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Abstract
Spinal cord injury results in destructive events that lead to tissue loss and functional impairments. A hallmark of spinal cord injury
is the robust and persistent presence of inflammatory macrophages. Mesenchymal stem cells (MSCs) are known to benefit repair
of the damaged spinal cord often associated with improved functional recovery. Transplanted MSCs immediately encounter the
abundance of inflammatory macrophages in the injury site. It is known that MSCs interact closely and reciprocally with
macrophages during tissue healing. Here, we will review the roles of (transplanted) MSCs and macrophages in spinal cord injury
and repair. Molecular interactions between MSCs and macrophages and the deficiencies in our knowledge about the underlying
mechanisms will be reviewed.We will discuss possible ways to benefit from theMSC-macrophage choreography for developing
repair strategies for the spinal cord.
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Introduction

Traumatic spinal cord injury (SCI) typically results in imme-
diate loss of nervous tissue followed by a phase of secondary
damage. The initial trauma destroys neural cells and ruptures
blood vessels in the injury epicenter, while in the surrounding

tissue (penumbra) the spinal cord-blood barrier (ScBB) of
blood vessels is often breached and neural cells become ne-
crotic. Secondary damage is perpetuated by the many cyto-
toxic factors associated with neural and epithelial cell death as
well as by immune cells. The loss of nervous tissue ultimately
leads to the formation of cystic cavities, which can be found at
the injury epicenter and in adjacent segments.

A hallmark of SCI is a robust and persistent inflammatory
response. The destructive events initiated by an injury to the
spinal cord lead to a plethora of damage signals, which cause a
massive infiltration of immune cells that initiate the inflammato-
ry response [1–3]. In most tissues, intrinsic mechanisms regulate
the evolution of macrophages from an inflammatory to an anti-
inflammatory, reparative phenotype which supports recovery of
homeostasis and tissue repair. However, in the damaged spinal
cord, the majority of macrophages remain in their inflammatory
phenotype resulting in persistent inflammation [4–8].

Mesenchymal stem cells (MSCs) have been investigated
for treatment of SCI [9–11]. MSCs secrete growth factors
and chemo- and cytokines, which mediate paracrine actions
that support anatomical repair and functional recovery
[12–16]. Their potential to create a reparative environment is
the main motivation for exploring MSCs for repair of many
types of tissues [17–21]. In animal models of SCI, MSC trans-
plantation demonstrated promise for promoting repair [9–11,
22]. The mechanisms by which transplanted MSCs execute
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their reparative actions in the damaged spinal cord remain
incompletely understood.

In numerous types of tissues, including skin and muscle,
MSCs home into an injury and start communicating with im-
mune cells thereby supporting tissue repair and remodeling.
MSCs exert dual roles as Bsensors^ and Bmodulators^ of the
inflammatory response [23–26]. Macrophages, in turn, are
known to mediate MSCs polarization to pro- or anti-
inflammatory profiles [27–31]. These reciprocal actions between
MSCs andmacrophages have significant influence on the overall
efficacy of the healing process. Homing of MSCs into the dam-
aged spinal cord does not occur, which prevents such repair-
promoting MSC-macrophage interactions.

In the injured spinal cord, a transplant of MSCs will en-
counter the abundantly present inflammatory macrophages. In
this review, we focus on the role of transplanted MSCs, mac-
rophages, and their reciprocal interactions in spinal cord injury
and repair. We will give special attention to their roles in the
formation of new blood vessels (i.e., angiogenesis) after SCI.
Understanding the contributions of these two cell types and
their interactions may be beneficial for the development of
effective repair approaches for the spinal cord. We will also
discuss potential approaches to benefit from their interactions
for promoting repair and recovery after SCI.

Inflammation after SCI

An injury to the spinal cord causes immediate and secondary
destructive events, which together cause nervous tissue dam-
age and, consequently, functional impairments. These destruc-
tive events, which include neural cell death, tissue destruction,
and blood vessel rupture and leakage, result in an immune
response which is characterized by enduring inflammation.

