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Abstract
Skeletal muscle channelopathies are rare heterogeneous diseases with marked genotypic and phenotypic variability. These
disorders cause lifetime disability and impact quality of life. Despite advances in understanding of the molecular pathology of
these disorders, the diverse phenotypic manifestations remain a challenge in diagnosis, therapeutic, genetic counseling, and
research planning. Electrodiagnostic testing is useful in directing the diagnosis, but has several limitations: patient discomfort,
time consuming, and significant overlap of findings in muscle channelopathies. Although genetic testing is the gold standard in
making a definitive diagnosis, a mutation might not be identified in many patients with a well-supported clinical diagnosis of
periodic paralysis. In the recent past, there have been landmark clinical trials in non-dystrophic myotonia and periodic paralysis
which are encouraging as they demonstrate the ability of robust clinical research consortia to conduct well-controlled trials of rare
diseases.
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Introduction

Skeletal muscle ion channelopathies are rare heterogeneous
disorders and are caused by mutations in genes encoding so-
dium channel (SCN4A), chloride channel (CLCN1), calcium
channel (CACNA1S), or potassium channel (KCNJ2 and
KCNJ18) [1–3]. They are characterized by episodic and fluc-
tuating symptoms, exacerbation by environmental factors, and
frequently autosomal dominant inheritance patterns.
Symptoms are lifelong and impact quality of life. The diverse
clinical manifestations remain a challenge in diagnosis and
management. For instance, SCN4A mutations can cause var-
ious phenotypes such as paramyotonia congenita, sodium
channel myotonia, hyperkalemic periodic paralysis, or hypo-
kalemic periodic paralysis. Similarly, myotonic disorders can
occur due to SCN4A or CLCN1 ion channel defects.
Treatment options are also few and most of them are not
FDA-approved. In this article, we review clinical features,
diagnostic studies, pathophysiology, and treatment options in
non-dystrophic myotonia and periodic paralyses.

Non-Dystrophic Myotonia

The non-dystrophic myotonias (NDM) include myotonia
congenita, paramyotonia congenita, and sodium channel myo-
tonias. Myotonia congenita is autosomal dominant or autoso-
mal recessive, whereas paramyotonia congenita and sodium
channel myotonias are autosomal dominant. These disorders
are caused by mutations in the skeletal muscle chloride
(CLCN1) and sodium (SCN4A) channels [4–11]. These are
rare disorders, with a prevalence of < 1:100,000 [5, 9].
Patients typically present in the first two decades of life with
muscle stiffness in the absence of severe fixed weakness or
muscle wasting; this is in contrast to the dystrophicmyotonias,
such as myotonic dystrophies type 1 and type 2, which present
with both progressive muscle weakness and multisystem in-
volvement [2]. However, these myotonic dystrophies can also
present with a pure myotonic phenotype that may be clinically
indistinguishable from myotonia congenita [6]. Thus, in any
young adult patient presenting with myotonia, DM1 and DM2
should always be considered. Clinical manifestations may
range in severity from severe neonatal myotonia with respira-
tory compromise [12] to milder late-onset myotonic muscle
stiffness. Symptoms of muscle stiffness are brought on by
voluntary muscle contraction, leading to sustained bursts of
action potentials originating from muscle fibers which persist
for several seconds after motor neuron activity has ceased.
This sustained activity causes an involuntary delay in the
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relaxation of muscle contraction, or myotonia. Patients de-
scribe this delayed relaxation as Bstiffness^ [4]. Patients may
also report fatigue and pain associated with muscle stiffness.
Symptoms may be worsened with pregnancy, cold tempera-
tures, hunger, emotional stress, fatigue, and dietary potassium;
some of these have traditionally been thought to help distin-
guish some of the NDM subtypes [13–16]. Symptoms of
myotonia can be reduced with a variety of anti-epileptic, an-
esthetic, and anti-arrhythmic drugs. Co-existence of CLCN1
or SNC4A mutations with DM2 mutations has been reported
in certain families. Patients with such dual mutations can have
early-onset and more severe clinical and electrical myotonia
[17–19]. Thus, DM2 patients with atypical presentation or
severe myotonia should be screened for CLCN1 or SCN4A
mutations.

