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Abstract
Deep brain stimulation (DBS) represents one of the major clinical breakthroughs in the age of translational neuroscience. In 1987,
Benabid and colleagues demonstrated that high-frequency stimulation can mimic the effects of ablative neurosurgery in
Parkinson’s disease (PD), while offering two key advantages to previous procedures: adjustability and reversibility. Deep brain
stimulation is now an established therapeutic approach that robustly alleviates symptoms in patients with movement disorders,
such as Parkinson’s disease, essential tremor, and dystonia, who present with inadequate or adverse responses to medication.
Currently, stimulation electrodes are implanted in specific target regions of the basal ganglia–thalamic circuit and stimulation
pulses are delivered chronically. To achieve optimal therapeutic effect, stimulation frequency, amplitude, and pulse width must be
adjusted on a patient-specific basis by a movement disorders specialist. The finding that pathological neural activity can be
sampled directly from the target region using the DBS electrode has inspired a novel DBS paradigm: closed-loop adaptive DBS
(aDBS). The goal of this strategy is to identify pathological and physiologically normal patterns of neuronal activity that can be
used to adapt stimulation parameters to the concurrent therapeutic demand. This review will give detailed insight into potential
biomarkers and discuss next-generation strategies, implementing advances in artificial intelligence, to further elevate the thera-
peutic potential of DBS by capitalizing on its modifiable nature. Development of intelligent aDBS, with an ability to deliver
highly personalized treatment regimens and to create symptom-specific therapeutic strategies in real-time, could allow for
significant further improvements in the quality of life for movement disorders patients with DBS that ultimately could outperform
traditional drug treatment.
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Introduction and Scope of the Article

Chronic high-frequency stimulation is an effective treat-
ment for patients with movement disorders, such as

Parkinson’s disease (PD) [1–3], dystonia [4–8], and essen-
tial tremor [9–13]. Therefore, functional neurosurgery uti-
lizing precise stereotactic targeting is performed to implant
electrodes (see Fig. 1a for exemplar DBS electrodes in the
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subthalamic nucleus), which contain up to eight stimula-
tion contacts. During implantation surgery, electrophysio-
logical recordings can be performed to identify target-
specific patterns of spiking or population activity to verify
correct positioning of the electrode [14–18]. After the elec-
trode implantation, lead externalization [19] provides a
unique opportunity to record neural population activity as
local field potentials (LFP; a population-level measure of
synaptic currents and local spiking activity [20, 21]; see
Fig. 1b) using external amplification and recording equip-
ment [20]. Intraoperative and postoperative invasive neu-
rophysiology studies in DBS patients have contributed sig-
nificantly to our understanding of movement disorders at
the network level [22–26]. Most importantly, they have
inspired a novel concept of stimulation called closed-loop
adaptive DBS (aDBS) which aims to move from a chronic
continuous stimulation setting to a demand-dependent ap-
proach. The present article aims to summarize the utility of
specific electrophysiological findings for aDBS in move-
ment disorders patients, reviews present data on aDBS
implementations, and concludes with an outlook on the
therapeutic potential of artificial intelligence–based strate-
gies to improve clinical outcome in aDBS. Of note, this

review will focus on findings derived from human DBS
patients, because their potential clinical utility is easier to
translate, when compared to animal studies. Nevertheless,
animal as well as computational simulation studies remain
crucial to further elucidate the mechanism of DBS and the
underlying physiological response.