Different Phases in Inflammation After SCI

Damage to neural cells induces the expression of damage-
associated molecular patterns (DAMPS), which are sets of
small molecules and proteins released by cells present in the
injury site that are responsible for several injury-related as-
pects of SCI, including homing of inflammatory cells [32,
33]. Neutrophils start accumulating within 6 h after injury,
lymphocytes within 6–12 h, and macrophages within 12–
24 h [7, 34, 35]. After a peripheral nerve injury, dorsal root
ganglion neurons secrete CCL2, an attractant chemokine that
mediates macrophage migration and activation for repair [36].
After SCI, increased concentrations of macrophage
chemoattractant protein (MCP-1) and other cytokines are
present in the damaged tissue [37, 38]. Immune cells also
infiltrate an injury site through ruptured blood vessels to en-
counter the DAMP-positive microenvironment and exacer-
bate the inflammatory milieu [3]. The initial inflammatory

wave of the immune response is essential for debris clearance,
phagocytosis of dying cells, and initiation of angiogenesis
through the secretion of growth factors [1, 2, 6, 39].

In many types of tissue, the initial inflammatory phase is
followed by a regulated induction of an anti-inflammatory,
reparative, phase, which is governed by regulatory T lympho-
cytes (Tregs) and tissue remodeling/reparative macrophages
[40]. For so far unknown reasons, wound healing and
inflammation-mediated clearing of cellular debris in the dam-
aged spinal cord differs from that in regenerative tissues, such
as muscle and skin. After SCI, there is no efficiently regulated
induction of an anti-inflammatory and reparative phase,
resulting in a chronic cytotoxic inflammatory state that con-
tributes to secondary degeneration, thereby limiting repair and
functional recovery [4, 5, 41–43]. In the contused adult rat
spinal cord, reparative macrophages can be found early after
injury, during the initial inflammatory phase, but they disap-
pear within a few days, while the inflammatory macrophages
remain chronically present [5, 6]. In people with SCI, in-
creased inflammatory markers were found in blood [44] and
cerebrospinal fluid [45, 46]. Post-mortem analysis of human
spinal cord tissue showed the persistent presence of inflam-
matory cells [4].

It has been shown that both systemic and local chronic
inflammation are characterized by aggressive immune cell
behavior in the injury site, accompanied by a continuous pro-
duction of cytotoxic molecules, including reactive oxygen
species (ROS), nitric oxide (NO), and apoptosis-inducing
molecules, which are likely to contribute significantly to sec-
ondary nervous tissue degeneration. It is possible that suppres-
sion of inflammation in the chronic phase could allow remod-
eling cells to intervene and promote tissue repair more effi-
ciently, after the beneficial acute inflammatory role has been
executed [47].

Macrophage Phenotypes

Macrophages are the most prevalent immune cell present in
the spinal cord during the later phase of inflammation after
injury. Macrophages, in the injury, originate initially from res-
ident activated microglia, which tend to dissipate in the chron-
ic phase, and later from infiltrated monocytes, which remain
present in the chronic phase [1, 39, 48]. Macrophages sense
the cellular and molecular composition of the microenviron-
ment and in response alter their gene expression profile to
secrete the appropriate effector molecules and express the
necessary receptors on their surface [49, 50]. This dynamic
transition in the phenotype of macrophages is also known as
Bpolarization^ or Bfunctional state^ [51]. Classically, macro-
phage polarization has been classified into two categories: (1)
inflammatory, cytotoxic, M1-like macrophages, and (2) anti-in-
flammatory, reparative, M2-like macrophages. At present, it is
widely accepted that macrophage phenotypes reflect a wide
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spectrum of gene expression and protein secretion levels.
Classifying macrophages in two categories is useful in a con-
trolled environment, such as in vitro experiments, but is compli-
cated in in vivo studies where it in fact may hinder repeatability
and understanding of the actual mechanisms of macrophage po-
larization during wound healing [51–53]. Thus, it is more pru-
dent to regard macrophage phenotypes in vivo as a balance be-
tween the two extremes of the inflammation spectrum, i.e., M1
and M2 macrophages. In this manuscript, we will refer to M1-
like macrophages when the microenvironment is dominated by
the presence of inflammatorymacrophages and cytokines, and to
M2-like macrophages when it is dominated by the presence of
anti-inflammatory macrophages and cytokines.