Clinical Features

Myotonia CongenitaMyotonia congenita (MC) is the most
common skeletal muscle channelopathy and is caused by
a mutation in the CLCN-1 gene encoding for the main
skeletal muscle chloride channel CIC-1. Prevalence of
MC varies by region between 0.2 and 7.3 per 100,000
[5, 20]. MC may be inherited as an autosomal dominant
(Thomsen’s disease) or recessive (Becker’s disease) trait,
with a more severe and earlier-onset phenotype in reces-
sively inherited disease [1, 6, 21]. Myotonia typically pre-
sents in the first or second decades of life, and patients
classically have a hypertrophic, muscular build with per-
cussion myotonia on exam [22]. Clinical heterogeneity
within a family is common. Patients are most symptomat-
ic during rapid voluntary movements following a period
of rest (action myotonia), and an improvement of myoto-
nia with exercise is typically seen in MC. This improve-
ment is referred to as Bwarm-up phenomenon^ [23]. The
most common site of stiffness is the legs, although the
face is less commonly affected [24]. Patients with domi-
nantly inherited MC (Thomsen’s disease) do not report
muscle weakness, but patients with recessively inherited
MC (Becker’s disease) can experience brief, transient
weakness with the initiation of movement that improves
with exercise [2]. This transient weakness is unique to
MC and is distinct from the more prolonged post-
exercise weakness that can occur with paramyotonia
congenita (see next section) [25].

Paramyotonia Congenita Paramyotonia congenita (PMC) is
autosomal dominant and is caused by missense mutations of
the muscle sodium channel SCN4A gene on chromosome 17.
Prevalence of PMC is ~1:250,000 [26]. PMC is allelic with
other SNC4A disorders which include sodium channel myo-
tonias, hyperkalemic periodic paralysis, and hypokalemic pe-
riodic paralysis (discussed separately); these disorders have

some characteristics in common, including the precipitation
of symptoms by rest after exercise, fasting, and cold [26, 27].
In contrast to MC, myotonia in PMC worsens with sustained
exercise. This is referred to as Bparadoxical myotonia,^ hence
the term paramyotonia. Exercise-induced myotonia typically
lasts for seconds to minutes following exercise. Facial stiff-
ness and eye closure myotonia are more common in PMC
than in other NDMs, and paradoxical eye closure myotonia
is unique to PMC [24]. Patients with PMC may additionally
describe prolonged muscle weakness following sustained ex-
ercise that can last from several hours to 2 days [28]. This is
different from the transient weakness that can be seen in the
recessive form of MC. Besides episodic weakness, PMC pa-
tients can also develop permanent weakness; however, this is
not commonly seen [29, 30].

Sodium Channel Myotonias Sodium channel myotonias
(SCMs) are autosomal dominant and typically present in
the first decade of life. SCMs may also be referred to as
the potassium-aggravated myotonias (PAM). Subtypes in-
clude acetazolamide-responsive myotonia (painful myoto-
nia that responds remarkably to acetazolamide), myotonia
fluctuans (markedly fluctuating myotonia that develops
about 10–20 min after exercise), and myotonia permanens
(severe persistent myotonia associated with a unique
EMG pattern of persistent myotonic activity). Common
to these variants is exacerbation by potassium and lack
of cold sensitivity or weakness; however, pure myotonic
syndromes that do have cold sensitivity have been linked
to the SCN4A gene [13, 31–34]. The presence of warm-
up phenomenon and variable cold sensitivity can make
these patients difficult to distinguish from other NDM
patients.

Pediatric Manifestations Although pediatric patients with
NDM often share similar phenotypic features with adult pa-
tients, they may have additional symptoms; awareness and
recognition of these can reduce delay in diagnosis and subse-
quently limit the physical and psychological impact on chil-
dren. In the SCN4A patients, these symptoms include abnor-
mal gait, leg cramps, eyelid or extraocular myotonia, strabis-
mus, stridor, and choking episodes. Episodic neonatal and
infantile laryngospasm in these patients occur rarely, but can
be life-threatening and respond remarkably well to carbamaz-
epine [35]. The CLCN1 patients may have a Bfunny gait,^
frequent falls, and below average running compared to peers.
NDM children can also have ankle contractures and rarely
scoliosis. Neonatal hypotonia may be seen in SCN4A muta-
tions that cause NDM and hyperkalemic periodic paralysis
(HyperPP). Given this and the potential for respiratory/
bulbar compromise in SCN4A patients, expectant mothers
and obstetric physicians should be counseled to take appropri-
ate precautions and to avoid unnecessary testing [36].
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Diagnosis

Diagnosis of non-dystrophic myotonias is based on history of
symptoms, exam findings of muscle hypertrophy, and clinical
myotonia/paramyotonia described above, often a positive
family history, electrodiagnostic testing, exclusion of other
causes of myotonia such as myotonic dystrophy and Pompe
disease, and genetic testing.