Pathophysiological Neural Activity in DBS
Patients with Parkinson’s Disease

Beta Activity as Hallmark of Parkinsonian
Bradykinesia and Rigidity

The two most common DBS target sites for PD motor symp-
toms both yield a net inhibitory influence on thalamocortical
circuits, (i) the dorsolateral motor part of the subthalamic nu-
cleus (STN; Fig. 1a), which physiologically exerts glutamater-
gic excitation of (ii) the ventral posterolateral part of the inter-
nal pallidum (GPi), which gives rise to GABAergic inhibitory
efferents to the thalamus [27, 28]. In human patients, the ob-
servation that both pallidal [29–31] and subthalamic [20,
31–35] activities demonstrate exaggerated synchronization
of multiunit activity and LFP in the beta frequency range
(13–35 Hz) has implicated altered local neural synchrony in
the pathophysiology of PD [26, 31, 33, 34, 36–40].
Importantly, it was shown that the amplitude of beta activity
is correlated with motor sign severity (as measured with
UPDRS-III) across a large cohort of patients OFF medication
[34, 35, 41]. Furthermore, the alleviation of bradykinesia and
rigidity was correlated with a decrease in recorded beta activ-
ity [32, 42]. Similarly, subthalamic DBS was demonstrated to
suppress beta activity locally [43–46] and, again, the amount
of suppression of local beta activity was correlated with im-
provement in parkinsonian motor signs [43, 47]. The finding
that a biomarker of concurrent parkinsonian motor sign sever-
ity can be recorded in real-time through the same electrodes
that deliver the therapeutic stimulation has inspired the con-
cept of a demand-dependent adaptive DBS paradigm [48],
where the stimulation parameters are adapted directly accord-
ing to the recorded electrophysiological parkinsonian symp-
tom correlate, closing the loop from recording to stimulation
[49, 50]. Importantly, the presence of beta synchronization in
the basal ganglia should not be mistaken as PD specific or
pathological per se, as studies from other DBS patient groups,
such as dystonia [51–53] and OCD [54–56], have reported
peaks of beta activity in the basal ganglia. However, the rela-
tive higher amount of low beta (13–20 Hz) synchrony [29, 57]
and the correlation with motor sign severity [34, 35] distin-
guish PD patients from other movement disorders. High beta
activity is less related to parkinsonian symptom severity and
was proposed to result from hyperdirect pathway communi-
cation [35, 58]. Through subitem and subgroup analyses, it

Fig. 1 Exemplar DBS electrode location (a) in the subthalamic nucleus
with local anatomy pictured in 3D. Local field potentials (b) can be
recorded directly from DBS electrodes for the characterization of
pathological and physiological oscillations in DBS patients
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was found that beta activity mainly reflects the akinetic/
bradykinetic/rigid spectrum of PD motor signs [42, 59], but
not tremor, which paradoxically was shown to reduce beta
activity [60, 61] in a fashion similar to that of voluntary move-
ment [53, 62]. Nevertheless, it was recently demonstrated that
beta activity reflects bradykinesia even during phases of rela-
tive desynchronization during continuous movement [63].
Moreover, specific patterns for walking [64–67] and even rid-
ing the bicycle [68] have been reported for beta activity in PD
patients. Studies on the spatial distribution of subthalamic beta
activity have found a robust overlap between the location of
peak beta power with the optimal target location in the dorso-
lateral STN [69].

Prolonged Beta Bursts May Reflect Pathological
States in PD

In the temporal domain, the relative increase in mean beta
power can be explained by a prolongation of transient epi-
sodes of beta synchronization, so-called beta bursts. Recent
observations report that the presence of particularly long beta
bursts in the STN [70–72] and the internal pallidum [72, 73]
are characteristic for the PD OFF state, while shorter duration
bursts are similar between PD ON and dystonia [73] and may
reflect normal physiology, which may again be attributed to
the presence of beta bursts during motor performance [53].

Using Implantable Recording Devices for Long-Term
Characterization of Pathological LFP in PD

Most of the abovementioned results were obtained through
LFP recordings from externalized DBS electrodes, without
the opportunity to collect information regarding the long-
term stability of beta activity in PD. The Medtronic PC+S is
an experimental sensing-enabled IPG device that allows local
field potentials (LFP) to be recorded directly by the implanted
pulse generator [74]. Using the PC+S, studies have recently
replicated beta activity suppression through DBS [44, 46, 75]
and dopaminergic medication, in a systematic evaluation per-
formed up to 8 months post implantation [34]. Again, beta
activity correlated significantly with parkinsonian symptom
severity, indicating a sustained association of clinical PD
symptoms and oscillatory synchronization. Finally, studies
using the PC+S have demonstrated changes in neural entropy
related to freezing of gait [65] and differential effects of 60 Hz
and 140 Hz stimulation on beta activity [76]. During sleep, a
complex modulation of beta activity was found that is depen-
dent on the sleep stage [77].

Corticosubthalamic Electrophysiology in PD Research

To investigate pathological oscillations beyond the basal gan-
glia, whole-head magnetoencephalography was conducted in

