information hidden within the complex signal fluctu-
ations, not accessible with conventional signal analysis.

ISP Versus Lumbar Cerebrospinal Fluid Pressure

Early attempts to obtain real-time information from the injured
cord to guide management involved monitoring cerebrospinal
fluid pressure (CSFP) by inserting a lumbar catheter [36] rath-
er than monitoring ISP from the injury site [18]. Unlike pres-
sure probes, which require surgery to place them at the injury
site, lumbar catheters are widely used and easily introduced in
the ICU or on the wards.

To find out whether lumbar CSFP is the same as ISP, we
simultaneously monitored CSFP and ISP in 13 patients with

severe TSCI and concluded that the 2 techniques yield mark-
edly differ values for cord pressure (ISP ≠ CSFP), perfusion
pressure (SCPPISP ≠ SCPPCSF), and pressure reactivity
(sPRxISP ≠ sPRxCSF) [37]. CSFP was nonpulsatile 21% of
the time or had simple waveforms, whereas ISP was always
pulsatile with waveforms that had the characteristic P1-P2-P3
peaks. The running correlation coefficient between ISP and
CSFP was > 0.7 for > 75% of the time in 23% of patients, 25–
75% of the time in 23% of patients, and < 25% of the time in
54% of patients. The extent of cord edema on MRI inversely
correlated with the ISP versus CSFP correlation coefficient.
Together, these observations suggest that cord compression
against the surrounding dura may be dynamic: During periods
when there is CSF around the injured cord, which indicates no
compression, ISP ≈ CSFP, but when the injured cord becomes
compressed against the dura, ISP ≠ CSFP (Fig. 2). The idea
that cord compression against the dura at the injury site ren-
ders ISP ≠ CSFP is also supported by waveform analysis,
which revealed significantly steeper δP/δT slope for ISP than
CSFP and delay, by > 100ms inmost cases, between the onset
of the CSFP pulse and that of the corresponding ISP pulse.
These findings suggest that ISP is measured in a solid com-
partment (injured cord compressed against dura), whereas
CSFP is in a liquid compartment. The conclusion from these
studies is that ISP monitoring more accurately represents the
injury site than lumbar CSFPmonitoring. Lumbar CSFPmon-
itoring may still be clinically helpful because the SCPPCSFP,
computed as MAP-CSFP, better correlates with outcome after
TSCI than the MAP [38].

Therapies Based on ISP Monitoring

Reducing ISP and Increasing SCPP

Several maneuvers to reduce ISP or increase SCPP have
been investigated (Table 2) [18]. Reducing arterial pCO2

and altering the dose of the anesthetic sevoflurane or i.v.
mannitol administration did not significantly affect ISP or
SCPP. Increasing the dose of epinephrine increased MAP
and consequently increased SCPP. Drainage of 10 mL CSF
via a lumbar catheter did not significantly alter ISP in 58%
of patients, significantly reduced ISP by < 5 mmHg in 33%
of patients, and only significantly reduced ISP by 9 mmHg
in 9% of patients [37]. Therefore, the only nonsurgical
technique to reliably increase SCPP is to increase the
MAP with vasopressors. The role of surgery (expansion
duroplasty) in reducing ISP and increasing SCPP is
discussed below.

Intervening to increase SCPP appears beneficial because it
increases the amplitude of motor-evoked potentials [18] or
somatosensory-evoked potentials [41] at or across the level
of injury in most patients, lowers the sensory level in some
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patients [42], and improves limb motor responses in some
American Spinal Injury Association Impairment Scale (AIS)
grade C patients [18]. The chance of AIS grade conversion at
9–12 months after the TSCI negatively correlates with the
mean ISP on admission and positively correlates with the
mean SCPP on admission (Fig. 3) [43]. Increasing SCPP pre-
sumably reduces ischemia at the injury site. Though it is un-
clear whether overincreasing SCPP, such that SCPP >
SCPPopt, worsens neurological outcome, these findings sug-
gest that ISP and SCPP are key physiological parameters that
are strongly linked to neurological status after TSCI.