The macrophage phenotype evolution has been character-
ized in damaged spinal cord nervous tissue in different injury
models [6, 7, 41, 42, 47]. M1-like macrophages are mainly
characterized by the secretion of inflammatory cytokines, such
as interleukins (IL) 1β, 6, 12, tumor necrosis factor alpha
(TNFα), interferon gamma (IFNγ), and expression of the in-
ducible nitric oxide synthase (iNOS), among other markers.
M2-like macrophages are characterized by the secretion of
anti-inflammatory molecules, such as IL4, IL10, transforming
growth factor beta (TGFβ), and growth factors that induce
tissue remodeling [50, 51, 54, 55]. Evidence in the literature
demonstrate that interventions resulting in depletion of M1-
like macrophages in other tissues than spinal cord caused im-
pairment of the healing process and lack of functional recovery
[56, 57]. Interestingly, approaches that induce the shift from
M1- to M2-like macrophages earlier than the natural timeline
increase the chances of excessive fibrosis and, ultimately,
failed tissue remodeling [58, 59]. The absence of reparative
(M2-like) macrophages was also shown to result in a lack of
neural tissue repair [60]. Together, these studies demonstrate
the relevance of the role of each macrophage phenotype for
successful tissue repair.

Different macrophage phenotypes have specific and crucial
roles in tissue repair and remodeling. It has been proposed that
modulating macrophages to a pro-reparative phenotype is a
promising strategy to promote repair after SCI [8, 26, 47, 61,
62]. Their specific roles in the inflammation process need to
be considered when designing macrophage-modulating strat-
egies. Even though M1-like macrophages might appear to be
the Bbad^ players in the immune response after injury being
uncooperative of repair, they are essential for removing
cellular/tissue debris before reparative events can successfully
be executed. At the same time, M2-like macrophages appear
to be the Bgood^ players in the immune response after injury
supporting repair, but when promoting this phenotype in the
injured spinal cord, it will need to be precisely regulated to
avoid counter-productive effects. The ultimate goal would be
to design strategies to modulate the immune response after
injury that respects the natural timeline of macrophage pheno-
type evolution. Promoting the M2-like phenotypes after the

window of necessary inflammation has passed is a promising
strategy to enhance the natural immune-mediated tissue
healing process that is lacking in the spinal cord [47].

Macrophages Affect Angiogenesis

Angiogenesis is an essential process for wound healing. Cells
involved in tissue repair are in need of oxygen and nutrients to
survive and successfully contribute to the complex tissue re-
pair process. For this, the formation of new blood vessels from
existing capillaries at and near the injury site needs to be
synchronized with the dynamic cellular aspects of repair.
Macrophage polarization is tightly connected with the regula-
tion of angiogenesis after injury [56, 63–65]. M1-like macro-
phages secrete enzymes that modify the extracellular matrix
(ECM), as well as vascular endothelial growth factor (VEGF),
which promotes proliferation of the vascular endothelial cells.
M2-like macrophages secrete platelet-derived growth factor
(PDGF) and various other factors that promote the prolifera-
tion of smooth muscle cells and pericytes, which are needed to
stabilize newly formed blood vessels [35, 62, 63, 66].

The literature shows that the effects of macrophages on
angiogenesis after injury are essential and in need of precise
orchestration to facilitate proper repair. Thus, the sequential
evolution of macrophage phenotypes needs to be considered
cautiously when designing and exploring novel treatments for
repair of the spinal cord. Clinically, treatments implemented in
the acute/subacute phase of SCIwill certainly need to take into
account the different roles of the macrophage phenotypes in
angiogenesis. When treatments are given to people in the
chronic phase of SCI, the focus should be on reducing
(persisting) inflammation and promoting the activation of
the reparative macrophage phenotypes.

