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Abstract
Lysosomes are acidic, membrane-bound organelles that serve as the primary catabolic compartment of the cell. They are crucial
to a variety of cellular processes from nutrient storage to autophagy. Given the diversity of lysosomal functions, it is unsurprising
that lysosomes are also emerging as important players in aging. Lysosomal dysfunction is implicated in several aging-related
neurodegenerative diseases including Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis/frontotemporal dementia, and
Huntington’s. Although the precise role of lysosomes in the aging brain is not well-elucidated, some insight into their function
has been gained from our understanding of the pathophysiology of age-dependent neurodegenerative diseases. Therapeutic
strategies targeting lysosomes and autophagic machinery have already been tested in several of these diseases with promising
results, suggesting that improving lysosomal function could be similarly beneficial in preserving function in the aging brain.
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Introduction

Lysosomes are dynamic organelles that function as a major
catabolic center in the cell. They participate in cellular homeo-
stasis by serving as the terminal degradation compartment in
autophagy, modulating nutrient status and interacting with
other organelles [1]. There is growing evidence for the role
of lysosomes in aging. Some studies suggest that processes
such as lysosomal acidification and autophagy decrease with
age, potentially altering nutrient storage and clearance of dam-
aged proteins and organelles [2]. The importance of lyso-
somes in the aging brain is also supported by the many neu-
rodegenerative diseases presenting with lysosomal dysfunc-
tion [3]. Thus, improved knowledge of the pathophysiology
of these diseases as well as identification of therapeutic targets

will strengthen our understanding of and ability to preserve
lysosomal function in the aging brain.

Lysosomal Functions Related to Aging

Lysosomes participate in several cellular functions including
nutrient processing, autophagy, and inter-organelle contacts.
There is emerging evidence that these functions may be
perturbed in age-related disease processes, including those
affecting the central nervous system, as well as in physiolog-
ical aging.

Nutrient Storage and Sensing

Lysosomes play a critical role in nutrient homeostasis, serving
as both centers for nutrient processing via a host of degrada-
tive enzymes and sites for storage of metabolites including
amino acids, lipids, and ions. The transport of metabolites into
the lysosome depends on transmembrane transporters and
channels, whose activity is coupled to a proton gradient
established by the highly conserved H+-ATPase or V-
ATPase [4, 5]. V-ATPase pumps protons into the vacuolar
lumen, and the subsequent extrusion of these protons drives
ions and metabolites inward [6, 7].
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Amino Acids

Lysosomes sense nutrient availability through the activities of
V-ATPase and the conserved serine–threonine kinase,
mTORC1, and both are sensitive to changes in amino acid
levels [2, 8]. The activity of the V-ATPase is regulated through
association–dissociation of its many subcomplexes [9]. In
states of low amino acids, the V-ATPase becomes fully asso-
ciated, generating a proton gradient to promote the influx of
substrates into the lysosome [10]. The nutrient sensing func-
tion of the V-ATPase is additionally linked to the mTORC1
pathway via the V-ATPase, Rag-GTPases, and Ragulator
complex. During states of nutrient abundance, mTORC1 as-
sociates with lysosomes to promote cellular growth and limit
autophagy [11, 12]. The relationship between mTORC1 and
lysosomal amino acid sensing is further evidenced by the ly-
sosomal arginine transporter, SLC38A9, which communicates
amino acid status to mTORC1 [13, 14]. This transporter me-
diates efflux of nonpolar amino acids from the lysosome to be
utilized in processes such as protein synthesis [15]. A recent
lysosomal metabolomics study identified both V-ATPase and
mTORC1 as important mediators of amino acid efflux from
the lysosome [16].

Evidence highlighting the importance of the V-ATPase and
the mTORC1 pathways in aging is also growing.
Acidification by V-ATPase or overexpression of V-ATPase
components promoted long-term mitochondrial stability [17]
and extended lifespan in yeast, respectively [18]. Similarly,
mTORC1 inhibition was shown to increase lifespan in a range
of organisms including yeast, flies, and mice [2].

Calcium

Lysosomes, along with the endoplasmic reticulum (ER),
serve as main cellular reservoirs for Ca2+, an ion impli-
cated in several signaling pathways and organelle homeo-
stasis [19]. Although the mammalian lysosomal Ca2+ im-
porter is unknown, various efflux channels have been
characterized including transient receptor potential chan-
nel mucolipin-1 (TRPML1) and two-pore channels 1 and
2 (TPC1/2) [20]. Importantly, Ca2+ level has been corre-
lated with lifespan as elevation of either intracellular or
extracellular Ca2+ shortens replicative lifespan in yeast [].
Moreover, loss of lysosomal function results in a rapid
increase in cellular Ca2+ in yeast [22], and activation of
the TRPML1 channel facilitates Ca2+-induced Ca2+ re-
lease from the ER, further increasing intracellular Ca2+

[23, 24]. TRPML1 has also been linked to V-ATPase
function as blockage of V-ATPase or knockdown of its
V0a1 subunits results in an increase in TRPML1-
mediated Ca2+ efflux from lysosomes, suggesting a close
interplay of the 2 proteins in Ca2+ homeostasis [25].
Regulat ion of cel lular Ca2+ also has important

implications for overall cell survival as Ca2+ overload
and subsequent accumulation in the mitochondria can in-
duce mitochondrial permeability transition pore opening,
promoting the release of pro-apoptotic factors [26].

In the central nervous system, Ca2+ plays an important
role in modulating electrical activity and neurotransmitter
release [27]. Aged neurons show a variety of alterations in
Ca2+ homeostasis including diminished efflux from the
plasma membrane [28], decreased mitochondrial buffering
capacity [29], and enhanced release from the ER [30, 31].
In the aging brain, this results in a net increase in cellular
Ca2+, which perturbs neuronal excitability and long-term
processes such as synaptic plasticity [27]. Although the
function of lysosome-dependent Ca2+ homeostasis in the
aging brain remains poorly understood, the ability of ly-
sosomes to regulate cellular Ca2+ in non-neuronal cells
suggests the possibility of a similar role for lysosomes
in neurons.

Iron

Another key ion regulated by lysosomes is Fe2+ which enters
the cell via the endolysosomal system [32, 33]. Tight regula-
tion of cellular Fe2+ is crucial as it is an important cofactor for
enzymes in the electron transport chain [34]; however, high
levels may promote the formation of toxic reactive oxygen
species (ROS) [35]. Of note, Fe2+ levels have been reported
to be increased with age, thereby promoting mitochondrial
p ro t e in agg rega t ion and dec reased l i f e span in
Caenorhabditis elegans [36].

Fe2+ is also important for central nervous system func-
tion via its involvement in myelin and neurotransmitter
synthesis [33]. Fe2+ levels in the brain increase with age
due to increased blood–brain barrier permeability, alter-
ations in Fe2+ homeostasis, and neuroinflammation [37].
Moreover, changes to brain Fe2+ distribution in areas like
the substantia nigra and basal ganglia occur with age [38].
In non-nervous tissues, free Fe2+ remains low via binding
to ferritin and transferrin, whereas in catecholaminergic
neurons, free Fe2+ is regulated through the formation of
neuromelanin–iron complexes, which have been found to
increase with age [39, 40]. A connection between lyso-
somes, Fe2+, and neuromelanin was recently highlighted
with the characterization of neuromelanin-containing or-
ganelles as specialized autolysosomes that accumulate
undegraded proteins and lipids in substantia nigra neurons
[41]. The importance of iron homeostasis in the brain is
also supported by a group of inherited disorders called
neurodegeneration with brain iron accumulation (NBIA).
Several NBIA genes are related to lysosomal function
[42], and it was recently reported that iron overload in
NBIA mutant cells resulted in both lysosomal and mito-
chondrial dysfunction [43].
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Lipids and Glycoproteins

The role of lysosomes in glycoprotein and lipid homeostasis is
evidenced by the plethora of lysosomal storage disorders
(LSDs) that result from complete loss or decreased activity
of specific lysosomal hydrolases. In LSDs, undigested lipids,
glycoproteins, and mucopolysaccharides accumulate in the
lysosome, leading to cellular toxicity and compromised sur-
vival [44]. A comprehensive description of the LSDs can be
found in previously published reviews [45, 46]. Importantly,
lysosomal dysfunction due to storage of accumulated sub-
strates in LSDs results in decreased lysosomal degradation
and various pathologies in the CNS that resemble adult-
onset neurodegenerative diseases—for example, Parkinson’s
disease (PD)-like Lewy body accumulation in Gaucher dis-
ease and Alzheimer’s disease (AD)-like plaques and tangles in
Niemann–Pick disease type C [46]. This suggests that alter-
ations in lysosomal degradative capacity may contribute to
age-related neuropathologies.