Creatine kinase can be normal tomildly elevated in patients
with NDM. Thyroid function should be checked because hy-
pothyroidism can cause clinical and electrical myotonia [37].
Electromyography is useful in confirming amyotonic disorder
in that it reveals electrical myotonia in proximal and distal
limb muscles [24].

The differential diagnosis of electrical myotonia is exten-
sive and includes myotonic dystrophies, some of the distal
myopathies, inflammatory myopathy, toxic myopathy, and
Pompe disease [38, 39]. Notably, in these conditions, patients
will have muscle weakness, atrophy, and markedly elevated
CK.

The short exercise and long exercise tests have been
used in further characterization of NDM. For the short
exercise test, the patient is asked to perform maximum
voluntary contraction for 5 to 10 s and compound muscle
action potential (CMAP) is recorded immediately after
exercise (e.g., stimulating the ulnar nerve at the wrist,
r e c o r d i n g ov e r t h e abdu c t o r d i g i t i m i n im i ) .
Subsequently, CMAPs are recorded every 10 s up to
1 min after exercise. This test is repeated 3 times with
60 s in between trials. The short exercise test may help
distinguish CLCN1 and SCN4A mutations via the follow-
ing patterns:

I. A reduction in CMAP amplitude, facilitated by repetition
or cold. This can be seen in PMC.

II. A transient drop in CMAP amplitude that rapidly returns
to baseline. This can be seen in recessive MC.

III. No change in CMAP amplitude. This can be seen in
patients with dominant MC or SCM.

For the short exercise test, a CMAP amplitude reduction of
> 10% is considered abnormal [40, 41].

For the long exercise test, patients are instructed to contract
the abductor digiti minimi (usually alternating 15-s contrac-
tions with 3–4 s of rest) for up to 5 min against fixed resis-
tance, and then CMAPs are recorded every 1 to 2 min for up to
50 min. For the long exercise test, the following patterns may
be seen:

I. A slight decrease in CMAP amplitude. This is seen with
MC.

II. A persistent CMAP amplitude decrement that starts im-
mediately after exercise. This is seen with PMC.

For the long exercise test, a CMAP amplitude reduction of
> 40% from the maximum CMAP during or after exercise is
considered abnormal. Sensitivity of this test is 70% in diag-
nosing PP (discussed later) [40, 42, 43].

Limitations of electrodiagnostic testing include the
following:

& Some CLCN1 mutations are associated with both domi-
nant and recessive inheritance of MC.

& Certain SCN4A mutations can manifest either as SCM or
PMC.

& Significant overlap may be seen with the short exercise
test, suggesting that these patterns may not be sensitive or
specific enough to make a definitive diagnosis based on
electrodiagnostic testing alone.

MRI abnormalities have been noted in NDM patients. In a
cohort of 21 genetically confirmed NDM patients, T1-
weighted changes supportive of fatty infiltration were seen
in almost half the patients. The fatty infiltration suggests that
there is some amount of permanent muscle damage in NDM
patients. STIR abnormalities, which include a unique Bcentral
stripe^ and mild to extensive hyperintensity, were detected in
the calves in 90% of the patients [44]. These abnormal find-
ings suggest that MRI could potentially be used as a biomark-
er in treatment trials.

Over 100 CLCN1 mutations and over 30 SCN4A muta-
tions have been identified [31, 45]. Genetic testing is the gold
standard in making a definitive diagnosis of NDM, and this is
commercially available.

Pathophysiology

The skeletal muscle channelopathies, including NDMs, are
caused by alterations of the electrical excitability of the skel-
etal muscle fiber membrane.

CLCN1 Gene Mutations The chloride channel CLC-1 is a ho-
modimer with each individual subunit forming a gated pore.
The channel has two main gating modes referred to as the fast
gate, which can operate the two pores independently, and the
slow gate, which regulates the open probability of both pores
simultaneously [46]. Under normal conditions, chloride ac-
counts for 2/3 of muscle membrane conductance, and chloride
conductance contributes significantly to repolarization of ac-
tion potentials.