MSCs for Spinal Cord Repair

An injury to the spinal cord causes tissue loss and functional
impairments [67]. Tissue loss is reversely correlated with
functional recovery after SCI [10, 63, 68]. One of the ap-
proaches to elicit repair after SCI is the transplantation of stem
cells, which are known to secrete paracrine factors that influ-
ence repair and/or differentiate into neural cells to replace
those that were lost [14, 21, 69, 70]. Using models of SCI,
studies have shown that stem cell-based approaches elicit an-
atomical repair often accompanied by functional recovery [10,
71, 72]. An extensively explored type of stem cell for spinal
cord repair is the MSC [10, 20, 73–75]. MSCs can be harvest-
ed from different types of (mesenchymal) tissues, including
bone marrow, adipose tissue, and placenta. Obtaining the cells
from these sources can be accomplished with relatively minor
side effects, which adds to their clinical relevance. In most
studies, the MSCs used are a heterogeneous population of
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cells, which deserves some caution because the source as well
as the selection and expansion methods can result in cell pop-
ulations with different repair potential [76]. For example,
MSCs obtained from human olfactory mucosa showed a
stronger potential in promoting in vitro remyelination than
those obtained from bone marrow [77]. The MSCs from adi-
pose tissue and bone marrow were shown to differentially
benefit repair-related events, such as differentiation, angiogen-
esis, or immunomodulation [78]. Therefore, further character-
ization of each MSC’s origin and behavior is important in
order to select the source and processing method that best
applies to the desired functional application.

MSCs migrate from their source to injured tissues through
the blood stream, in response to numerous different
chemoattractants. According to the type and site of injury,
the circulating factors vary and the needs for repair are differ-
ent. MSCs are known to activate their migratory mechanisms
upon injury-mediated stimulation with VEGF, substance P,
hepatocyte growth factor (HGF), the stromal derived factor
1 (SDF-1)/CXCR4 axis, and hyaluronic acid (HA), among
others [79–81]. After SCI, natural homing into the damaged
area is inefficient as is migration to the injury site after sys-
temic transplantation.MSCs are often Btrapped^ in other high-
ly vascularized tissues, such as the lungs, or they are trans-
formed by the circulation environment. Also, many MSCs
may not survive during the migratory event, resulting in low
cell concentrations at the injury site (reviewed in [80, 81]).
The delivery method needs to be considered, with the source
and processing strategy, as an additional variable in the choice
and guided by the desired end application.

Reparative Properties of MSCs in the Injured Spinal
Cord

MSCs are known to secrete factors that initiate and regulate
specific actions contributing to the overall anatomical repair
and functional recovery seen after their transplantation into the
injured spinal cord [14, 16, 18, 74, 82, 83]. Many of these
paracrine MSC-mediated events result in neuroprotection,
which may be associated with functional recovery [10, 83,
84]. Evidence in the literature shows that an intraspinal
MSC transplant leads to a decrease in apoptotic neural cell
death [16, 85] and in overall neurotrophic support of the dam-
aged tissue [74, 86]. Other studies demonstrated that a trans-
plant ofMSCs results in angiogenesis within the injured spinal
cord segment and stabilization of the ScBB of breached blood
vessels in the penumbra [10, 15, 87]. Also, MSC transplants
resulted in reduced breakdown of ECM, which typically oc-
curs after SCI and contributes significantly to tissue disorga-
nization and destruction [88].

Besides the abovementioned events, MSCs are known to
affect the profile of the inflammatory response through mod-
ulation of the macrophage phenotype, which has important

consequences for repair [25, 89–92]. MSCs have dual roles
as Bsensors^ and Bmodulators^ of the inflammatory response
[23]. Inflammatory cues in an injury microenvironment are
sensed by MSCs that, in response, produce cytokines that
modulate macrophages to express their anti-inflammatory,
pro-reparative, phenotype, which supports restoration of ho-
meostasis and promote tissue repair [23, 24, 93] (Fig. 1).

Exposure to IFNγ inducesMSCs to enhance their secretion
of indoleamine 2,3-dioxygenase, which inhibits the prolifera-
tion of activated natural killer (NK) cells and T lymphocytes
[99]. The innate ability of MSCs to modulate inflammation
could be a powerful tool to limit secondary nervous tissue
degeneration, and thus providing a larger tissue platform for
recovery strategies. For developing such approaches a better
understanding of the mechanisms by which transplanted
MSCs execute these immunomodulatory functions and com-
munication with the macrophages is needed.

The literature so far provides evidence that the para-
crine activities of MSCs transplanted in the injured spinal
cord cause direct or indirect events that lead to neuropro-
tection. The direct events are through releasing anti-
apoptotic and neurotrophic molecules that rescue neural
cells from injury-induced death. The indirect actions are
through the release of molecules that limit ECM break-
down, promote angiogenesis, stabilize breeched ScBB,
and modulate the immune response. Together these events
can exert neuroprotection and therefore limit the loss of
neural tissue. Evidence has shown that limiting the
(secondary) loss of nervous tissue after SCI is associated
with functional recovery [10].