Expansion Duroplasty

A consistent finding from ISP monitoring is compartmentali-
zation at the injury site (Fig. 4a), which occurs because the
swollen cord becomes compressed against the dura, even after
adequate bony decompression [44, 45]. This is evident when
monitoring pressure from several sites simultaneously, e.g.,
injury site (ISP), CSF compartment below, and extradural
compartment: Each compartment has a different pressure
[18, 46]. In an AIS grade A thoracic TSCI patient, we ad-
vanced the pressure probe intradurally, from distal to the
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Fig. 2 ISP versus lumbar CSFP.
(a) ISP ≠ CSFP when the injured
cord is swollen and compressed
against the dura. (b) ISP ≈ CSFP
when there is CSF around the
injured cord.

Table 2 Effect of different maneuvers in TBI versus TSCI

Maneuver TBI TSCI TSCI Ref.

Reducing arterial pCO2

(hypercapnia to normocapnea)
Reduces ICP, increases CPP No effect on ISP or SCPP [18]

Reducing sevoflurane dose Reduces ICP No effect on ISP or SCPP [18]

Mannitol Reduces ICP, increases CPP No effect on ISP or SCPP [18]

Hypertonic saline Reduces ICP, increases CPP Not tested N/A

Vasopressors (epinephrine) Increases MAP, thus increasing CPP Increases MAP, thus increasing SCPP [18]

CSF drainage Reduces ISP, increases CPP Little or no effect on ISP or SCPP in
severe TSCI with cord compressed
against dura

[37]

Surgical decompression Reduces ISP, increases CPP, reduces mortality Bony decompression controversial,
bony + dural decompression
(expansion duroplasty reduces ISP
and increases SCPP)

[39, 40]

CPP = cerebral perfusion pressure; CSF = cerebrospinal fluid; ICP = intracranial pressure; ISP = intraspinal pressure;MAP =mean arterial pressure; N/A
= not applicable; Ref. = references; SCPP = spinal cord perfusion pressure; TBI = traumatic brain injury; TSCI = traumatic spinal cord injury
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injury site to proximal, thus defining a pressure profile with
maximal pressure at the injury site [44]. Dural cord compres-
sion is also evident on MRI; in TSCI patients who had serial
scans, the extend of dural cord compression resolves slowly
with t1/2 ≈ 9 days [47]. These observations suggest that the
dura may play a major, but unappreciated, role in spinal cord
compression after TSCI.

The idea that the dura causes CNS compression is
established in TBI; thus, decompressive craniectomy involves
removing skull and opening dura to allow outward herniation
of brain to reduce ICP and increase CPP [16, 39]. In a ran-
domized controlled trial, decompressive craniectomy signifi-
cantly reduced mortality though most surviving patients had
severe disabilities [16]. In the context of TSCI, decompression

has a different meaning from the term “decompression” for
TBI. In TSCI, decompression refers to restoring normal spinal
alignment and removing bony fragments or hematoma
compressing the theca, i.e., extradural decompression that
fails to appreciate that the cord is swollen against dura.
Thus, to effectively decompress the injured cord, expansion
duroplasty may be required in addition to bony decompres-
sion (Fig. 4b–d). In a pilot study, expansion duroplasty took
10–15 min to perform and was safe [48]. Compared with
laminectomy in 11 TSCI patients, laminectomy + duroplasty
in 10 TSCI patients reduced ISP by ~10 mmHg and increased
SCPP by ~15 mmHg, on average. In the duroplasty group,
10% of patients had CSF leak, easily eliminated by placing
extra sutures in ICU, and 50% of patients had noncompressive
pseudomeningocele that disappeared by 6 months on MRI.
Based on these findings, we plan a randomized controlled trial
of expansion duroplasty for acute, severe TSCI.

Enhancing Drug Delivery

Several trials of neuroprotective agents for TSCI have failed,
despite evidence from different TSCI animal models that the
drugs are neuroprotective [49–51]. In 3 TSCI patients, we
injected intravenously a 4-mg bolus of dexamethasone and found
that little (~0.64%, based on area under the curve calculations)
dexamethasone entered the injury site [52]. The penetration of
intravenously administered dexamethasone into the injured spinal
cord was increased 3-fold by increasing the SCPP by 10 mmHg.
This finding may explain why neuroprotective drug trials have
failed: In TSCI patients,- the drug is often given in suboptimal
conditions, e.g., during hypotension, which is frequently associ-
ated with cervical spinal cord injuries, thus limiting drug penetra-
tion into the injured cord. Optimization of SCPP is a prerequisite
for maximizing drug delivery at the site of injury.