Bryant and colleagues demonstrated a greatly diminished
sarcolemmal chloride conductance in affected muscle fibers
frommyotonic goats and this has been established as the basis
for the enhanced muscle excitability in MC [47]. In the ab-
sence of the chloride conductance, the repolarizing influence
of the chloride current is lost and the length constant of the
sarcolemma is significantly increased allowing for summation
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of electrical potentials [47]. Therefore, elevations of the po-
tassium concentration in the T-tubular lumen during electrical
activity cause a greater depolarized shift in the resting poten-
tial of the sarcolemmal membrane, which leads to muscle
hyperexcitability and myotonic discharges [48].

The dominant forms of MC occur due to effects of the
mutated subunit when dimerized with the wild-type (WT)
subunit (dominant negative effect); this mutation causes a
large shift in gating potential and prevents the chloride chan-
nels from opening when required in repolarization [49].
Recessive MC occurs due to homozygous or compound het-
erozygous loss of function mutations [49], and this loss of
conductance leads to the accumulation of potassium ions
and after depolarization bursts that manifest as myotonia [48].

Distinct allelic mutations in CLCN1 have been identified in
a large number of autosomal dominant and autosomal reces-
sive myotonia cases [50, 51]. Notably, several CLCN1 muta-
tions have been reported to cause both autosomal dominant
and autosomal recessive forms in different families [11,
52–55]. The exact mechanism bywhich mutations in the same
gene cause both dominant and recessive diseases remains
unclear.

SCN4A Gene Mutations SCN4A encodes the pore-forming
α subunit of the sodium channel Nav1.4, which consists
of four domains, each with six transmembrane segments.
In the 1980s, electrophysiological studies on human mus-
cle revealed that chloride conductance was normal in pa-
tients with PMC and with hyperkalemic periodic paralysis
(discussed later) [56, 57]. These patients had an anoma-
lous persistent inward current that was blocked by tetro-
dotoxin, suggesting a voltage-gated sodium channel de-
fect. Missense mutations in SCN4A that cause a variety
of gating defects of the sodium channel are responsible
for PMC, SCMs, and hyperkalemic periodic paralysis
(discussed later) [58, 59]. The gating defects result in
gain-of-function changes that increase Na+ influx by dis-
ruption of fast inactivation of mutant Nav1.4 channels, or
enhancement of activation in some cases [60].

Therapeutic Options in NDM

There are no FDA-approved treatments for NDM at this time.
NDM patients experience constant, lifelong symptoms and
their impact on quality of life is comparable to that of some
muscular dystrophies [61, 62]. A quarter of subjects in a nat-
ural history study of NDM were disabled or unemployed due
to NDM [24]. Sodium channel blockers are effective in reduc-
ing myotonia by reducing sarcolemmal excitability, irrespec-
tive of the underlying channel defect, be it CLCN1 or SCN4A
[63]. This suggests that the effects may due to modulation of
normal sodium channels, rather than due to the effect on mu-
tant channels. The sodium channel blockers are used off-label

and include anti-epileptics, anesthetics, and anti-arrhythmic
drugs (Table 1).

Anecdotal data support the use of quinine [74], procain-
amide [74, 75], and phenytoin [75] in patients with myotonia.
Additionally, there is evidence that the symptoms of autoso-
mal recessive MC and PMC may be more effectively man-
aged with class 1B anti-arrhythmics, tocainide (withdrawn
from the market), or mexiletine [76, 77].

In a prospective multinational NDM study, about 40% pa-
tients were not on any anti-myotonic treatment [24].
Subsequently, a randomized double-blind placebo-controlled
study was performed to study effects of mexiletine in NDM.
Mexiletine 200 mg three times a day both significantly re-
duced stiffness and improved severity of graded myotonia
on electromyography and quality of life measures [65].
However, 15% of the subjects experienced GI side effects
and a third of the subjects had suboptimal or no response.
Further, there is a black box warning regarding increased mor-
tality in asymptomatic non-life-threatening ventricular ar-
rhythmias in patients who had a myocardial infarction 6 days
to 2 years prior. Due to this pro-arrythmogenic potential, pa-
tients using mexiletine should have EKG monitoring.

