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Abstract ALS is a devastating disease resulting in degenera-
tion of motor neurons (MNs) in the brain and spinal cord. The
survival of MNs strongly depends on surrounding glial cells
and neurotrophic support from muscles. We previously dem-
onstrated that boundary cap neural crest stem cells (bNCSCs)
can give rise to neurons and glial cells in vitro and in vivo and
have multiple beneficial effects on co-cultured and co-
implanted cells, including neural cells. In this paper, we inves-
tigate if bNCSCs may improve survival of MNs harboring a
mutant form of human SOD1 (SOD1°%*4) in vitro under nor-
mal conditions and oxidative stress and in vivo after implan-
tation to the spinal cord. We found that survival of SOD19%4
MN:ss in vitro was increased in the presence of bNCSCs under
normal conditions as well as under oxidative stress. In addi-
tion, when SOD19%** MN precursors were implanted to the
spinal cord of adult mice, their survival was increased when
they were co-implanted with bNCSCs. These findings show
that bNCSCs support survival of SOD19”** MNs in normal
conditions and under oxidative stress in vitro and improve
their survival in vivo, suggesting that bNCSCs have a potential
for the development of novel stem cell-based therapeutic ap-
proaches in ALS models.

Keywords Amyotrophic lateral sclerosis -
Neurodegeneration - Neuroglia - Oxidative stress -
Transplantation

Tanya Aggarwal and Jan Hoeber contributed equally to this work.

< Elena N Kozlova
elena.kozlova@neuro.uu.se

' Department of Neuroscience, Uppsala University Biomedical Center,

Box 593, 75124 Uppsala, Sweden

Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive, neuro-
degenerative disorder affecting primarily upper and lower mo-
tor neurons (MNs), and usually leading to the death of the
patient, most commonly due to respiratory failure. The gluta-
mate signaling antagonist Riluzole has a measurable positive
effect on disease progression and is relatively free of side
effects. Riluzole acts by attenuating excitotoxic impact on
endangered MNs, and is currently the only available approved
ALS treatment, but offers not more than a few months extend-
ed life expectancy [1]. Riluzole exerts a wide range of neural
effects which can influence neuronal activity and survival,
although the mechanism of action still remains controversial
[2]. About 10% of ALS cases are familial and several genetic
mutations linked to this group of patients have been identified.
Mutations in superoxide dismutase (SOD)1 are found in about
20% of familial cases and in a few percent of sporadic ALS
cases [3]. SODI1 is an enzyme that helps in the catalysis of
dismutation of superoxide to molecular oxygen and hydrogen
peroxide [3]. The association between mutant SOD1 and ALS
onset, and the subsequent generation of transgenic animals
harboring human mutant and non-mutant forms of SODI,
have played a pivotal role and remains a cornerstone in re-
search on the pathogenesis of ALS and in the search for novel
therapeutic treatment of this disease [3]. To date, more than
150 SOD1 mutations have been identified and SOD19%*# is
the most widely studied model for ALS pathogenesis [3].
Mutant SOD1 affects not only intrinsic properties of MNs,
but also results in a neurotoxic astroglial phenotype, inducing
degeneration of wild type MNs in vitro [4-7] and in vivo after
transplantation into the spinal cord of rats [8]. Furthermore,
astrocytes from patients with sporadic as well as familial ALS
exert a toxic effect on primary MNs in vitro [9, 10]. Conversely,
deletion of mutant SOD1 in astrocytes of transgenic mice
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significantly delays disease progression [11]. Wild type astro-
cytes release factors that promote survival of co-cultured mu-
tant SOD1 MNs [12]. Implantation of stem/progenitor cell-
derived astrocytes into the spinal cord or ventricular system
of transgenic mice with mutant SOD1 promotes MN survival
and delays disease progression [13, 14].

Boundary cap neural crest stem cells (bNCSCs) is a transient
neural crest-derived group of cells that are located at the dorsal
root entry zone (DREZ) [15]. These cells self-renew and show
multipotency in culture and are able to differentiate into sensory
neurons and Schwann cells in vitro and in vivo [15], as well as
into astrocytes in vitro and after transplantation into the imma-
ture mouse brain [16]. We have previously shown remarkable,
beneficial effects of bNCSCs on co-cultured [17, 18] and co-
implanted pancreatic beta-cells [19], as well as excitotoxically
challenged spinal cord neurons in vitro (unpublished observa-
tion). Interestingly, another type of NCSCs, the hair follicle
stem cells, did not have corresponding positive effects on co-
cultured cells [20].