parallel with subcortical LFP recordings after withdrawal and
administration of levodopa as well as during and after cessa-
tion of DBS in patients with PD [58, 78–83]. Distinct changes
in patterns of corticosubthalamic beta oscillatory connectivity
were found to be associated with levodopa and DBS re-
sponses that again could be utilized to inform adaptive stimu-
l a t i o n c o n t r o l . F u r t h e rm o r e , i n t r a o p e r a t i v e
electrocorticographic recordings during DBS implantation
have revealed higher broadband gamma power and higher
post-movement beta synchrony in PD patients, compared to
those with hyperkinetic movement disorders [84]. Subsequent
reports on ECoG demonstrated that exaggerated beta–gamma
phase-amplitude coupling (PAC) is a cortical biomarker of PD
symptoms [85–87]. Most importantly, they showed that STN
DBS leads to a decrease in cortical PAC that predicts symptom
improvement [85]. Re-investigation of the same datasets re-
vealed that some of the effects could be explained by an in-
creased sharpness of the beta waveform in the parkinsonian
state [88], adding waveform shape to the range of potential
cortical biomarker features. Additionally, a recent study com-
paring movement-related cortical activity in ECoG recordings
from DBS patients with that recorded from epilepsy patients
demonstrated that PAC is increased persistently during motor
performance in PD patients to a greater degree in the low-beta
versus high-beta range [89].

Beyond Beta Activity in Parkinson’s Disease

Despite the fundamental impact of the characterization of
pathological beta activity in PD, the fact that beta power is
suppressed during tremor casts doubt on the usefulness of beta
activity as the sole biomarker for adaptive adjustment of stim-
ulation. Interestingly, not only parkinsonian bradykinesia/
rigidity but also dopaminergic side effects are reflected in
subthalamic LFP patterns, where dyskinesia symptoms were
associated with increased low frequency (4–8 Hz) and nar-
rowband gamma (60–90 Hz) synchronization [90, 91], very
similar to the activity seen during normal movement [53, 62,
92, 93]. Moreover, additional pathophysiological hallmarks
have been identified in PD and recent research suggests that
indeed these different biomarkers may signal different aspects
of parkinsonian motor signs [50]. The second most prominent
LFP biomarker associated with parkinsonism is the presence
of so-called high-frequency oscillations (HFO) at ~ 250 Hz,
which are not generally attenuated by dopaminergic medica-
tion, but rather are shifted toward higher frequencies to ~
350 Hz [61, 94]. Importantly, it was recently shown that this
frequency shift is also a reliable biomarker of tremor, even in
the ON medicated state [61]. During motor performance, it
was further demonstrated that gamma synchronization is re-
duced in the hypodopaminergic state [53, 79], which taken
together with HFO could be utilized for multispectral classifi-
cation of motor sign severity in PD.

Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders 107



Concluding Remarks

The association of bradykinesia/rigidity symptoms with beta
oscillations in Parkinson’s disease has been replicated in many
groups and is likely the single most robust electrophysiologi-
cal biomarker in any neurodegenerative disease to date that is
directly implicated in PD pathophysiology. Nevertheless, the
fact that it is suppressed by tremor and therefore cannot be
used for tremor severity detection impedes its usefulness as a
sole biomarker for aDBS control in tremor-dominant patients.
Multispectral combination of different symptom-specific LFP
patterns may be a more promising approach to improve treat-
ment strategies for patients with tremor and bradykinesia ri-
gidity symptoms.

Pathophysiological Neural Activity in DBS
Patients with Hyperkinetic Movement
Disorders

Essential Tremor

Similar biomarker studies have been conducted in parallel in
other movement disorders that could benefit from the devel-
opment of adaptive stimulation paradigms. High-frequency
stimulation of ventral intermediate nucleus (VIM) of the thal-
amus has shown great clinical success in the treatment of
essential tremor [10–13, 95]. Here, robust activity in the trem-
or frequency that can drive periodic muscle contractions
[96–100] has been reported. The underlying multiunit activity
was recently dissected in terms of the spatial distribution of
efferent and afferent connections within the ventrolateral tha-
lamic nuclei offering both spectral and spatial information for
tremor-specific activity [100]. Cortical modulation of beta ac-
tivity through voluntary movement was also demonstrated in
ET patients [89, 101], rendering ECoG a useful addition as a
biomarker signal to differentiate voluntary and involuntary
movements [102].

Dystonia

In patients with dystonia, it was found that pallidal and sub-
thalamic low-frequency activities in the theta/alpha range (4–
12 Hz; subsequently referred to as theta activity) are higher in
patients with dystonia when compared to those in PD patients
[29, 57, 103] and are associated with involuntary muscle con-
tractions [51, 104, 105]. Importantly, a recent study demon-
strated a correlation of dystonic symptom severity with
pallidal theta activity in a large cohort of patients with cervical
dystonia [51]. The same study found considerable overlap
within the posterolateral ventral GPi between the locations
of maximal theta power [51] and previously reported optimal
target locations for DBS in dystonia [106–109]. This is

interesting, because a study investigating the effects of DBS
on pallidal oscillations during DBS found a significant sup-
pression of theta activity in patients with mobile or phasic
cervical dystonia [110]. Patients with tonic dystonia did not
show this suppression, but are also known to show benefit
more slowly, only after months of chronic DBS, when com-
pared to phasic patients [111]. Parallel LFP-MEG recordings
found a correlation of dystonic symptoms with decreased
pallido-cerebellar coupling [112], hinting toward a pathophys-
iological implication of the cerebellum in the generation of
dystonic symptoms [112–117].