Ranolazine, an anti-anginal drug, demonstrated anti-
myotonic properties in a MC mouse model leading to a pilot
study in NDM patients. It significantly improved self-reported
severity of stiffness and weakness, reduced Timed Up and Go
and grip times, and reduced myotonia during electromyogra-
phy. Dosage was 500 mg twice a day and was further in-
creased to 1000 mg twice a day. Larger studies are needed to
confirm the benefits of treatment [66].

Lamotrigine, another sodium channel blocker, was found
to have anti-myotonic properties at submaximal serum level
concentrations [72]. In a recent double blind, placebo-
controlled clinical trial in NDM, it effectively reduced myoto-
nia and had a low frequency of side effects. It has been sug-
gested that lamotrigine should now be considered for first line
of treatment for myotonia in treatment-naïve NDM patients
[73].

Periodic Paralyses

The primary periodic paralyses are autosomal dominant and
include hyperkalemic periodic paralysis, hypokalemic period-
ic paralysis, and Andersen–Tawil syndrome [78]. These dis-
orders are caused by mutations in sodium, calcium, and po-
tassium channel genes that reduce muscle membrane excit-
ability, leading to susceptibility to episodes of paralysis [63,
78]. Patients typically present with episodes of focal or gen-
eralized weakness that start in the first two decades of life [2,
79, 80]. Attacks are typically brought on by triggers which
include diet or rest after exercise and are often associated with
changes in extracellular potassium. Later in the disease
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course, many patients will develop fixed proximal weakness
[79, 81–85]. Attack frequency and severity can be reduced
with carbonic anhydrase inhibitors.

Clinical Features

Hyperkalemic Periodic Paralysis Prevalence of HyperPP is less
than 1:200,000 and is caused by mutations in the SCN4A gene
on chromosome 17. HyperPP lies on one end of a spectrum of
allelic SCN4A disorders which include paramyotonia congen-
ital and sodium channel myotonia (see the BNDM^ section).
HyperPP typically presents in the first decade of life with tran-
sient episodic muscle paralysis. Attacks most commonly last 1
to 4 h and are triggered by fasting, rest after exercise, ingestion
of potassium-rich foods, stress, and fatigue [79, 80].
Respiratory and cardiac muscles are typically spared; however,
rarely during severe attacks, respiratory muscles may become
involved. Strength is typically normal between attacks but
many patients can develop fixed proximal weakness later in
life. Electrical myotonia can be seen in the majority of patients
[79, 86], but less than 20% will have clinical myotonia [86].

Hypokalemic Periodic Paralysis Hypokalemic periodic paral-
ysis (HypoPP) is the most common PP and has a prevalence of
~0.13 per 100,000 [87]. It is caused by mutations involving
mostly the muscle calcium (CACNA1S, chromosome 1) and
less frequently the sodium (SCN4A, chromosome 17) channel

genes. HypoPP is characterized by episodic attacks of weak-
ness associated with low serum potassium beginning in the
first or second decade of life and without clinical or electrical
myotonia. Patients experience attacks of flaccid paralysis that
typically occur upon awakening in the night or in the early
morning. The attacks can be of variable severity, ranging from
mild weakness to profound paralysis, each lasting from hours
to days [79]. Attack frequency can be daily or few episodes in
a lifetime and typically reduces after age 40 [80].
Carbohydrate-rich foods, stress, alcohol, rest after exercise,
menstruation, and certain medications (β agonists, insulin,
and corticosteroids) can trigger attacks. Potassium levels can
drop to < 3.0 mmol/L during attacks. Rarely, ocular, bulbar,
and respiratory muscles can be involved in severe attacks.
Although many attacks may be mild in nature, patients still
experience significant lifetime morbidity due to the unpredict-
able and disabling nature of attacks, and variable degrees of
fixed weakness that occur over time [81, 83].

Andersen–Tawil Syndrome Andersen–Tawil syndrome (ATS)
is a rare autosomal dominant disorder with a prevalence of
~1:1,000,000 characterized by the clinical triad [88]:

& Episodic flaccid muscle weakness, in the setting of high,
low, or normal potassium

& Ventricular arrhythmias and prolonged QT interval
& Dysmorphic features

Table 1 Anti-myotonic drugs used to treat symptoms of NDM [64]

Anti-myotonic drugs Dosage Side effects Monitoring

Mexiletine [65] Start 150 mg BID with slow
titration to 200–300 mg TID

GI distress, tremor, ataxia LFTs, EKG

Ranolazine [66] 500–1000 mg BID GI distress, dizziness, headache, prolonged
QT interval, vasovagal syncope