Autophagy

Autophagy is a critical physiological process that maintains
intracellular homeostasis by degrading and recycling cyto-
plasmic material, including damaged organelles, long-lived
proteins, and protein aggregates, via delivery to the lysosome.
Though the process was previously thought to occur
nonselectively, studies have shown that autophagy can be
stimulated under stress conditions and by cellular insults.
Additionally, dysfunctional organelles like the mitochondria
may also undergo degradation by the lysosome via selective
autophagy.

Mechanism of Autophagy

Macroautophagy, hereafter referred to as autophagy, is 1 of 3
modes of autophagy alongside microautophagy and
chaperone-mediated autophagy. It is the primary mode for
degrading large parts of cytoplasm through sequestration in-
side double-membrane vesicles, termed autophagosomes,
which then fuse with lysosomes [47]. Several highly con-
served AuTophaGy-related (Atg) genes have been identified
as directly involved in autophagosome formation, maturation,
and fusion with the lysosome.

Autophagosome formation is initiated by the phagophore,
an open double-membrane structure that forms around pro-
teins and organelles in the cytoplasm [47]. The membrane is
derived from proximal structures including the ER,
endosomes, mitochondria, Golgi, and plasma membrane [48,
49]. Unc-51-like kinase 1 (ULK1) is a critical protein in
phagophore induction through its interaction with autophagy
proteins includingmAtg13 and the scaffolding protein FIP200
[50]. Other players in autophagosome formation include a

transient interaction with mAtg9 [51], which may provide
additional membrane sources to the growing phagophore.

In humans, the class III phosphatidylinositol 3-kinase, ve-
sicular protein sorting 34 (hVps34), and its complex 1 binding
partners—Beclin 1, p150, and Atg14L—are also necessary
for phagophore formation [52–55]. hVps34 complex 1 inter-
actions stimulate hVps34 activity, promoting phos-
phatidylinositol to phosphatidylinositol 3-phosphate conver-
sion, which facilitates recruitment of other Atgs to the forming
autophagosome [52, 55]. hVps34 also has a set of complex 2
interactors, in which the conserved hVps34–Beclin 1 complex
backbone interacts with ultraviolet irradiation resistant-
associated gene (UVRAG) [56, 57]. UVRAG association with
complex 2 modulates several functions including membrane
bending, negative and positive regulation of autophagy, and
promotion of autophagosome fusion with endosomes/
lysosomes [58].

Elongation of the phagophore membrane involves 2
ubiquitin-dependent conjugation systems. In the first, Atg7
activates Atg12, which is transferred to Atg10 to stimulate
Atg12–Atg5 covalent linkage [59–61]. The Atg12–Atg5 com-
plex then interacts with Atg16L to form the Atg16L complex,
which drives phagophore elongation [60, 61]. The second
system involves the microtubule-associated protein light chain
3 (LC3) [62]. Upon autophagy induction, LC3 is cleaved to
cytosolic LC3-I which is then conjugated to phosphatidyleth-
anolamine by Atg7 and Atg3 to generate lipidated LC3-II [59,
60]. LC3-II associates with both sides of the phagophore
membrane to mediate cargo selection through its recruitment
of the autophagy receptor, p62, and components involved in
autophagosome–lysosome fusion [63–67]. The final step in-
volves fusion of the outer membrane of the autophagosome
with the lysosome. Various SNAREs and tethering/adaptor
proteins on late endosomes/lysosomes and autophagosomes
have been identified and have been discussed in previous re-
views [68].

Regulation of Autophagy

Studies have revealed a close interplay between lysosomes
and mTORC1 in the regulation of autophagy. Under a
nutrient-rich environment, mTORC1 is recruited to the lyso-
somal membrane via a complex consisting of the membrane-
tethered Ragulator complex and Rag GTPases [12, 69], where
it is activated by Ras homolog enriched in brain (Rheb) [70].
Activation of mTORC1 along with suppression of its inhibi-
tion by tuberous sclerosis tumor suppressor complex (TSC1–
TSC2) in nutrient-replete conditions inhibits autophagy [71].
Autophagy initiation and lysosome biogenesis are also con-
trolled at a transcriptional level through the transcription factor
EB (TFEB). Nutrient deprivation induces nuclear transloca-
tion of TFEB to enhance expression of autophagosome-
related genes [72, 73]. However, under basal conditions,
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activated mTORC1 phosphorylates TFEB, resulting in cyto-
plasmic retention of the transcription factor and inhibition of
autophagy [74, 75].

mTORC1-independent mechanisms of autophagy induc-
tion have also been identified, including inhibition of inosi-
tol-1,4,5-trisphosphate (IP3) levels and attenuation of Ca2+-
related pathways [76, 77]. IP3 is released from the plasma
membrane upon phospholipase C processing of phos-
phatidylinositol 4,5-bisphosphate (PIP2) [78]. High levels of
IP3 can inhibit cellular clearance [79, 80] likely by stimulating
Ca2+ release through IP3 receptors and disrupting Ca2+ gradi-
ents needed for autophagosome–lysosome fusion. Elevated
cytosolic Ca2+ also regulates autophagy via activation of the
Ca2+-dependent cysteine protease, calpain. A negative corre-
lation likely exists between calpain activity and autophagy
initiation as calpain inhibition has been shown to promote
autophagosome formation [77, 81, 82]. In addition, calpain
activity could increase IP3 levels via G-protein signaling
downstream of GPCRs [77]. Lastly, inhibition of TFEB
through phosphorylation by the serine–threonine kinase,
Akt, can block autophagy independent of mTORC1 [83].
Conversely, TFEB dephosphorylation by the Ca2+-dependent
phosphatase, calcineurin, enables nuclear translocation, there-
by inducing autophagy [84]. Notably, it was also shown that
calcineurin is activated by local Ca2+ release from lysosomes
[84].

Mitophagy

Mitophagy is a selective form of autophagy in which damaged
mitochondria are eliminated, and serves as a quality control
mechanism to preserve cellular homeostasis [85–87]. The best
characterized pathway for mitophagy involves the Parkinson’s
disease-linked proteins, PTEN-induced kinase 1 (PINK1) and
Parkin [85–87].Whenmitochondria are damaged, PINK1 sta-
bilizes on the outer mitochondrial membrane to promote
Parkin translocation and E3 ubiquitin ligase activity, leading
to the incorporat ion of ubiqui t inated cargo into
autophagosomes [88]. In addition, PINK1 and Parkin are in-
volved in a mechanism of mitochondrial clearance that de-
livers mitochondrial-derived vesicles (MDVs) enriched in ox-
idized proteins to lysosomes for degradation [89].