Managing Fever

Fever is observed in up to 67% of patients with acute TSCI
and may arise from infection or be neurogenic [53–56]. In
TSCI patients, fever was associated with significantly more
deranged metabolite levels than normothermia evidenced by
lower tissue glucose, higher lactate, higher glutamate, and
higher lactate-to-pyruvate ratio (LPR, a measure of anaerobic
metabolism) [57]. Fever was particularly detrimental on injury
site metabolism when the peripheral white cell count was
high, which suggests that fever associated with infection
may be more detrimental than neurogenic fever. In 2 TSCI
patient cohorts, managed in London and Berlin [57], high
fever burden correlated with less neurological improvement.
Though further studies are required to determine the effect and
temporal relations between the different types of fever (infec-
tion, neurogenic) and injury site metabolism, based on the data
to date, we suggest prompt treatment of fever in TSCI patients
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with paracetamol, nonsteroidal anti-inflammatory drugs, or
active cooling.

Hypothermia

Hypothermia is being investigated as a potential therapy
for TSCI [58] based on data that hypothermia is neuropro-
tective in animal models by targeting many pathological
processes, e.g., reducing metabolic rate, inflammation,
edema, oxidative stress, excitotoxicity, electrolyte imbal-
ance, as well as apoptotic and necrotic cell death in dam-
aged CNS tissue [59–66]. Despite the encouraging find-
ings of animal studies, randomized controlled human trials
have failed to show functional benefit of hypothermia in
human TBI [67–69]. Though small, nonrandomized stud-
ies of TSCI patients suggest improved outcome after local
[70, 71] or systemic [58, 72] hypothermia, there are no
published randomized controlled trials of hypothermia for
TSCI. A major problem with hypothermia is the paucity of
mechanistic data from humans regarding the effect of
cooling and rewarming on cord swelling, metabolism,
and inflammation. It is thus unclear if hypothermia and
rewarming have beneficial or adverse effects on the injured
human spinal cord. In a study of 5 TSCI patients, a local
cord hypothermia-rewarming protocol was applied.
Cooling did not affect cord physiology (no change in ISP
or SCPP) but markedly altered cord metabolism (increased
glucose, lactate, LPR, and glutamate and decreased glyc-
erol) and markedly reduced cord inflammation (reduced
IL-1β, IL-8, monocyte chemoattractant protein (MCP),
macrophage inflammatory protein (MIP)-1α, MIP-1β).

Rewarming significantly worsened cord physiology (in-
creased ICP, decreased SCPP), cord metabolism (increased
lactate and LPR, decreased glucose and glycerol), and cord
inflammation (increased IL-1β, IL-8, IL-4, IL-10, MCP,
MIP-1α). Based on these findings, we suggest that spinal
cord monitoring be employed in hypothermia studies to
provide real-time information about the impact of temper-
ature changes on spinal cord physiology and metabolism.

Nursing Care

Nursing care after TSCI involves avoiding decubitus ulcers by
frequent patient turning. Our work has shown that, after a
laminectomy, external forces applied to wound are transmitted
to the swollen, injured cord, causing an increase in ISP and a
decrease in SCPP, thus potentially inflicting cord damage [18].
This arises because of the lack of CSF around the cord that
would normally buffer the compression forces and may be
important in supine patients with mid-thoracic TSCI that have
a pillow placed between their shoulders [19]. Ways to prevent
damaging the injured cord from external forces include
avoiding wound compression and placing cross-links between
the rods used to stabilize the spine.

Multimodality Monitoring

Multimodality monitoring for TBI is based on the idea that
secondary damage arises not only from altered perfusion but
also from other factors such as acidosis, excitotoxicity, tissue
hypoxia, and aberrant electrical activity. Thus, in TBI patients,
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some ICUs monitor not only ICP and CPP but also tissue
metabolism (hourly tissue glucose, lactate, pyruvate, LPR,
glutamate, glycerol) using MD [73], tissue oxygen using a
Licox probe [74], hemoglobin saturation using near-infrared
spectroscopy [75], and spreading depolarizations using elec-
trode arrays [76].