Tourette’s Syndrome

Finally, a remarkable similarity was observed between dyston-
ic theta oscillations and the LFP pattern found in patients with
Tourette syndrome (TS) [118], another complex neuropsychi-
atric disorder associated with abrupt involuntary movements
called tics. Deep brain stimulation for Tourette syndrome is
less established, when compared to PD, ET, and dystonia, but
clinical studies are currently on the rise [119–135], showing a
clear increase in patients undergoing DBS surgery. Studies
recording LFPs from the most common Tourette target areas
in patients, namely, the centromedian–parafascicular nucleus
(CM-Pf; close to the nucleus ventralis oralis internus, Voi) and
the GPi, have reported exaggerated theta activity [118, 119,
136–141]. In addition to several studies reporting case-
specific spectral patterns, a recent report demonstrated that
higher preoperative motor tic severity scores in the Yale
Global Tic Severity Scale (YGTSS) are associated with higher
theta power in both the GPi and the CM/Voi regions across a
TS cohort [141]. Moreover, overall preoperative tic severity
including both motor and vocal tic scores across the cohort
could be predicted from a multivariable linear model that in-
cluded theta and beta activities from both target regions, fur-
ther supporting the utility of multispectral and multispatial
parameters for clinical state decoding [141]. While the latter
study was conducted retrospectively without concurrent mon-
itoring of occurring tics, two cases were reported where theta
power correlated directly with the rate of individual tic occur-
rence in TS [142].

Concluding Remarks

Compared to the hypokinetic state in PD that is associated
with beta activity, studies on hyperkinetic disorders found
exaggerated theta activity (4–12 Hz) in essential tremor, dys-
tonia, and Tourette’s syndrome. How this apparent shift in
frequency may arise with respect to dopaminergic tone or
synaptic plasticity remains to be elucidated. Furthermore, it
is unknown whether phasic dystonia and tremor-specific ac-
tivity share pathophysiological mechanisms in the basal gan-
g l i a tha t a r e d i f f e r en t i a l l y modu la ted th rough
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cerebellothalamic loops. Nevertheless, converging evidence
supports the utility of theta activity for the adaptation of
DBS parameters in adaptive stimulation paradigms. The ma-
jor challenge will be to identify the time course of clinical
changes with respect to changes in theta oscillations.
Moreover, theta is known to increase with voluntary move-
ment, highlighting the necessity for identification of voluntary
movement for accurate state identification (discussed in the
last section of this review). Figure 2 summarizes the patholog-
ical and physiological patterns that could be used for adaptive
control of therapeutic DBS parameters. Note that specific pat-
terns of LFP activity have also been reported in other DBS
indications, such as major depressive disorder [143–145] and
OCD [54, 145, 146], although these go beyond the scope of
the present review article.

Current Technical and Clinical Advances
in Deep Brain Stimulation Methodology

In contrast to the rapid progress and technical advances in
multimodal pathophysiological biomarker studies and the in-
crease in experimental DBS indications, the development of
new therapeutic approaches to the use of DBS itself has been
relatively slow. However, some important developments
should be highlighted, as they can directly influence the way
adaptive stimulation can be implemented in the clinical set-
ting. Most prominently, the use of more than four stimulation
contacts has gained a relevant role in the clinical routine today
[147–154].

Electrode Design

Some stimulation devices now support electrodes with 8 in-
stead of 4 contacts per hemisphere, either covering a larger
trajectory with 8 equidistant contacts or allowing directional
stimulation through segmented contacts. Covering a larger
trajectory has been shown useful for the treatment of gait
disturbance in PD, where it was found that stimulation of the
substantia nigra pars reticulata (SNr) that lies ventral to the
STN can have significant additive effects on axial motor sign
alleviation, when compared to STN stimulation alone [155].
Directional stimulation using segmented leads provides the
opportunity to steer current toward the optimal response and
away from structures, such as the internal capsule, associated
with adverse stimulation-induced side effects that often limit
the maximal therapeutic stimulation amplitude [148–150,
152, 154]. Thus, directional stimulation can, depending on
the exact electrode location, reduce the threshold for therapeu-
tic response and increase that for side effects, leading to an
overall improvement in the therapeutic window [149–151,
153]. The practical usefulness of this technical advance how-
ever is currently limited by the time a specialized neurologist,
together with the patient, must devote to conducting a thor-
ough review of the effects of monopolar stimulation. Here, an
automatic algorithm to determine the best contact combina-
tion could significantly advance the clinical adoption of direc-
tional stimulation [156–158].