Additional pathways of mitophagy have also been identi-
fied. Transmembrane receptor-mediated mitophagy, in which
LC3-interacting regions mediate recognition of damaged mi-
tochondria, have been described for several outer mitochon-
drial membrane proteins including Nix [90] and FUN14
Domain containing 1 [91, 92], which were observed to be
induced to drive mitophagy in response to hypoxia.
Moreover, cardiolipin-mediated mitophagy, where exposure
of the inner mitochondrial membrane phospholipid,
cardiolipin, on the mitochondrial surface allows its interaction
with LC3, has been shown to activate mitophagy independent

of PINK1/Parkin [93]. Finally, other stimuli, such as iron che-
lators [94] and increased mitochondrial fission [95, 96], also
induce mitophagy in a PINK1/Parkin-independent manner.

Although several mechanisms of mitophagy, such as the
PINK1/Parkin and cardiolipin-mediated pathways, have been
observed in neurons, whether additional neuronal mitophagy
pathways exist and how different pathways interact and are
regulated is still incompletely understood. Nevertheless, the
elimination of damaged mitochondria is critical for neurons,
which cannot alleviate cellular stress by division and require
functional mitochondria for energy and Ca2+ homeostasis.
The importance of mitophagy in neurons is also demonstrated
by the various mutations in mitophagy-related genes that are
causal or linked to neurodegenerative diseases such as PD and
amyotrophic lateral sclerosis–frontotemporal dementia (ALS–
FTD) [97] as well as by evidence suggesting that decreased
lysosomal acidification impairs mitophagy in cellular models
of AD [98]. Thus, understanding how mitophagy is dysregu-
lated in neurodegeneration may further elucidate how lyso-
somal function in neurons is altered in age-related
pathologies.

Interactions with Mitochondria

The regulation of nutrient homeostasis by lysosomes is inti-
mately associated with mitochondrial function, and the mod-
ulation of mitochondrial function by lysosomes has various
connections to aging. For example, vacuolar acidity is de-
creased with age in yeast, resulting in reduced lifespan and
impaired mitochondrial function [17]. Similarly, lifespan and
mitochondrial function are compromised in cells lacking cer-
tain subunits of the V-ATPase, leading to altered mitochondri-
al morphology, protein import, and potential [17, 99, 100].

Recent studies have elucidated the physical interaction be-
tween lysosomes and mitochondria. A tethering complex,
vCLAMP, was identified between the yeast vacuole and mi-
tochondria and was hypothesized to regulate lipid and metab-
olite transport between the 2 compartments [101, 102].
Importantly, mitochondria–lysosome contact sites were re-
cently identified in mammalian cells and were found to be
regulated by GTP hydrolysis of the lysosomal GTPase,
Rab7 [103]. These contact sites allow for bidirectional regu-
lation of mitochondrial and lysosomal dynamics, whereby 1)
mitochondria regulate lysosomal dynamics by modulating the
GTP-binding status of Rab7 via the mitochondrial-localized
Rab7-GAP (TBC1D15), and conversely 2) lysosomes regu-
late mitochondrial dynamics by marking the majority of mi-
tochondrial fission sites [103]. Mitochondria–lysosome con-
tacts may have additional functions including the transfer of
metabolites such as lipids or ions [103, 104].

Lysosomes may also affect mitochondrial function indi-
rectly through the modulation of amino acid homeostasis.
High levels of cytosolic basic amino acids have been shown
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to induce cellular toxicity, impair mitochondrial function, and
increase ROS generation [105]. Similarly, increased levels of
nonpolar, unbranched amino acids in the cytosol can accumu-
late in the mitochondria and overloadmitochondrial metabolic
pathways [106, 107].

A hallmark feature of the aging brain is reduction in mito-
chondrial function with a concurrent increase in ROS and
oxidative damage. The ability of ROS to modulate lysosomal
function is mediated in part by the lysosomal TRPML1 chan-
nel, which acts as a ROS sensor. When cellular ROS is in-
creased, activated TRPML1 releases Ca2+ into the cytosol,
inducing both TFEB nuclear translocation for lysosome bio-
genesis and autophagy [108]. Because both TRPML1 activa-
tion and mitochondrial ROS production have been shown to
increase in response to inhibition of V-ATPase, lysosomal de-
acidification may serve as an upstream pathophysiological
event modulating lysosomal Ca2+ release and mitochondrial
function [109]. Further evidence linking ROS to lysosomal
dysfunction include studies showing that loss of mitochondri-
al function in brain tissue following deletion of mitochondrial
proteins or inhibition of oxidative phosphorylation is suffi-
cient to impair lysosomal function in a ROS-dependent man-
ner [110]. Although there is still debate as to whether ROS is a
cause or consequence of aging, it is likely that it contributes to
both; initial increases in ROS due to age further exacerbate
aging by enhancing lysosomal dysfunction.

Lysosomal Function in Neurodegenerative
Disease

Several studies have revealed the importance of lysosome-
related functions, such as autophagy, in neuronal homeostasis.
Mouse models with neural cell-specific knockout of Atg5 or
Atg7, leading to impaired autophagosome-lysosome clear-
ance, exhibited neurodegeneration with motor deficits and
shorter lifespan [111, 112].

Conversely, induction of autophagy has been linked to lon-
gevity and resistance to protein aggregation and oxidative
stress in neurons [71, 113]. Selective activation of lysosomal
activity via TFEB was also found to clear protein aggregates
and increase activation of quiescent neural stem cells during
aging [114]. Although the role of lysosomes in the aging brain
is still being elucidated, our understanding of age-dependent
neurodegenerative diseases, many of which implicate
lysosome-related genes, has provided insight into the changes
in lysosomal function with age (Fig. 1).

Alzheimer’s Disease

AD is the most common neurodegenerative disease affecting
more than 24million individuals over the age of 65 [115]. The
major pathological hallmarks include the accumulation of

extracellular amyloid-beta (Aβ) plaques and intracellular
tau-induced neurofibrillary tangles (NFTs) [115]. Normally,
Aβ is trafficked to the lysosome via the autophagy pathway
and degraded by cathepsin D [116]. However, recent studies
suggest that release of Aβ into the extracellular space may
also be in part regulated through autophagy [117].
Disruptions in autophagy were first linked to AD when
autophagosome/lysosome accumulation was observed in dys-
trophic neurites [118]. Follow-up studies were able to show
the presence of Aβ seques tered in the re tained
autophagosomes [119], thus highlighting the importance of
the autophagy pathway in AD progression.

Clusterin, encoded by CLU, is 1 of the top candidate genes
for AD development and is linked to autophagy through its
involvement in autophagosome biogenesis via interaction
with LC3 [120, 121]. In human studies, clusterin expression
positively correlates with increasing levels of Aβ40/42 in
brain areas normally afflicted in AD [122]. Furthermore, clus-
terin interacts directly with Aβ and reduces its aggregation,
thereby protecting against toxic effects [123]. Although asso-
ciations between clusterin and tau are still debated, 1 study
found that tau overexpression increases clusterin expression
[124], which could potentially stimulate autophagy-mediated
degradation of tau.

PSEN1, another causal AD gene which encodes presenilin
1, is directly linked to autophagy through an identified role in
lysosomal acidification [25, 125, 126]. Presenilin 1 is respon-
sible for regulating gamma-secretase, which processes amy-
loid precursor protein (APP) into Aβ [127]. Mutations affect-
ing presenilin 1 function may disrupt lysosomal proteolysis
and promote accumulation of autophagic cargo within the cell
[128, 129]. In support of this, cerebrospinal fluid (CSF) from
PSEN1 patients exhibited less Aβ than normal individuals
[130], suggesting that Aβ retention may lead to cellular tox-
icity when autophagy is impaired.