Renal function periodically with
creatinine clearance < 60 mL/min

Quinine [67] 200–1200 mg/day Cardiac arrhythmias, hypersensitivity
reactions, bone marrow suppression,
liver damage, GI distress, visual
disturbance

CBC with platelet count, LFTs,
blood glucose, EKG,
ophthalmologic evaluation

Procainamide [67, 68] 125–1000 mg/day Rash, GI distress, positive ANA EKG, creatinine, CBC, ANA

Phenytoin [67, 68] 300–400 mg/day Gingival hypertrophy, agranulocytosis,
pancytopenia, rash, cognitive
impairment, liver damage

CBC, LFTs

Flecainide [69] Start 100 mg/day, titrate to
100 mg BID

Cardiac arrhythmias, dizziness, rash EKG, periodic drug serum
concentrations

Carbamazepine [70] 20 mg/kg divided TID Rash, agranulocytosis, pancytopenia, liver
damage

LFTs, CBC, TSH

Acetazolamide [67, 71] 125 mg BID with slow titration
to goal dose 250 mg TID

GI distress, electrolyte abnormalities
(hypokalemia, hyponatremia),
paresthesias, nephrolithiasis, rash,
agranulocytosis

Serum electrolytes, LFTs, CBC

Lamotrigine [72, 73] Start at 25 mg qday and titrate
slowly to 300 mg qday

Headache, fatigue, and skin rash LFTs, renal function as hepatic and
renal impairment will drive dose
reduction

ANA= antinuclear antibodies; BID = twice a day; CBC = complete blood count; GI = gastrointestinal; LFTs = liver function tests; NA = not applicable;
TID = 3 times a day; TSH = thyroid-stimulating hormone
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Approximately 60% of ATS patients will have a mutation
in a potassium inward rectifier KCNJ2 on chromosome 17.
Attacks of weakness usually start in the first or second decade
of life; duration and frequency are variable and potassium
levels are either low, high, or normal during attacks [80].
Characteristic physical features include short stature, low-set
ears, hypertelorism, broad nasal bridge, micrognathia,
clinodactyly, syndactyly, scoliosis, and toes joined at the base
[88]. Cardiac manifestations consist of premature ventricular
contractions, prominent u-wave, ventricular bigeminy, bidi-
rectional ventricular tachycardia, and polymorphic ventricular
tachyarrhythmia. Most cardiac arrhythmias will remain
asymptomatic; however, some may experience palpitations
or syncope or, very rarely, sudden cardiac death [89].

Thyrotoxic hypokalemic periodic paralysis (TPP) is char-
acterized by episodes of weakness, hypokalemia, and thyro-
toxicosis. These transient attacks resemble those of patients
with familial hypokalemic periodic paralysis (hypoKPP) and
resolve with treatment of the underlying hyperthyroidism. It is
most prevalent in Asian and Latin American men.
Approximately, a third of the patients will have a mutation
in the KCNJ18 gene which encodes an inwardly rectifying
KCN channel Kir2.6 [90].

Diagnosis

Diagnosis of primary periodic paralyses is based on history of
attacks of flaccid paralysis, positive family history, character-
istic ictal changes in serum potassium (high or low),
prolonged exercise test, and exclusion of secondary causes
of hypokalemia and hyperkalemia. Thyroid testing should be
performed to evaluate for thyrotoxicosis-related HypoPP. Of
note, lack of family history should not preclude a diagnosis of
periodic paralysis. Although genetic testing is the gold stan-
dard to confirm definite PP, significant number of patients will
have no identifiable mutation.

During an acute attack, neurological examination will re-
veal flaccid paralysis and loss of muscle stretch reflexes in
affected limbs. Ictal potassium will be low in primary
HypoPP, often < 3.0 mmol/L; in HyperPP, elevations in po-
tassium > 5 mmol/l or increases > 1.5 mmol/L are often seen.
In about 50% cases of primary HyperPP, the potassium level
will remain within normal range during an attack [86, 91]. In
ATS, potassium can be low, high, or normal during attacks. It
is important to always verify that the disorder is primary PP
and not secondary to metabolic disorders resulting in low or
high potassium and subsequent paralysis (Table 2). At the
minimum, basic electrolyte studies and thyroid studies should
be performed in all patients. Non-specific elevations in serum
creatine kinase may be seen during attacks. Diagnosis of ATS
can be made when an individual has two of the three cardinal
features: PP, ventricular arrhythmia, or the dysmorphic fea-
tures described above. However, not all features might be

present and so, ATS should also be suspected in isolated PP
or polymorphic ventricular ectopy [89, 92, 93]. Muscle biop-
sies show non-specific myopathic changes. Vacuoles may be
seen in HypoPP or HyperPP [79]. Tubular aggregates can be
seen in HypoPP and ATS.