Microdialysis

In TBI, there is substantial evidence that derangement of tis-
sue metabolism correlates with outcome [73].We have recent-
ly reported a technique to monitor spinal cord metabolism
after TSCI with surfaceMD (Fig. 5) [52]. Studies in pigs show
that surface and intraparenchymal MD give comparable me-
tabolite values in the pulsating heart [77] and liver [78]. For
spinal cord, surface MD at the injury site differs markedly
from corresponding measurements taken from the lumbar
CSF [37]. The key findings of our study are that SCPP strong-
ly correlates with injury site metabolic profile and that the
extent of metabolic derangement and the probability of AIS

grade conversion after TSCI correlate well with the degree of
metabolic derangement at the injury site.

A problem with multimodality monitoring is interpretation
of the large volumes of data in a clinically meaningful way. In
TSCI patients, we analyzed the MD data using Kohonen self-
organizing maps and discovered 3 metabolic patterns termed
near-normal, ischemia/necrosis, hyperemia, and distal [79].
“Big data analytics,” currently under development to extract
conclusions from large datasets [80], could be applied to eval-
uate multimodality data. Additional techniques, e.g., Granger
[81] or Sugihara [82] causality analysis, which quantify direc-
tions of information flow in time series may also be useful.
Suppose there is an increase in LPR, fall in tissue oxygen, and
rise in ISP. Causality analysis may be used to determine whether
the rise in ISP caused the fall in tissue oxygen, which, in turn,
caused the rise in LPR. Knowing the direction of information
flow is clinically useful to differentiate between cause and ef-
fect. Further studies are awaited in TSCI patients to determine
the clinical value of additional monitoring from the injury site
including tissue oxygen and spontaneous electrical activity.
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Spinal Cord Blood Flow

The impact of TSCI on SCBF in humans is poorly understood.
Advanced MRI techniques are limited largely due to artifacts
from cardiorespiratory motion as well as signal loss from the
bone and the metalwork used to stabilize the spine. In a recent
study,we investigated SCBF intraoperatively using laser speckle
contrast imaging, a noninvasive technique in which a laser beam
penetrates through the dorsal theca, 2–3mm deep into the spinal
cord, thus imaging blood flow in the dorsal columns [22]. We
discovered 3 SCBF patterns, characterized by distinct injury site
metabolic signatures: necrosis-penumbra, hyperperfusion, and
patchy perfusion (Fig. 6). In some TSCI patients, increasing
the MAP by 20 mmHg increased the overall SCBF at the injury
site, though blood flow increased in some regions but decreased
in others. This phenomenon, termed blood pressure–induced
local steal, may partly explain the detrimental effect of hyper-
perfusion. Further studies are required of real-time SCBF mon-
itoring in the ICU as part of multimodality monitoring.

Future Directions

Monitoring spinal cord physiological and biochemical param-
eters from the injury site allows individualized, targeted per-
fusion therapy in TSCI patients, e.g., eliminating hypoperfu-
sion or optimizing drug delivery. To date, monitoring data
after TSCI have only been obtained in 1 center only (St.
George’s in London); it is important for other centers to inde-
pendently validate these findings. An important finding is that
the dura causes cord compression and thus a randomized con-
trolled trial of expansion duroplasty for TSCI is being set up.

The probes used in our studies were designed for TBI;
future designs may allow the probes to be inserted in TSCI
patients in ICU without surgery. The ideal TSCI pressure
probe should be radio-opaque and MRI compatible and have
several measuring points to define the pressure profile of the
injured cord. Such a probe will provide several ISP, sPRx, and
SCPP readings simultaneously, which would require the con-
cept of SCPPopt to be redefined. An alternative to inserting
probes intradurally is noninvasive, transcutaneous monitoring
of hemoglobin oxygenation by near-infrared spectroscopy
[40], although beam scatter by skin, muscle, bone, and metal-
work may hinder such techniques. The recent availability of
online MD, which allows continuous monitoring of extracel-
lular tissue glucose, lactate, and pyruvate, may reveal novel
pathological phenomena that occur at the timescale of seconds
rather than hours. Finally, the monitoring techniques de-
scribed here may also be applied in conditions associated with
cord edema other than TSCI, e.g., neuromyelitis optica [83].
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