Several risk genes for AD also have links to autophagy.
Atg7, which mediates the formation of the Atg12–Atg5 com-
plex during phagophore maturation [131], is involved in in-
corporation of Aβ into multivesicular bodies (MVBs)/late
endosomes [132, 133]. Increased transport of Aβ into
MVBs could affect downstream fusion with autophagosomes.
Recent studies suggest that release of Aβ into the extracellular
space may be in part regulated by autophagy [117]. Inhibition
of autophagy through genetic ablation of Atg7 decreases Aβ
plaque formation in mouse models [117]. However, complete
loss of autophagy also led to the accumulation of Aβ inside
neurons [117], which can potentiate neurotoxicity. Atg7 is
also linked to the tau degradation as knockout mice exhibited
increased phosphorylated tau [134]. Altogether, this suggests
that extreme modulation of autophagy may protect against 1
AD phenotype but exacerbate another.

Associations between Bcl-2 expression and memory have
been reported in AD patients [135], highlighting an important
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role for Bcl-2 in AD pathogenesis. Treatment with Aβ de-
creases Bcl-2 expression and overexpression of Bcl-2 in
APP mutant mice was found to be neuroprotective [135,
136]. Bcl-2 overexpression also decreases APP processing,
extracellular Aβ deposits, and intracellular NFTs [137]. As
stated previously, Beclin 1 is responsible for initiating autoph-
agy and regulating autophagosome formation [138]. Beclin 1
heterozygous knockout mice displayed disruptions in autoph-
agy [139], suggesting that alterations in Beclin 1 levels and
function can contribute to AD progression. In agreement with
this, presenilin-null cellular models and postmortem analysis
of AD brains reported a decrease in Beclin 1 level [140];
however, a recent large-scale quantitative study found no sig-
nificant changes in Beclin 1 gene expression or protein levels
across multiple stages of AD [141].

Cathepsin D, the lysosomal protein involved in Aβ
processing [116], is encoded by CTSD which confers risk
in AD [142, 143]. Although the mechanism of cathepsin
D in AD pathology is not well understood, 1 potential
mechanism is through altered functioning of lysosomal
proteolysis potentially mediated by presenilin 1 mutations
which ultimately result in disrupted lysosomal acidifica-
tion [25, 125, 126]. Cathepsin D levels were reportedly
lower in bone marrow-derived monocytes, fibroblasts, and
peripheral blood lymphocytes in AD patients [144–146],
whereas elevated CTSD gene expression and protein
levels were observed in AD brains and neurites [141,
147]. Interestingly, 1 additional study found that cathepsin
D levels were increased in postmortem CSF albeit in an
inactive form of the protein [148]. This suggests that like
Beclin 1, alterations in cathepsin D function can be

detrimental in AD pathogenesis when compounded with
disease-associated mutations like those found in PSEN1.

Another hallmark of AD is dysfunction in the
endosomal–lysosomal system, such as endosomal enlarge-
ment, which is 1 of the earliest pathological features of
disease [149]. APP, in which mutations cause autosomal
dominant, early-onset AD, has been implicated in AD-
related endosomal aberrations. It was demonstrated that
the APP β C-terminal fragment directly interacts with
the adaptor protein containing pleckstrin homology do-
main, phosphotyrosine binding domain, and leucine zip-
per motif (APPL1), which also stabilizes active Rab5 on
the endosomal membrane [150]. Overactivation of Rab5
by APP β C-terminal fragment mediates downstream
events including altered endosomal motility and signaling
and may also contribute to AD phenotypes such as defects
in long-term potentiation [149, 151–153] and cholinergic
degeneration. In addition, APP and Rab5 overactivation
has been linked to defective lysosomal morphology and
proteolysis as well as autophagy in various cellular and
mouse models of AD [151, 152, 154].

The E4 allele of apolipoprotein E (ApoE4), a major risk
factor for sporadic AD, has similarly been linked to
endolysosomal dysfunction including increased endocytosis
of APP [155] and impaired endosomal recycling [156, 157].
ApoE4 intermediates have also been shown to disrupt lyso-
somal membranes in neuronal cultures, leading to leakage of
hydrolases and induction of apoptosis, which is further poten-
tiated by Aβ(1-42) [158, 159]. A recent transcriptomics anal-
ysis in ApoE4-targeted replacement mice showed significant
enrichment of genes involved in endosomal–lysosomal

Fig. 1 Genes implicated in neurodegenerative disease related to
autophagic and lysosomal function. Genes involved in several
neurodegenerative diseases affect various steps of autophagy as well as

have direct impacts on lysosomal function. Bolded correspond to
causative genes, unbolded correspond to risk genes. Genes implicated
in PD (blue), AD (green), ALS/FTD (red), and HD (purple)
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processing, further implicating ApoE4 in endolysosomal
function [160].

Parkinson’s Disease

PD is the most commonmovement disorder with an estimated
global prevalence of ~400 out of 100,000 by the age of 65
[161]. The cardinal motor symptoms—bradykinesia, rigidity,
and tremor—are primarily attributed to dopaminergic neuron
deterioration. In the majority of PD cases, Lewy bodies com-
posed of proteins, lipids, and undegraded organelles including
autolysosomes and damaged mitochondria accumulate in sev-
eral brain regions [162–164].

Several autosomal dominant PD genes are directly linked
to lysosomal function including SNCA, leucine-rich repeat
kinase 2 (LRRK2), and vacuolar protein sorting-associated
protein 35 (VPS35). The first PD gene identified, SNCA,
encodes for alpha-synuclein (αSyn) [165], a major constituent
of Lewy bodies [166]. Phenotypically, multiplication of the
SNCA gene leads to earlier onset PD, indicating that increased
expression of SNCA promotes disease pathogenesis [167,
168].αSyn overexpression impedes autophagy by prohibiting
Atg9 from initiating phagophore formation [169, 170].
Moreover, high endogenous αSyn in human iPSC-derived
dopaminergic neurons reduces lysosomal proteolysis by
delaying the delivery of hydrolases such as cathepsin B and
glucocerebrosidase (GCase) to the lysosome [171]. SNCA
missense mutations, which have an increased propensity to
oligomerize, are also linked to familial PD [172, 173]. These
aberrant forms ofαSyn are resistant to degradation and reduce
the efficiency of autophagy [174, 175]. Inhibition of autoph-
agy and lysosomal function increase αSyn release, potentially
as a compensatory mechanism [176–183].

Gain-of-function mutations in LRRK2 are the most com-
mon cause of familial late-onset PD, and polymorphisms in
the locus increase PD risk [184]. LRRK2 can be localized on
membranes of synaptic vesicles, late endosomes, and lyso-
somes [185, 186], and several Rabs involved in vesicle for-
mation, trafficking, and docking/fusion are phosphorylated by
LRRK2 [186, 187]. The consequences of pathogenic LRRK2
mutations on synaptic integrity, autophagy, and lysosomal func-
tion require further elucidation. Studies have described that pa-
tient G2019S LRRK2 fibroblasts exhibited higher lysosomal
abundance and protein clearance at baseline [188], and several
LRRK2 mutant fibroblasts showed decreased autophagic flux
following serum/amino acid deprivation [189]. Moreover,
G2019S LRRK2 iPSC-derived dopaminergic neurons were
more susceptible to oxidative stress and retained higher loads
of autophagic vacuoles and lipid droplets [190, 191].

VPS35, causally linked to autosomal dominant PD, is part
of the retromer complex and is important for trafficking of
cathepsin D, Lamp2A, and Atg9a [172, 192–194], thereby
regulating autophagy and endolysosomal processing.

Mitochondrial quality control also requires VPS35 for both
fusion/fission dynamics and trafficking of MDVs to the lyso-
some for degradation [89, 195].