Electrodiagnostic testing is an important diagnostic tool in
PP. On needle electromyography, myotonic discharges can be
seen in HyperPP. The long exercise test is a sensitive test
performed routinely prior to genetic testing. In this test, focal
attack of weakness is induced by exercise of a single muscle.
During testing, patients are instructed to contract the abductor
digiti minimi muscle in an isometric fashion (usually alternat-
ing 15-s contractions with 3–4 s of rest) for up to 5 min against
fixed resistance and then compound muscle action potentials
(CMAPs) are recorded every 1 to 2 min for up to 1 h after
exercise. Characteristic reduction in CMAP amplitude of >
40% from the maximum CMAP during or after exercise is
considered abnormal. Sensitivity of this test is 70% in diag-
nosing PP [40, 42, 43].

Genetic testing is required for confirmation and will iden-
tify a mutation in ~60 to 70% of patients. Although a known
pathogenic mutation is confirmatory, a variant of unknown
significance should be interpreted with caution. In such cases,
family members should be tested or functional testing of the
variant should be performed to understand its significance.

Pathophysiology

In all forms of primary PP, there is aberrant depolarization
which inactivates sodium channels and leads to muscle mem-
brane inexcitability [94]. HyperPP, caused by missense muta-
tions in the α pore-forming unit of the SCN4A gene, is unique
in that it demonstrates both myotonia and paralysis in the
same patient. Modeling studies have suggested that develop-
ment of myotonia or paralysis depends on the extent of

Table 2 Conditions
associated with
secondary periodic
paralysis [64]

Low potassium

Thyrotoxic

Primary hyperaldosteronism

Renal tubular acidosis

Juxtaglomerular apparatus hyperplasia

Gastrointestinal potassium wastage

Laxative abuse

Licorice

Corticosteroids

Potassium-depleting diuretics

High potassium

Addison’s disease

Hypoaldosteronism

Potassium-sparing diuretics

Excessive potassium supplementation
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persistent inward sodium currents [4]. Most mutations alter
the rate of sodium channel inactivation, but mutations associ-
ated with HyperPP also result in incomplete inactivation and
thus larger persistent inward depolarizing currents. When in-
ward currents are large enough to shift the resting membrane
to depolarized potentials, SCN4A channels switch to an inac-
tive configuration subsequently leading to paralysis. The dif-
ferences in clinical severity of attacks and triggers are depen-
dent on the type of affected channel gene and the change in the
mutant channel function.

Almost all mutations associated with HypoPP in both cal-
cium and sodium channels occur at arginine residues in the
fourth transmembrane (S4) segment of the voltage sensor do-
mains [95]. More recent studies have shown that in response
to changes inmembrane potential, the S4 segment translocates
through a crevasse, or Bgating pore,^ in the channel protein. In
patients with HypoPP, mutations in the S4 region cause this
Bgating pore^ to conduct ions at rest. Typically, this
depolarizing gating pore current is small, but in low potassium
conditions, the repolarizing potassium current becomes small
and so the net balance may shift to depolarization. This causes
the membrane to depolarize and sodium channels to switch to
an inactive configuration—making the sarcolemma
inexcitable. This anomalous gating pore current has been
demonstrated in mouse models for both sodium and calcium
channel HypoPP [96, 97].

The exact pathophysiological mechanism of ATS is not
known. The potassium inward rectifier (Kir2.1) helps set the
resting membrane potential in the skeletal and cardiac muscle,
and contributes to the terminal repolarization phase of the
cardiac action potential [88, 89] Mutations are thought to re-
sult in sustained depolarization, leading to failure of action
potential propagation and flaccid paralysis [88].

Therapeutic Options

A multipronged approach should be used in treating patients
with primary PP. Importantly, lifestyle and behavioral modifi-
cations such as recognition and avoidance of triggers are cru-
cial in reducing paralytic attacks. Patients with HypoPP ben-
efit from smaller but frequent meals, low salt, and avoidance
of large amounts of carbohydrates. In contrast, HyperPP pa-
tients benefit from carbohydrate snacks, but should avoid
potassium-rich foods, fasting state, and medications that in-
crease potassium (e.g., spironolactone). For all the periodic
paralyses, mild exercise at the attack onset can help prevent
a full-blown attack of paralysis.