Similar trends are observedwhen applyingMSCs to central
and peripheral nervous system injuries. The underlying path-
ophysiology of traumatic brain injury (TBI) follows largely
similar patterns as observed in SCI. TBI results in immediate
tissue damage, vascular damage, and inflammation, which all
contribute to secondary degeneration [10]. Comparable to the
injured spinal cord, transplantation of MSCs in the traumati-
cally injured brain results in neuronal regeneration and tissue
sparing associated with improved functional recovery [100,
101]. Themain mechanisms underlyingMSC-mediated repair
of the brain are thought to be neural regeneration and
immunomodulation through secreted factors [83, 100, 101],
which are analogous to the mechanisms of MSC-mediated
spinal cord repair. The pathophysiology of peripheral nerve
injury differs from that in CNS injuries [102] with less vascu-
lar damage and less impediments to neuronal regeneration.
However, peripheral nerve injuries are characterized by sec-
ondary degeneration and macrophage infiltration as is ob-
served in CNS injuries. The reparative mechanisms of
MSCs in the peripheral nerve are also thought to be based
on paracrine support and immunomodulation. MSCs are also
being explored for their ability to differentiate into Schwann
cell-like cells for supporting repair [102, 103].
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Reciprocal Communication Between MSCs
and Macrophages

It is known that MSCs modulate the immune response, while
macrophages influence the behavior of MSCs [27, 95, 104].
The directionality of the interactions between MSCs and mac-
rophages suggests a tightly controlled reciprocal cooperation
for regulating repair in regenerative tissues. In fact, evidence
in the literature showed that macrophages establish a bidirec-
tional crosstalk with stem cells promoting healing in various
tissue types [95, 96, 105].

MSCs Modulate Macrophage Polarization

MSCs constitutively secrete immunosuppressive cytokines,
such as TGFβ, IDO, NO, TNF-inducible gene-6 (TSG-6),
prostaglandin-E2 (PGE2), and anti-inflammatory ILs that in-
duce modifications in the metabolism of macrophages,
resulting in a switch to the anti-inflammatory macrophage
phenotypes [23, 24, 92, 96, 106] (Fig. 1). When cultured with
MSC-conditioned medium, macrophages polarize showing
increased expression of M2-like surface markers and reduced
secretion of the inflammatory cytokines, IL1β, IL6, and
TNFα [92]. Macrophages in culture with MSC spheroids,
which secrete enhanced levels of PGE2, or with conditioned
medium thereof, polarize from M1-like to M2-like macro-
phages [107, 108]. Systemic administration of umbilical

cord-derived MSCs to an animal model of an inflammation-
related disorder, led to an increase in anti-inflammatory mac-
rophages and alleviation of the associated symptoms [98]. The
accumulated evidence in the literature so far reveals that
MSCs support a shift among macrophages from the M1- to
M2-like phenotypes (Fig. 2).

Transplantation of MSCs into the contused spinal cord in
adult rats was found to result in a decrease in TNFα, IL6, and
IL1β and an increase in IL4 and IL13 accompanied by tissue
sparing, axon preservation, decreased scar formation, and im-
proved functional outcomes [11]. Treatment of the adult mice
contused spinal cord with conditioned medium of embryonic
MSCs resulted in restoration of the macrophage phenotype
after the inflammatory phase and improved locomotor recov-
ery, indicating that soluble factors are important in MSC
immunomodulation [111]. In general, promoting the shift to
M2-like macrophages, via MSCs, may support repair after
SCI [26].