Loss-of-function of the cytosolic E3 ubiquitin ligase,
Parkin, and the mitochondrial kinase, PINK1, are linked to
early-onset autosomal recessive PD [172], and both proteins
are also involved in mitochondrial quality control via
mitophagy and MDVs [88, 89]. Parkin deficiency has been
shown to destabilize Rab7 [196], which is crucial for both
mitochondrial fission and autophagosome–lysosome fusion.

DJ-1, a chaperone with antioxidant functions, has been
shown to protect dopaminergic neurons against oxidative
stress in PD pathogenesis [197, 198]. iPSC-derived dopami-
nergic neurons from DJ-1 patients show an accelerated path-
ological cascade beginning with increased oxidative stress
which further induces dopamine oxidation [199]. Oxidized
dopamine in turn inhibi ts the lysosomal enzyme
glucosylceramidase (GCase) and is paralleled by increased
levels of soluble and insoluble αSyn [199].

The juvenile-onset atypical parkinsonism, Kufor–Rakeb
syndrome, is caused by autosomal recessive mutations in
PARK9, which deplete P5-type ATPase 13A2 (ATP13A2)
from endolysosomes [200]. Studies using patient fibroblasts,
iPSC-derived neurons, and knockout mice report mitochon-
d r i a l dys func t ion , lysosomal ac id i f i ca t ion and
macroautophagy deficits, as well as lipid deposition preceding
αSyn accumulation [201–204]. Moreover, ATP13A2 is con-
sidered to be important for maintaining intracellular ion ho-
meostasis [205–208], a function which may be critical for
autophagy/endolysosomal processing efficiency.

Various PD risk factors further implicate lysosomal dysfunc-
tion in PD pathogenesis. Autosomal recessive mutations in
GBA1, which encode GCase, increase the risk for PD and
cause the LSD, Gaucher disease [209, 210]. Some Gaucher
patients present with parkinsonism as well as dopaminergic
neurodegeneration and Lewy body pathology [209]. iPSC-
derived neurons from GBA1-associated PD patients show re-
duced lysosomal GCase activity, macroautophagy, and Ca2+

buffering [211, 212]. Reduced GCase activity is linked to ele-
vated glucosylceramide levels, which further promote αSyn
accumulation and higher-order assembly within lysosomes
[211, 213, 214]. Variants of the acid sphingomyelinase-
encoding SMPD1 gene are linked to the LSDs, Niemann–
Pick disease types A and B, and may follow a similar mecha-
nism to GBA1 variants [215–217]. Furthermore, the PD risk
factor SCARB2 encodes the lysosomal integral membrane pro-
tein type 2 (LIMP2), which sorts GCase to the lysosome and is
important for autophagy, αSyn proteostasis, and dopaminergic
viability [218–220]. Additional PD risk loci linked to
lysosome-related genes (e.g., GALC, CTSB, ATP6V01A)were
recently revealed by a large meta-analysis of genome-wide as-
sociation studies [210]. Collectively, this points to the necessity
of improving lysosomal function in PD.
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Amyotrophic Lateral Sclerosis and Frontotemporal
Dementia

ALS is characterized by the progressive degeneration ofmotor
neurons. Like other neurodegenerative diseases, ALS is a
proteinopathy where pathological DNA-binding protein 43
(TDP-43) is found accumulated in the cytosol of affected neu-
rons [221, 222]. Aggregated TDP-43 plays a pathogenic role
in both ALS and FTD [221], indicating that both ALS and
FTD belong to a spectrum of the same disease. To date, a large
number of genes have been linked to familial ALS, but strik-
ingly, many of these genes are directly linked to autophagic
function, suggesting that improving autophagy may alleviate
ALS-related pathologies.

Superoxide dismutase 1 (SOD1) was 1 of the first enzymes
associated with ALS. Inhibition of autophagy led to aggrega-
tion of mutant SOD1 [223], indicating that dysfunctional
SOD1 is largely degraded by autophagy. The autophagy re-
ceptor protein p62, encoded by the ALS-linked gene
SQSTM1, is responsible for loading of cargo into the extend-
ing phagophore/autophagosome [224–226]. Interestingly, p62
has been shown to interact with polyubiquitinated mutant
SOD1 [227, 228], which enhances its interaction with
lipidated LC3-II on the phagophore membrane [228], suggest-
ing that autophagy is activated in the presence of aggregated
mutant SOD1. These interactions lead to the formation of
protein inclusions within motor neurons [228]. Autophagy
was also reportedly increased in mutant SOD1 mice potential-
ly due to decreased phosphorylation of ULK1 [229], which
activates autophagy [230]. In addition, proteins involved in
autophagy regulation such as TFEB and Beclin 1 were found
upregulated in the spinal cords of mutant SOD1 mice [231].

Several genes associated with ALS also encode RNA-
binding proteins that aggregate when mutated. Both TDP-43
and fused in sarcoma (FUS) are found in intracellular aggre-
gates in brain autopsy [232, 233]. In order to maintain homeo-
stasis, autophagy is known to degrade aggregated TDP-43 and
FUS [234–236]. Not surprisingly, increased expression of
TDP-43 and FUS promote aggregation and stall autophagy
in ALS models that could be rescued upon autophagy induc-
tion [234, 237, 238]. Furthermore, TDP-43 depletion in-
creases translocation of TFEB into the nucleus, thereby stim-
ulating autophagy [239]. However, downregulation of TDP-
43 has also been shown to decrease Atg7 expression leading
to reduced autophagic flux and autophagosome–lysosome fu-
sion [240]. Thus, studies on the mechanism of action for TDP-
43 in relation to autophagy have given both gain and loss of
function results.

A subset of ALS-linked genes encode autophagy receptors,
such as p62 and optineurin (OPTN) [241], or regulators of
such receptors like Tank binding kinase 1 (TBK1) [242,
243]. As autophagy receptors, both p62 and optineurin con-
tain a ubiquitin-associated domain (UBA) and an LC3-

interacting region [241]. Generally, the proteasome is respon-
sible for the degradation of ubiquitinated proteins. However,
the discovery of autophagic receptors with UBA domains
suggests that ubiquitinated cargo may also be targeted to and
degraded by lysosomes. Many ALS-associated mutations af-
fecting p62 and optineurin activity fall within the UBA do-
main [244, 245]. Furthermore, mutations located in the UBA
domain may affect the protein’s ability to be phosphorylated
by TBK1 [242, 243], suggesting that loss of TBK1 activity
can enhance autophagic dysfunction in ALS.

The most commonly mutated gene in ALS, C9orf72 [246],
has also been linked to autophagy via its interaction with
endocytic proteins, Rab5 and Rab7 [247, 248], which regulate
endosomal maturation [249]. Proper maturation and position-
ing of late endosomes is critical for autophagosome fusion
[249]. C9orf72 also interacts with the ULK1 complex directly,
and loss of C9orf72 prevents autophagy in anULK1-mediated
manner [250, 251]. As C9orf72 was previously shown to in-
teract with Rab1a, an early autophagic regulator involved in
phagophore formation [247, 251], C9orf72 may also regulate
the recruitment of ULK1 to the initiation complex.
Conversely, loss of C9orf72 leads to inactivation of
mTORC1, increased TFEB nuclear translocation, and subse-
quent activation of autophagy [250, 252]. Therefore, C9orf72
is involved in several conflicting steps of autophagy but ulti-
mately has been implicated in the maintenance of lysosomal
function.