Localizing DBS Electrodes

Directly related, identifying the electrode placement postoper-
atively has recently become easier than ever, including the use
of free open-source Lead-DBS software (www.lead-dbs.org)
that can semi-automatically determine the position of DBS
electrode contacts in postoperative imaging [159].
Investigating electrode localizations postoperatively in a sys-
tematic manner offers the potential to improve the program-
ming procedure and investigation of optimal target locations
[107, 160–163], modulated network connectivity [160, 164,
165], and the mapping of electrophysiological biomarkers
[51, 53, 56, 69].

DBS Stimulation Parameters

Clinical observations and systematic studies on the relevance
of DBS parameters, such as stimulation frequency and pulse
width, are further areas of research that can potentially im-
prove therapeutic outcomes [154]. Here, lower frequency
stimulation (60 Hz) has been reported to have beneficial ef-
fects on gait disturbance in PD, when compared to higher
stimulation frequencies [166–169]. In essential tremor, stimu-
lation frequencies above 100 Hz are routinely used and report-
ed to elicit the best therapeutic effect [13, 170–172].

Fig. 2 Overview of oscillatory features related to pathological and
physiological states in DBS patients
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Unfortunately, speech disturbance and ataxia can arise as
therapy-limiting side effects requiring reduction of stimulation
intensities in these patients [9, 173–175]. Here, reducing pulse
widths from conventionally used 60 μs to shorter settings of
30–40 μs has been reported to efficiently alleviate tremor,
while increasing the side effect thresholds [176]. This effect
has been previously reported in PD and attributed to a more
local driving of surrounding axons [177, 178].

Recording Local Field Potentials from Implantable
Pulse Generators

Asmentioned in the first section, the availability of implantable
DBS pulse generators that can record electrophysiological neu-
ral activity is a prerequisite for chronic adaptive stimulation.
The use of four different fully implantable systems has been
reported in biomarker or adaptive DBS studies. The most prev-
alent device, the Activa PC (Medtronic, Inc.), was made avail-
able to a global community of DBS clinicians for research
investigations in over 20-dB centers worldwide, enabling elec-
trophysiology studies to be conducted without the necessity of a
dedicated physiology laboratory. From this effort, one can pri-
marily conclude that producing an implantable device that is
capable of recording voltage fluctuations in deep nuclei poses
significant difficulties. High-noise floor, cardioballistic artifacts,
and internal clock–related spikes in combination with very low
amplitude signals, limited battery life in primary cells, and low
storage capacity of the IPGs have been identified by both re-
searchers and manufacturers as the next engineering challenges
toward reliable chronic adaptive stimulation [67, 179].

Concluding Remarks

Recent advances in clinically available DBS hardware include
new electrode designs that allow directional steering of cur-
rents and multiple source/target stimulation. Clinical observa-
tions suggest that specific stimulation sites may benefit spe-
cific symptoms, e.g., SNr stimulation for gait in addition to
STN stimulation for bradykinesia/rigidity. Moreover, stimula-
tion settings can be adjusted to increase the therapeutic win-
dow and thereby reduce side effects. First generations of im-
plantable devices that enable chronic recording of brain activ-
ity have helped to identify technological challenges that future
adaptive stimulation systems will need to tackle.

Physiological Mechanisms of Deep Brain
Stimulation

Modulation of Oscillatory Activity

The exact mechanism of DBS remains elusive, but im-
portant observations should be highlighted before

discussing the potential implementations of adaptive
stimulation. A DBS-induced modulation of subcortical
and cortical oscillations has been reported frequently
and replicated many times [43–47, 53, 58, 71, 75, 76,
85, 87, 88, 110, 180–186] supporting the hypothesis that
modulation of pathological oscillatory activity may un-
derlie some of the therapeutic mechanisms of deep brain
stimulation [154, 187]. Further support for this concept
comes from combined electrophysiology and neuroimag-
ing experiments: in PD, beta activity in the subthalamic
nucleus coincides with the optimal target location for
DBS treatment; and in dystonia, pallidal theta activity
spatially peaked in previously published DBS targets
for alleviation of dystonic symptoms [51, 69]. Given
the abovementioned reports of oscillatory synchroniza-
tion along the corticosubcortical axis, exaggerated beta
activity is not a local phenomenon but reflects patholog-
ical circuit alterations that can be interpreted in the
context of the Bcommunication through coherence^ paradigm
[188], that is, as changes in the network’s capacity to
communicate information. The changes in cortical synchroni-
zation [58] and PAC found during STN-DBS [85] and
GPi-DBS [189] indicate that DBS exerts its modulatory
effect on oscillatory activity along different network
nodes.