Pharmacologic treatment comprises of abortive therapy
and preventive therapy with a goal of reducing attack frequen-
cy and severity (Table 3). Treatment options are limited and
dichlorphenamide is the only FDA-approved treatment for
primary PP. For patients who cannot tolerate or do not respond
to dichlorphenamide or acetazolamide, potassium-sparing

diuretics may prove useful for HypoPP. For HyperPP, hydro-
chlorothiazide may be effective.

Carbonic anhydrase inhibitors, acetazolamide and
dichlorphenamide, have been used for decades to treat PP,
but the mechanism of action is not well understood. They
promote kaliuresis and increase urinary bicarbonate excretion
thereby leading to metabolic acidosis which may reduce sus-
ceptibility to PP [98]. An alternative mechanism may be en-
hanced opening of calcium-activated K channels and the mild
diuretic effects [99]. Common side effects of carbonic
anhydrase inhibitors include paresthesias, fatigue, mild cogni-
tive disturbance, and nephrolithiasis [100–102]. In a recent
randomized placebo-controlled trial of dichlorphenamide in
PP, the median attack rate was lower in HypoPP compared
to that of placebo (0.3 vs 2.4, p = 0.02). It was found to be safe
and also improved quality of life in HypoPP. In HyperPP, the
attack rate was lower, but did not reach statistical significance
(0.9 vs 4.8, p = 0.10). Dosage was 50 mg bid in treatment-
naïve patients and the mean dose was 82 mg per day [100].

Management of HypoPP or ATS due to hypokalemia:
Abortive therapy: Potassium supplementation can be effec-

tive in treating acute attacks of paralysis; preferred route of
administration is oral. Treatment options include the following
[2, 81]:

I. Oral potassium: 0.2 to 0.4 mEq/kg every 30 min not to
exceed 200 to 250 mEq/day.

II. Intravenous potassium: 40 mEq/L in 5% mannitol solu-
tion to run at a maximum of 20 mEq/h, not to exceed 200
to 250 mEq/day. Avoid potassium in glucose- and saline-
containing solutions as this may worsen weakness [103]

III. Arrhythmias have been reported in HypoPP and so car-
diac monitoring is recommended during an acute para-
lytic attack as well as during treatment of hypokalemia
[104].

Chronic therapy: Approximately, only 50% of genotyped
patients with hypokalemic periodic paralysis respond to acet-
azolamide, most of whom have calcium channel mutations
[105]. Exacerbation has been reported with acetazolamide in
sodium channel mutations [106–108]. Treatment options in-
clude the following:

I. Low sodium and low carbohydrate diet; daily slow release
potassium salt

II. Acetazolamide 125 to 1000 mg/day [109, 110]
III. Dichlorphenamide 50 mg bid; maximum dosage 200 mg

per day [100].
IV. Potassium-sparing diuretics: triamterene 50 to 150 mg

per day, spironolactone 25 to 100 mg per day, or
eplerenone 50 to 100 mg per day [2, 111]. Eplerenone
is preferred over spironolactone as the latter can cause
gynecomastia.
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Management of HyperPP or ATS due to hyperkalemia:
Abortive therapy: Usually mild exercise or oral carbohy-

drate snacks are enough to abort attacks. If attacks persist or
are severe, inhaled β-agonist or intravenous calcium gluco-
nate can be used. Salbutamol dosage is 1 to 2 puffs (0.1 mg)
[112]. As in HypoPP, severe attacks requiring repeat interven-
tions should be monitored on telemetry.

Chronic therapy: Treatment options include the following:

I. Avoid potassium-rich foods; multiple carbohydrate snacks
during the day

II. Acetazolamide 125 to 1000 mg/day [109, 110]
III. Dichlorphenamide 50 mg bid; maximum dosage 200 mg

per day [100]
IV. Hydrochlorothiazide 25 to 50 mg per day [113]

ATS requires a multidisciplinary approach to patient care
with yearly follow-up with cardiology. Patients may require
yearly Holter monitor evaluation, and if symptomatic arrhyth-
mias develop, they may require implantable ICDs.
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