FTD is the second most common young-onset dementia
and is characterized by atrophy of the frontal and temporal
lobes [253, 254]. FTD is divided into subgroups based on
the pathological hallmarks that develop with disease progres-
sion, including FTD with tau (FTD-tau) or TDP-43 (FTD-
TDP)-positive inclusions [253]. The majority of FTD cases
are attributed to mutations in microtubule-associated protein
tau, progranulin (GRN), and C9orf72 [253, 254]. The remain-
ing familial-associated FTD cases are linked to mutations in
valosin-containing protein (VCP), FUS, TDP-43, and charged
multivesicular body protein 2B (CHMP2B), which play dis-
tinct roles in the endolysosomal pathway [253, 254]. This
suggests that disruptions in normal endosome to lysosome
maturation may delay the degradation of autophagic cargo
or impair the delivery of lysosomal hydrolases. For example,
it was previously shown that VCP patients exhibited autoph-
agic defects including an increase in the number of enlarged
cathepsin B-positive autophagic vesicles [255]. Moreover, pa-
tients with mutations in VCP and CHMP2B were also report-
ed to have decreased autophagic clearance and lysosomal
function [255–259].

It was previously posited that FTD and LSDs were related
diseases as they both shared similar common pathophysiolog-
ical phenotypes. However, a concrete link was established
with the discovery of a family affected by both neuronal
ceroid lipofuscinosis (NCL), a young-onset LSD, and FTD
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[260]. Linkage analysis revealed independent heterozygous
and homozygous mutations in the GRN gene [260], which
encodes granulin, thus linking lysosomal dysfunction to
GRN mutants and FTD. The proprotein, progranulin, is
cleaved into individual granulins in the endolysosomal path-
way [261, 262]. Recent work further demonstrated granulin E
is responsible for modulating cathepsin D activity [263, 264],
suggesting that GRN can directly alter lysosomal function
through resident hydrolases. In agreement with this, GRN
knockout mice displayed an increase in the levels of
TMEM106B, as well as an accumulation of lipofuscin puncta
in lysosomes [265], both of which are indicators of lysosomal
dysfunction commonly found in NCLs. Furthermore, CTSD
knockout mice exhibited increases in progranulin and
TMEM106B along with saposin D, which is normally found
accumulated in NCL10 patients [265]. Altogether, the genet-
ics of ALS/FTD strongly implicate dysfunctions in both au-
tophagy and endolysosomal systems in disease pathogenesis.

Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant, trinu-
cleotide repeat disorder characterized by cognitive dysfunc-
tion, psychiatric disturbances, and loss of motor control [266].
The brain region most affected in HD is the striatum, an area
critical to initiating and controlling movement, although other
areas of the brain such as the cortex and cerebellum are also
affected as the disease progresses [267]. Although defects in
various pathways have been associated with HD, including
alterations in Ca2+ handling, vesicle transport, and ER homeo-
stasis [268], recent studies have implicated defective autoph-
agy as a key feature of the disease, highlighting the potential
of lysosomes and other autophagy machinery as druggable
targets in HD.

The genetic basis of HD is a polyglutamine (polyQ) repeat
expansion near the N-terminus of the huntingtin (htt) protein
[269]. A repeat expansion of greater than 36Q is causative of
disease, and like in other repeat disorders, greater repeat
lengths correlate with earlier disease onset [268]. The hall-
mark feature of HD pathology is the accumulation and aggre-
gation of mutant htt protein (mhtt). These aggregates form
both intranuclear and intracytoplasmic neuronal inclusions,
although whether these aggregates are pathogenic is still de-
bated [270, 271]. Furthermore, htt can be proteolyzed to
smaller fragments, which may also contribute to disease path-
ogenesis [272–275].

Although the function of wild-type htt is not fully un-
derstood, htt has been shown to interact with autophagy
machinery. For instance, human and mouse HD samples
exhibit an increase in autophagosomes [276, 277], and
mhtt was shown to activate autophagy via sequestration
and inactivation of mTORC1 [278]. Despite increasing
autophagosome formation, mhtt appears to alter cargo

recognition and loading through an unidentified mecha-
nism, ultimately leading to accumulation of damaged or-
ganelles and protein aggregates [279]. Additional aberra-
tions in autophagy are linked to effects of mhtt on vesicle
trafficking including deficits in autophagosome motility
[280] and autophagosome–lysosome fusion [281].
Silencing of either htt or its binding partner, huntingtin-
associated protein 1, blocked retrograde transport of
autophagosomes along the axonal compartment, whereas
depletion of mhtt also resulted in an accumulation of
autophagosomes containing undegraded cargo [280].
Alterations in mRNA of autophagy-associated proteins
were also observed in the striatum of HD patients.
Notably, LC3A and LAMP2 mRNA are increased, con-
sistent with an overall increase in autophagic flux, where-
as PINK1 is decreased, suggesting defects in mitophagy
[282]. Finally, a polymorphism in Atg7, which is required
for LC3 lipidation, is associated with earlier HD onset,
thus providing strong genetic evidence for the close inter-
play between HD and autophagy [283].

Another important feature of htt is its ability to modulate
autoclearance through posttranslational modifications.
Ubiquitination of htt at K6, K9, and K15 is associated with
increased degradation, whereas SUMOylation of these resi-
dues leads to decreased clearance [284]. Wild-type htt is fur-
ther ubiquitinated at the K48 linkage, which is a classical
marker of proteosomal degradation, whereas mhtt is
ubiquitinated at K63, which is correlated with increased ag-
gregation [275]. The ubiquitination and SUMOylation of htt is
regulated through phosphorylation of S13 and S16, which are
critical for mediating mhtt toxicity [285]. Acetylation at K444
is also important for regulating htt degradation and has been
shown to increase mhtt clearance through enhanced binding to
p62 [286].

In addition to the effects of mhtt on the autophagic path-
way, recent studies have suggested a direct interaction of mhtt
with lysosomes. In mouse striatum, mhtt alters lysosomal po-
sitioning via increased perinuclear localization which correlat-
ed with increased autophagic flux in response to nutrient dep-
rivation [287]. Furthermore, it was recently shown that mhtt is
able to be secreted from neurons through an unconventional
endolysosomal pathway, suggesting that interactions of mhtt
with the endolysosomal systemmay also contribute to disease
pathogenesis [288].

Targeting Lysosomal Pathways
in Neurodegenerative Disease

As discussed, several neurodegenerative diseases present
with changes to lysosomal and autophagic function, and
these alterations may in turn correlate to physiological ag-
ing processes. At present, several therapeutic approaches
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converge on targeting autophagy and lysosomes in neuro-
degenerative diseases. Therefore, combating the patho-
physiological mechanisms implicated in these diseases will
improve our knowledge and assist in the development of
lysosome-targeted therapies to reduce disease burden and
ultimately preserve lysosomal function in the aging brain.