Modulation of Spiking Activity and Synaptic Plasticity

This circuit modulation can however rely on the alteration
of local synaptic properties [190], as suggested by impor-
tant studies demonstrating DBS-related local suppression
of spiking activity for the STN and GPi in PD [14] and the
VIM in ET [191]. Interestingly, in pallidal and subthalamic
neurons, an increase of GABAergic plasticity was demon-
strated that was absent in the largely glutamatergic VIM.
Computational firing rate models have recently revealed
that suppression of hyperdirect pathway input to the sub-
thalamic nucleus may lead to cognitive reaction time alter-
ations, while the alleviation of clinical motor signs can be
attributed to modulation of indirect basal ganglia pathway
activity [164].

Concluding Remarks

Deep brain stimulation at high frequencies leads modulation
of local and distant neural activities ultimately resulting in net
disinhibition of the motor circuit. Oscillatory activity, spike
firing, and synaptic plasticity were shown to be altered
through DBS and shown to be correlated with clinical DBS
effects.
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First Implementations of Adaptive
Closed-Loop DBS

Parkinson’s Disease

A closed-loop stimulation strategy first was shown to be ef-
fective in a non-human primate model of PD via recording in
motor cortex and the globus pallidus (GPi) and stimulating in
the GPi [192]. The translational nature of this approach recent-
ly has attracted many multidisciplinary research groups bring-
ing neurologists, neurosurgeons, engineers, and neuroscien-
tists together with the aim to improve therapeutic outcome in
DBS [49, 50, 137, 181, 193–198]. The first studies in human
PD patients utilized pathological increases in STN beta activ-
ity to trigger stimulation with fixed DBS parameters, where
stimulation ceased after sufficient beta signal suppression was
achieved [194, 199–201]. This approach resulted in similar or
better symptom alleviation compared with conventional DBS
and a reduction of dyskinesia symptoms [181, 195, 201] and
stimulation-induced side effects [202]. Most aDBS studies to
date only observed aDBS for a short duration during which
clinical testing was conducted using externalized equipment
in a laboratory environment. The first aDBS study using beta
activity to modulate stimulation amplitude with a mobile de-
vice has recently been published [181]. That study was carried
out during daily activities over a time period of 8 h in 13
akinetic rigid PD patients and reported a significant decrease
of stimulation amplitudes during medication ON periods, but
did not compare results against chronic non-adaptive DBS.
Likewise in PD, the first study of cortical sensing-based
aDBS reported promising results in two parkinsonian patients
[183]. Unlike the abovementioned studies, the approach here
was based on sensing of an ECoG signature of dyskinesia in
the gamma frequency band [203]. Thus, whenever this nar-
rowband activity on the cortical level increased, the stimula-
tion amplitude decreased. While therapeutic efficacy was
maintained in short-term clinical testing, significant energy
savings of 38–45% were reported [183].

Hyperkinetic Movement Disorders

A similar strategy was recently reported to implement aDBS
in the CM-Pf target, using the RNS System in a patient with
Tourette syndrome, where 5–15-Hz activity was used to trig-
ger stimulation [137]. In ET, few studies have reported use of
accelerometery [193] for aDBS, also in combination with
ECoG [102], but one study relying only on neural signals
has been published to date. The latter has also introduced
identification of voluntary behavior to improve stimulation,
which will be further discussed below. For dystonia, a single
patient was reported to have undergone adaptive DBS in the
pallidum, using theta activity as input [204].

Concluding Remarks

While these results provide crucial evidence for the feasibility
of aDBS, approaches based on single spectral features record-
ed mostly from the same locations at which stimulation is
delivered have several inherent limitations and do not take
advantage of the full potential of adaptive control to improve
DBS outcomes. Many important features, such as multispec-
tral patterning or spatial activity distributions, are ignored for
the sake of practicality in the absence of both hardware and
software solutions that may help clinicians elevate the thera-
peutic potential of DBS to the next level.