Macrophages Influence MSCs

Inflammation and macrophage-derived cytokines influence the
secretory profile ofMSCs [12, 24, 79]. It was found that in vitro
exposure to macrophage-conditioned media, as well as co-
culture with different phenotypes of macrophages, modifies
the secretome of MSCs and their viability for cardiac tissue
repair [27]. Crisostomo and colleagues used inflammatory

Fig. 1 MSCs and macrophages reciprocally influence each other. Naïve
MSCs secrete basal levels of anti-inflammatory cytokines [13, 88].
Inflammatory macrophages secrete numerous molecules that act as in-
flammatory stimuli modulating a shift from naïve MSC to Bactivated^
MSC (Binflammatory activation^). The activatedMSCs have switched on
their immunomodulatory program, which results in the secretion of

similar molecules as naïve MSCs but in greater levels. These high levels
of anti-inflammatory cytokines drive the switch from inflammatory to
anti-inflammatory macrophages (Bimmunosuppression^), which are im-
portant in tissue repair and remodeling. The specific stimuli and molecu-
lar hierarchy involved in these cells regulation is still incompletely char-
acterized [11, 23, 27, 92, 94–98]

582 I. Maldonado-Lasunción et al.



stimuli, such as TNFα and lipopolysaccharides (LPS), to con-
dition MSCs and found an increase in the secretion of growth
factors that support tissue repair [12]. Other types of stem cells,
including oligodendrocyte precursor cells [60] and hair stem
cells [112], can also be modulated by macrophage-secreted
molecules resulting in improved tissue regeneration.
Considering the sequence of macrophage phenotypes during
wound healing, it is clear that the immunomodulatory crosstalk
between MSCs and macrophages within the injury site is cru-
cial for the overall repair process and recovery [95]. Further
investigations into these immunomodulatory mechanisms
could support the development of therapies for the spinal cord
that harness the reparative and modulatory potential of MSCs
and macrophages to create a reparative milieu in the injury site.

MSC Immunomodulation Requires Activation

Effective immunomodulation byMSCs occurs upon exposure
to activating stimuli. Under stress conditions, MSCs are pro-
grammed to increase their secretion of growth factors. For
instance, MSCs in culture under hypoxic conditions produce
enhanced levels of growth factors [12]. Cultured MSCs ex-
posed to inflammatory molecules increase the expression of
receptors known to bind immune regulatory mediators and the
production and secretion of anti-inflammatory factors [24,
113]. Despite the classical immunosuppressive potential of

MSCs, it is now also accepted that MSCs exhibit a
spectrum-type of phenotypic polarizations, similar as that seen
among macrophages, depending on their microenvironment.
MSCs express toll-like receptors (TLRs), which represent one
of the gates for determining their immunomodulatory activi-
ties [30, 31, 113]. LPS-induced activation of TLR4 on MSCs
results in activation of the inflammatory pathway and the se-
cretion of pro-inflammatory mediators. On the other hand,
activation of TLR3 on MSCs induces the production of anti-
inflammatory mediators [31]. These data indicate that MSCs
need activation to exert their immunomodulatory properties.
At present, the mechanisms involved in MSC activation re-
main partially known and further investigations are needed to
potentially involve them in the development of reparative
strategies that involve preconditioned MSCs.

In regenerative tissues, an injury leads to increases in
chemokines and cytokines which induce the progressive hom-
ing and exposure of MSCs to activating stimuli that elicit their
regulatory activities [79]. The SCI microenvironment contains
many damage signals and inflammatory mediators that are also
found in circulating cerebrospinal fluid and blood [44, 45].
Transplanting naïve MSCs in the injured spinal cord may
therefore imply a stressful shock for the cells, which could
compromise their survival and, thus, their effects on repair.
Priming MSCs in vitro using inflammatory stimuli prior to
transplantation could kick-start their machinery for increased
production of anti-inflammatory cytokines before being

Fig. 2 MSC and macrophages orchestrate spinal cord repair. a Injury to
the spinal cord is characterized by robust infiltration of immune cells.
During the (sub-)acute phase of injury, inflammatory (M1-like) macro-
phages help clearing debris by releasing NO, ROS, and ECM-modifying
enzymes, such as MMP9. M1-like macrophages also release
proangiogenic factors that promote the formation of new blood vessels,
such as VEGF. In the spinal cord, macrophage polarization fails to shift to
the M2-like phenotypes, causing chronic inflammation and, consequent-
ly, a continuous exposure to cytotoxic molecules that impede recovery
and induce secondary degeneration [1, 7, 109, 110]. b Transplants of

MSCs may promote the shift of macrophages to the reparative (M2-
like) phenotype. Exposure of MSCs to the inflammatory microenviron-
ment activates their immunomodulatory program; mechanisms underly-
ing this activation are still incompletely understood. The transition to
reparative macrophages and the paracrine effect of MSCs supports repair
through released reparative molecules, such as PDGF, HGF, IGF-1, or
TGFb. The regulatory mechanisms need further study in order to benefit
the development of targeted MSC therapies for spinal cord repair [6, 11,
23, 26, 27]
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introduced to the injury microenvironment. Preconditioning of
MSCs may enhance their survival and immunomodulatory
capacity, potentially resulting in more efficient repair of the
injured spinal cord.