Targeting Autophagy in Neurodegeneration

The strong association between neurodegenerative diseases
and aberrations in autophagy implicates the autophagic path-
way as a prime therapeutic target for the treatment of these
diseases. Various therapeutic approaches targeting both
mTOR-dependent and mTOR-independent pathways of au-
tophagy have now been tested preclinically and clinically
(Fig. 2, Table 1).

mTOR-Dependent Targets

The macrolide allosteric mTOR inhibitor, rapamycin, and its
analogue, temsirolimus, have been tested in multiple neurode-
generative disease models. mTOR inhibitors were shown to
induce autophagy, prevent dopaminergic loss, and revert mo-
tor, cognitive, and affective symptoms in several PD mouse
models [289–292]. Moreover, rapamycin was able to improve
pathology and disease phenotypes in AD, ALS, and HD
models [237, 278, 333–337]. Other mTOR-dependent stimu-
lators of autophagy, including GTM-1, carbamazepine, and
latrepirdine, were shown to decrease Aβ accumulation and
APP metabolites in AD cell models and also protect against
memory dysfunction in AD patients [310–313].

mTOR-dependent stimulators have been most extensively
tested in PD. The GSK3B inhibitor 6-Bio was neuroprotective
in PD mouse model, and reduced αSyn aggregation in vitro

Fig. 2 Pharmacological agents used in preclinical and clinical
investigational therapies for neurodegeneration and their known or
proposed targets related to autophagy and lysosomes. Agents whose
action relates to suppression of mTORC1 activity (1), reduction of

cytosolic calcium and IP3 levels as well as enhancement of TFEB
activity (2-4) are expected to generally induce cellular autophagy.
Targeting lysosomal acidity or glucocerebrosidase activity (5) can
specifically induce lysosomal clearance efficiency
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[294]. The insulin sensitizer, MSDC-0160, prevented and re-
stored dopaminergic loss and motor deficits in lesioned mice
while additionally exerting an anti-inflammatory effect [293].
Similarly, pathways targeted by the anti-diabetic drug, exendin-
4/exenatide are implicated in the preservation or restoration of
dopaminergic neuron integrity in lesioned PD rodent models

[338, 339], yet autophagy-related effects are unclear. Exenatide,
now in phase I clinical trials for early stage PD, showed poten-
tial for sustainable motor score improvement for PD patients in
a previous Phase II study [340]. Lastly, the c-Ab1 tyrosine
kinase inhibitor and AMPK activator nilotinib, was shown to
induce autophagy, enhance dopaminergic viability, and

Table 1 Therapies for
neurodegenerative diseases
targeting lysosomal pathways.
Various therapies have been used
to stimulate autophagy, both
mTOR-dependent and mTOR-
independent, as well as promote
lysosomal function in
neurodegenerative diseases

Disease Therapy Pathway Proposed mechanism Reference(s)

PD Rapamycin mTOR-dependent mTORC1 inhibition [289–292]
Temsirolimus

MSDC-0160 [293]

6-Bio GSK3B inhibitor [294]

Verapamil mTOR-independent attenuation of cytosolic Ca2+

increase
[77]

Minoxidil

Clonidine cAMP levels reduction

Lithium, valproate IP3 reduction [76, 295]

Calpastatin Calpain inhibition [77]

Trehalose Akt inhibitor [296–298]

AUTEN-99 MTMR14/Jumpy inhibitor [299]

Acidic nanoparticles Lysosomal Lysosomal acidification [300]

Ambroxol** GCase chaperone [301–304]
Isofagomine

NCGC758 GCase chaperone [214, 305]

NCGC607 GCase chaperone [306]

Venglustat** Glucosylceramide synthase
inhibitor

[307]

LTI-291** GCase activator [307]

AD Carbamazepine mTOR-dependent mTORC1 inhibition [308–311]
Latrepirdine

Temsirolimus

Lithium mTOR-independent IP3 reduction [312]

Resveratrol** Unknown [313–316]

Memantine* NMDA receptor agonist [317, 318]

Metformin** Lysosomal TFEB activation [319, 320]

ALS/FTD Rapamycin mTOR-dependent mTORC1 inhibition [237]

Trehalose mTOR-independent Akt inhibitor [321–323]

Resveratrol Unknown [324]

HD Rapamycin mTOR-dependent mTORC1 inhibition [278]

Trehalose mTOR-independent Akt inhibitor [321, 325]

Lithium, valproate IP3 reduction [326, 327]
Verapamil attenuation of cytosolic Ca2+

increase

Clonidine,
rilmenidine

cAMP levels reduction [77, 328]

Calpastatin Calpain inhibitor [77, 322]

Zn finger repressors Various Correction of mhtt [329]

CRISPR-Cas9 [330]

ASOs
(IONIS-HTTRx)**

mhtt RNA degradation [331, 332]

*Memantine is FDA-approved for AD

** Currently in clinical trials
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improve motor function in PD mouse models [341–343], yet
mTOR involvement is unclear. The compound, which is cur-
rently in phase II clinical trials, showed potential to improve
symptoms in both late-stage PD and Lewy body dementia pa-
tients [344].

mTOR-Independent Targets

Despite the promise of mTOR-dependent activation of au-
tophagy, side effects associated with modulating mTOR have
led to the emergence of mTOR-independent activators of au-
tophagy as possible alternatives. Trehalose, a disaccharide,
has been proposed to promote lysosomal clearance via inhibi-
tion of Akt and prevention of inhibitory TFEB phosphoryla-
tion [83]. The compound was shown to enhance clearance of
mutant αSyn and Htt aggregates in cell lines, attenuate dopa-
minergic loss in PD mice, and protect mitochondrially chal-
lenged human iPSC-derived dopaminergic neurons [296–298,
345]. Moreover, trehalose delayed neurodegeneration while
improving pathology and phenotypes in both HD and SOD1
ALS mouse models [323–325, 327].

Mood-stabilizing agents, such as lithium and valproate,
also function as mTOR-independent autophagy activators
through inositol depletion via inhibition of inositol
monophosphatase and inositol 3-phosphate synthase, respec-
tively [78]. These agents have been shown to enhance clear-
ance of aggregate-prone htt and protect dopaminergic integrity
in PD mouse models [76, 295], alleviate pathology and motor
phenotypes in HD models [328, 329], and improve cognitive
decline in AD patients with few adverse effects [314].
Resveratrol, another autophagy stimulator, was found to delay
symptoms and pathology in SOD1ALSmice [326], as well as
decrease Aβ pathology in AD models in an AMPK-
dependent manner [313, 314]. Although 1 study found that
AD patients treated with resveratrol show an increase in plas-
ma Aβ40 levels [317], another study demonstrated decreased
levels of Aβ42 in the CSFwith long-term treatment in patients
[318]. Therefore, whether resveratrol is beneficial for AD pa-
tients in the long term remains to be determined. Calpain
inhibitors such as calpastatin, Gabadur, and Neurodur have
also been shown to be beneficial in PD and HDmouse models
in an mTOR-independent manner [346, 347].

Other putative mTOR-independent autophagy inducers
have been tested in specific disease models. AUTEN-99,
which inhibits the myotubularin-related phosphatase
MTMR14/Jumpy, a negative regulator of autophagic mem-
brane formation, phenotypically rescues PD-associated out-
comes in Drosophila models [299]. Memantine, an NMDA
receptor agonist, displays efficacy in patients with moderate to
severe AD [319, 320], though the compound’s effects on au-
tophagy remain to be explored. Rilmenidine, an antihyperten-
sive, attenuates HD pathology and accumulation of mhtt in a
mouse model via an mTOR-independent mechanism [330].

Lastly, L-type Ca2+ channel antagonist verapamil, ATP-sensi-
tive potassium channel opener minoxidil, and the G-signaling
modulator clonidine, have been proposed to promote autopha-
gy via modulation of IP3 levels, intracellular Ca

2+, and calpain
activity, and have been suggested as potential therapeutic agents
in HD and other neurodegenerative diseases [77].

It is not currently known whether induction of autophagy
can confer long-term improvements in neuropathology, delay
disease progression, or ideally prevent neurodegeneration.
Apart from its central role in cellular degradation and
recycling, autophagy has emerging roles in DNA repair, in-
flammation, and protein secretion [348–350], suggesting that
upstream targeting of this mechanism can have multiple ef-
fects which cannot be precisely predicted based on current
knowledge. Though autophagy is an attractive target in neu-
rodegeneration, the prolonged and systemic administration of
upstream autophagy stimulators comes with the risks. For
instance, although rapamycin shows positive outcomes in pre-
clinical studies, higher doses of rapamycin inhibit mTORC2
thereby potentially compromising survival, whereas immuno-
suppression and other side effects have also been reported
[351]. For several other compounds, the mode of action is
not thoroughly characterized, and the effect on autophagy
may not be specific or direct. In addition, a very recent study
inC. elegans demonstrated that increasing autophagy can also
be detrimental and compromise lifespan, depending on the
status of the mitochondria [352]. This becomes a concern for
the systemic induction of autophagy because different cell
types or tissues exhibit baseline metabolic differences and
could be differentially affected by aging and neurodegenera-
tion. An additional consideration is the timing of intervention
as well as the genetic background of patients. Indeed, enhanc-
ing autophagy at early disease stages may be effective in
delaying the accumulation of disease-related proteins. On
the contrary, increasing autophagosome formation at later dis-
ease stages or in patients whose lysosomal function is likely
already compromised may exacerbate neurodegenerative pa-
thology due to exceeding the cellular capacity for degradation.
For these reasons, more targeted approaches could have more
efficacious, powerful, and specific outcomes for patients.