Intelligent Algorithms to Improve aDBS
Outcome

Potential Benefit of Cortical Signals for Intelligent
Adaptive DBS

In recent years, computational innovations in the field of ma-
chine learning, especially deep learning with artificial neural
networks, have revolutionized artificial intelligence for high-
definition medicine [205], yet these advances are greatly un-
derrepresented in DBS methodology. Adaptive closed-loop
stimulation provides a framework to incorporate this ap-
proach, but previous applications in pilot studies were limited
to a narrow feature space without dynamic adaptation and
multiple feature classification [49]. Notwithstanding the im-
pact of piloting aDBS studies for the field of human neural-
network neurosurgery, the STN-LFP beta power approach has
several limitations that raise questions about its usefulness for
adoption in a clinical real-life setting. Most importantly, sens-
ing from the same lead that delivers stimulation is suboptimal
in many ways: (i) signal quality deteriorates with stimulation;
(ii) bipolar sensing leaves only 2 of 4 available stimulation
contacts that necessarily should reside in an optimal target
location [181, 194, 195, 200, 202]; (iii) common mode rejec-
tion, through which an LFP signal is less perturbed by DBS
when sensing contacts are distributed symmetrically around
the stimulation contact, may require symmetric current spread,
potentially obliterating the additional benefit directional cur-
rent steering [149, 150, 152]; and (iv) that approach may force
DBS target planning to include consideration of biomarker
location rather than enabling independent optimal targeting
of both sensing and stimulation electrodes. Here, using addi-
tional ECoG recordings for closed-loop sensing, which has
been reported to be safe [206], could have striking advantages:
(i) compatibility with any DBS electrode design; (ii) optimal
signal to noise ratio; (iii) placement of the sensing electrode
independent of the DBS target (e.g., white matter tracts for
tremor); (iv) coverage of large areas (potentially more than
one location; many contacts); (v) reduction of stimulation
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artifacts; and (vi) preservation of the number of potential stim-
ulation contacts in the DBS target.

Multifeature Classification for Adjustment
of Stimulation Settings to Concurrent Demand

Using single-biomarker thresholds to trigger stimulation also
does not allow for adapting stimulation parameters dynami-
cally to behavioral demand. As discussed in the previous sec-
tions, emerging evidence suggests that specific DBS parame-
ters can have symptom-specific effects, such as improved
freezing of gait through 60-Hz stimulation [166–169] and
stimulation of ventral DBS contacts in the SNr for alleviation
of axial motor impairment [155]. Moreover, dyskinesia during
medication ON times can limit the therapeutic stimulation
amplitude at the cost of better symptom alleviation during
OFF times [201], and speech intelligibility and DBS-
induced spastic dysarthria can be improved through reduction
of stimulation amplitudes [207]. Dynamic adjustment of stim-
ulation parameters to concurrent behavior and demand could
therefore have tremendous benefits for the control of symp-
toms and side effects in patients undergoing deep brain stim-
ulation. A hypothetical multisite recording paradigm in com-
bination with computational models and deep learning algo-
rithms potentially could achieve the following: (i) an electro-
physiological classifier that can detect the presence of (a)
disease-specific symptoms, such as tremor, bradykinesia,
freezing of gait, hypophonia, and dystonia; (b) side effects
such as dyskinesia, dysarthria, and ataxia; and (c) normal
physiologic function such as voluntary movement, sleep,
walking, and speaking. The classifier could give feedback to
a (ii) control algorithm that dynamically modulates (a)

stimulation amplitude, (b) stimulation contact/direction, (c)
stimulation frequency, and (d) pulse widths.While the optimal
computational approach remains to be developed, building a
hierarchical computational framework to classify multiple
pathologic and normal physiological states and predict symp-
tom severity along multiple input (ECoG and LFP) and target
domains (tremor, bradykinesia, speech), and across multiple
patient cohorts, would enhance the therapeutic benefit of
adaptive DBS for movement disorders (Fig. 3).