In line with the need for priming before exposure to the
injury environment, multipotent adult progenitor cells
(MAPCs) are largely similar to MSCs in their immunomodu-
latory and reparative potential, while they have shown sensi-
tivity to the injection time when transplanted after injury
[114]. MAPCs modulate macrophage polarization, reduce ax-
onal dieback, and elicit significant functional recovery, when
injected systemically 1 day after a contusive SCI in rats [114].
The injury site also needs maturation to Ballow^ efficient ac-
tions of MSCs; immune cells need to remove debris, while
endothelial cells and others need time to express adhesion
molecules to bind MSCs. MSCs need anchoring to elicit their
secondary signaling and repair-related expression profile
[79–81]. This evidence supports the need to optimize the strat-
egies for combining MSCs preconditioning with the optimal
injection time-points, with the objective of preserving the ac-
tive MSCs in the injury site while they promote repair.

MSC Preconditioning

The preconditioning strategy has been explored in various
models of disease or trauma. In a model of pyelonephritis,
an infectious disease that derives from an excessive inflam-
mation disorder, MSCs were injected intravenously after pre-
conditioning in vitro with activated leukocytes. This approach
resulted in primed MSCs secreting enhanced amounts of
TGFβ, matrix metalloproteinase-2 (MMP2), and glycogen
synthase kinase-3β (GSK3β), which all are inflammation
suppressors, and improving the disease outcome [115].
Another study compared the immunomodulatory potential of
MSCs from bonemarrow of human donors bymeasuring their
secretion of PGE2 and capacity to induce the shift in macro-
phage phenotype, after pre-activating them with various in-
flammatory stimuli. Preconditioned MSCs showed an in-
crease in their secretion of PGE2 compared to controls and a
stronger ability to induce M2-like macrophages in culture.
Interestingly, not all inflammatory stimuli resulted in the same
outcome; preconditioning with IFNγ caused MSC-mediated
induction of more inflammatory macrophages [76].

An alternative approach to improveMSC immunomodulation
may be genetic modification of the cells, which is known as
Bintrinsic preconditioning.^ Transplantation of MSCs overex-
pressing IL13 in a mouse model of SCI resulted in a significant
improvement in anatomical repair and functional recovery com-
pared to transplantation of unmodified MSCs. In addition to the
anatomical and functional effects, transplanting the modified
MSCs also resulted in an increase in the population of M2-like
macrophages, demonstrating successful immunomodulation
[116].

The abovementioned results contribute to the evidence that
inflammatory priming can result in more efficient MSC-
mediated immunomodulation. However, these studies also raise
awareness about the need to unravel the mechanisms and path-
ways involved in the different situations. When designing the
preconditioning and transplantation experiments, considering
the inflammation window within the immunomodulation time-
line is necessary to allow the crucial reparative actions of all
inflammatory cells.

Conclusions and Remarks

Unraveling the mechanisms underlying the interactions be-
tweenmacrophages andMSCs in the context of wound healing
may provide tools to modify spinal cord nervous tissue to
improve repair. Using transplanted MSCs to target inflamma-
tion provides the opportunity of combining therapeutic ap-
proaches that so far have mostly been addressed individually.
MSCsmaymodulate inflammation as well as secrete paracrine
factors that elicit neuroprotection. The maturation state of the
injury site, i.e., the degree of inflammation and presence of cell
adhesion molecules, is crucial for determining the optimal time
of MSC transplantation. It needs to be kept in mind that MSC
preconditioning may be an integral aspect of these potentially
powerful repair approaches. Future mechanistic studies are
necessary to unravel the true potential of MSC preconditioning
and MSC-mediated immunomodulation for spinal cord repair.
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