Targeting Lysosomes in Neurodegeneration

More direct lysosome-targeted therapies have been proposed
and tested in PD, AD, and HD (Table 1). Given the selective
vulnerability of substantia nigra neurons in PD, direct gene
targeting is a potentially relevant therapeutic strategy.
Preclinical models suggest that overexpression of Beclin 1,
Lamp2A, and TFEB could induce lysosomal function and
confer neuroprotection [290, 353, 354]. Another approach to
target lysosomes in PD involves the direct delivery of nano-
particles to enhance lysosomal acidification, which restored
lysosomal activity in ATP13A2 and GBA1 PD models [300].
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Decreased lysosomal hydrolase activity has been attrib-
uted to many neurodegenerative diseases. Thus, patients
may also benefit from direct targeting and enhancement of
these hydrolases. For example, AAV delivery of GRN to
progranulin knockout mice significantly reversed lysosomal
dysfunction associated with both FTD and NCL [355]. In ad-
dition, viral expression of GBA1 or reduction of GCase sub-
strate levels via pharmacological glucosylceramide synthase
inhibition reduced αSyn pathology and rescued dopaminergic
integrity and cognitive function in rodents [308, 309, 356].
Venglustat, which inhibits glucosylceramide synthase, is cur-
rently in phase II clinical trials for early-stage GBA1-PD pa-
tients [307]. Reduction of glucosylceramide levels can also be
achieved via small molecule non-inhibitory chaperones.
NCGC758, which activates GCase specifically in the lysosomal
compartment, preserved physiological αSyn conformation and
increased the efficiency of trafficking and maturation of GCase
in the endolysosomal compartment in PD iPSC-derived mid-
brain neurons [214, 305]. Similarly, NCGC607, also a small
molecule non-inhibitory chaperone was found to reduce
glucosphingolipids and αSyn levels in iPSC-derived dopami-
nergic neurons fromGaucher patients with parkinsonism [306].
Other compounds, such as the pharmacological chaperones
ambroxol and isofagomine, have also been shown to increase
GCase levels and activity and preserve αSyn homeostasis in
PD/GBA1-PD and also wild-type cell and animal models
[301–304]. Currently, ambroxol is in phase II clinical trials for
GBA1-PD and PD with dementia patients [307]. Furthermore,
the compound LTI-291, which stimulates GCase activity in the
brain, is being assessed in phase II trials in GBA1-PD patients
[307]. Unlike enzyme replacement therapies which would re-
quire invasive CNS delivery, pharmacological chaperones tar-
get specific lysosomal hydrolases, such as GCase, and could be
orally administered and cross the blood–brain barrier.
Examining the distribution of these compounds in disease-
relevant CNS regions is important, to which end both wild-
type and lysosomal enzyme-deficient animal models are neces-
sary. Furthermore, GCase activation via pharmacological chap-
erones such as isofagomine binding to the active site of the
enzyme, requires washout in order to achieve maximal lyso-
somal activity induction [357, 358]. The administration to pa-
tients should therefore be optimized so that the chaperone is
rapidly removed from the lysosome, allowing the enzyme suf-
ficient time to interact with its endogenous substrate. Future
studies focusing on the efficacy of non-inhibitory or allosteric
chaperones [305, 306, 359] could provide significant advance-
ments, because the enzyme could interact with the endogenous
substrate without the necessity of compound removal.

In AD, a class of interventions is focused on directly im-
proving lysosomal function. Current clinical trials suggest that
protein phosphatase 2A agonists, such as metformin, have
beneficial effects by inhibiting hyperphosphorylation of tau
[321, 322]. As phosphorylated tau constitutes a major

component of NFTs in neurons [321, 322], metformin in con-
junction with other treatments that reduce Aβ pathology may
be useful for improving both pathological hallmarks of AD.
Furthermore, TFEB transduction in the hippocampi of AD
mouse models reduced AD-associated pathologies by upreg-
ulating lysosome biogenesis [360].

Because of growing evidence for htt regulation of autoph-
agy and lysosomal function in HD, direct targeting of htt was
proposed as a therapeutic approach in disease. The monoge-
netic etiology of HD makes it particularly attractive for gene
therapies, specifically those targeting mhtt DNA and mRNA.
DNA-targeting therapies, such as zinc finger proteins and
CRIPSR-Cas9, to transduce cells with functional htt, have
been tested in animal models. Zinc finger repressors reduced
mhtt expression in the brains of R6/2 mice [331], and
CRISPR-Cas9 gene editing ameliorated neurotoxicity in an
HD mouse model [332]. Moreover, mRNA-targeting thera-
pies against mhtt, such as antisense oligonucleotides
(ASOs), nucleotide-based therapies that bind mRNA to trig-
ger degradation, have already entered clinical trials [361]. The
first of these, IONIS-HTTRx, was well-tolerated and resulted
in dose-dependent reductions in mhtt levels in the CSF of
early HD patients [362] and has now entered phase III clinical
trials. The development of therapies directly targeting mhtt is
advantageous in that it may not only mitigate lysosomal de-
fects in disease but improve other aspects of disease patho-
physiology and symptomology as well.

Overall, lysosomal function is a promising and specific
target in neurodegeneration, with the possibility to benefit
patients of various genetic backgrounds at early or even later
stages of disease. Further elucidation of lysosomal functions
and regulation of lysosome-related pathways will be instru-
mental to shaping the design and specificity of future thera-
peutic interventions. In this endeavor, a significant step for-
ward has been made by the development of iPSC and
CRISPR/Cas9 technologies, which in combination have im-
proved our ability to assess the efficacy of therapies targeting
lysosomal function in patient-derived neurons in both sporad-
ic and familial disease. Nevertheless, a major challenge of the
future will be the identification of sensitive and specific bio-
markers for both diagnosing neurodegenerative diseases early
and evaluating patient responses to therapies, which may in-
clude assessment of lysosomal efficiency in disease-relevant
regions of the CNS.

Conclusion

Lysosomal function in the aging brain is an area that is just
beginning to be explored. The lysosome is cardinal to various
cellular functions including autophagy, nutrient and ion ho-
meostasis, and inter-organelle interactions. As our understand-
ing of the role of lysosomes in aging continues to take shape, it
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will be necessary to identify how various lysosomal nutrient
storage, sensing, and processing pathways are engaged in
brain-specific cell types in order to facilitate the discovery of
therapeutic targets. For now, the best insight into lysosomal
alterations with age will come from the detailed investigation
of pathophysiological mechanisms in age-related neurodegen-
erative diseases that often present with hallmarks of lysosomal
and autophagic dysfunction. Several therapeutic strategies to
combat these diseases have already emerged and entered into
clinical trials, including those promoting the upregulation of
autophagy and those directly aimed at rescuing lysosomal
function. The promise of these treatments in neurodegenera-
tion beckons the question of whether these therapies will be
similarly beneficial in preserving lysosomal function in the
aging brain.
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