Deep Neural Networks for Electrophysiology-Based
Intelligent Adaptive DBS

Ideally, intelligent aDBS could evolve from a computational
model based on deep learning with hierarchically organized
artificial neural networks that are optimized to predict the need
to adapt DBS stimulation parameters in real-time. Practically,
electrophysiological time series data from LFP and ECoG
electrodes of each channel can be transformed to the time-
frequency domain to produce feature matrices with high tem-
poral resolution from relevant frequency bands (theta, alpha,
low beta, high beta, low gamma, high gamma) in addition to
raw data and full spectrum features such as total power and
variance that have previously been used to decode behavior
from neural fields [64, 208–212]. Recurrent neural network
approaches (e.g., long short-term memory networks; LSTM
[213, 214]) could be used for training on oscillatory neural
time series data [215] to simultaneously conduct hierarchical
classifications and predictions that can ultimately guide DBS
parameter adaptations. This could produce an expandable
modular deep neural network architecture that generalizes
high-precision feature decoding across patients and recording

Fig. 3 Simplified schematic of a proposed deep learning network based on oscillatory features. A modular approach could benefit from multiple inputs
to decode pathological and physiological states to optimize DBS parameters adaptively
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sites based on ECoG time series with tuning to specific pa-
tients based on little or no patient-specific data. Importantly,
this approach can learn an almost infinite amount of spectral,
spatial, and temporal patterns of activity, given that both con-
current and preceding activities are used to inform the model.
This strategy may have significant benefit in the detection of
rhythmic activity, such as walking [64, 67], speaking, tremor,
[60, 61] or sleep [77], as well as in the prediction of clinical
symptom severity [34, 35, 59], where a continuous increase of
pathological activity could predict upcoming symptoms more
robustly than single time points. This could also account for
symptom-specific differences in the time lag to therapeutic
response. One of the major limitations of dynamic adaptive
stimulation approaches may be the delayed response of certain
symptoms to DBS, which have not been studied to a sufficient
degree for estimating their potential detrimental influence and
thus need to be carefully described in future clinical trials of
aDBS. The current frontier in artificial intelligence–based
adaptive stimulation is to gather the necessary data for model
training. Therefore, the DBS community should seek interna-
tional multicenter collaborations to share anonymized electro-
physiological time series from DBS patients in combination
with clinical annotations and/or behavioral data. Multicenter
data sharing initiatives provide fundamental advantages over
single-center studies: (1) Multiplication of the data that can be
used for model training; (2) cross-cohort validation of trained
models to secure generalizability. Once the outlined intelligent
classifiers are generalizable and established, a clinical imple-
mentation could be within reach.

Computational Cost of Deep Learning Solutions
for Adaptive Stimulation

The computational cost of model training can be high and
increases significantly with the amount of data that training
is based on. Importantly, training the models to learn the
association of electrophysiological signals with clinical
and behavioral patient states can be done offline using
high-throughput parallel computing in cluster networks
and does not depend on the limited computational power
and battery capacity of an IPG. During training, millions of
feedback and feedforward passes can be calculated to ob-
tain the optimal set of parameters in combination with
hyperparameters and model architectures. The best
performing artificial neural networks can then be made
available openly to enable researchers to use and further
improve them. Once the trained models have proven suffi-
cient predictive performance, they can be stored on an IPG
or external hardware device requiring minimal resources,
as predictions are single feedforward passes of input data.
Data preparation and signal analysis, however, may induce
memory demand on implanted devices that could be solved
through implemented hardware signal analysis routines.

Instead of Fourier or wavelet time frequency transformations
to assess frequency-specific signal alterations, hardware filters
could divide signals in relevant frequency ranges and amplitude
span could be sampled several times per second to reduce com-
putational cost (e.g., sampling hardware filtered 60–90-Hz
gamma band activity 20 times per second instead of sampling
raw signal at 250 Hz or higher and deriving gamma oscillations
through Fourier transform). In conclusion, neither memory nor
energy consumption would significantly limit the implementa-
tion of deep learning on implantable devices, but researching
optimal solutions is only possible with external hardware
prototypes.

Conclusion

In the age of artificial intelligence, the field of DBS has en-
tered an era where improvements in device technology have
created a gap between user and device capabilities. Our pro-
posed framework implies crucial steps for successful real-life
applications of adaptive stimulation and goes above and be-
yond previous attempts of feature extraction for aDBS.
Intelligent aDBS promises significant improvements in qual-
ity of life for patients with movement disorders that eventually
could outperform traditional pharmacological treatment, due
to the highly personalized nature of symptom-specific thera-
peutic strategies created in real-time. The basal ganglia com-
municate with a range of motor and non-motor regions
[216–218]. Decoding circuit-specific target computations
[164] could further elucidate the role of the basal ganglia in
neurological disease and result in greater improvements in
quality of life for patients with movement disorders. Large-
scale multicenter studies on artificial intelligence–based
methods for behavioral and clinical state decoding represent
the frontier in next-generation adaptive stimulation.
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