These findings prompted us to test if bNCSCs have a ben-
eficial effect on co-cultured and co-implanted
SOD19*A*MNs, generated from SOD19%** mouse embryon-
ic stem cells (mESCs). These cell lines express green fluores-
cent protein (GFP) under the control of the promoter for the
MN specific transcription factor HB9 (HB9::GFP cells),
allowing their identification after directed differentiation to
MN progenitors [21]. Furthermore, the survival of MN from
the same SOD19%** mESC line was previously analyzed
in vitro under normal conditions [21]. Here, we investigate
their survival in normal conditions and under oxidative stress
and the effect of bBNCSCs on SOD19”** MN survival.
Generation of MNs from mESCs results also in abundant
generation of astrocytes. These cells express glutamate aspar-
tate transporter (GLAST) and can be identified by anti-
GLAST antibodies [22]. To exclude the negative effect from
surrounding SOD19%*4 astrocytes on SOD19%** MNs, we
used magnetic activated cell sorting (MACS) to eliminate
GLAST-positive cells from SOD19** mESC cultures. To
compare the effect of bBNCSCs on SOD19%** MN survival
with mESC derived astrocytes, we used astrocytes differenti-
ated from a non-SOD1 mutated glial fibrillary acidic protein
(GFAP)::CD14 mESC line [23].

Our findings show that bNCSCs exert a significant survival
promoting effect on co-cultured and co-implanted SOD19%*4
MNS.

Material and methods
Mouse embryonic stem cell (mESC) cultures

Mouse embryonic stem cell (mESC) lines harboring human
wild type SOD1 (SOD1™T) or mutant SOD1 (SOD19%34)
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were a kind gift from Dr. Kevin Eggan (Harvard Stem Cell
Institute). The risk of tumor formation for implanted cells
from low passages is minimal. These cell lines carry green
fluorescent protein (GFP) under the control of the promoter
for the MN specific transcription factor HB9 (HB9::GFP cells)
[21]. We used the SOD1™T and SOD1°”** mESC lines to
derive GFP* MNs.

For MN differentiation, a previously published protocol
with small modifications was used [24]. Cells were cultured
in ADFNB medium consisting of Advanced D-MEM/
F12:Neurobasal (1:1), 1x GlutaMAX supplement
(Invitrogen), 1x B27 supplement (Invitrogen), 1x N2 supple-
ment (Invitrogen), 0.1 mM 2-mercaptoethanol (Sigma) to
form embryoid bodies (EBs), and supplemented with
0.1 uM of retinoic acid (RA, Sigma) and 0.5 uM of sonic
hedgehog (Shh) agonist Agl.3 (Curis) every other day. After
7 days of pre-differentiation, EBs were subjected to MACS
(see below), and thereafter either cultured alone, co-cultured
with bNCSCs, or with mESC-derived astrocytes.

For in vitro MN differentiation, EBs were enzymatically
dissociated with TrypLE™ Express (Gibco) and seeded on
pre-coated coverslips with 0.01% poly-l-ornithine (Sigma)
followed by 10 pg/mL laminin (Sigma). Cells were seeded
at a density of 5% 10* cells/coverslip in 24 well plates with
ADFNB cell medium supplemented with 10 ng/mL of CNTF
(Miltenyi Biotec) and GDNF (Miltenyi Biotec). 50% of the
medium was replaced with fresh medium every other day until
the cultures were fixed in 4% paraformaldehyde in phosphate
buffered saline (PBS; 137 mM NaCl, 2.7 mM KCIl, 100 mM
Na,HPO,, 18 mM KH,PO,) at the indicated time points.

bNCSC culture

bNCSCs were generated from transgenic mice harboring red
fluorescent protein (RFP) under the universal actin promoter
[25] according to previously published protocols [15, 26].
Neurospheres from passages 4 to 5 were trypsinized to obtain
single cell suspensions for MACS for subsequent co-culture
and co-implantation with SOD19”3* MNs.

Derivation of astrocytes from GFA P::CD14 mESC culture

Astrocytes were generated from GFAP::CD14 mESCs (kind
gift from Dr. Ivo Lieberam, Kings College, London), using
MACS as has been previously described [23] with minor
modifications. At day 7 of differentiation, the EBs were re-
plated into T75 flasks (Sarstedt) pre-coated with 10 pg/mL
laminin and cultured until day 12 in ADFNB medium. The
monolayer formed by EBs was treated with TrypLE™
Express on day 12 and a single cell suspension was prepared
for MACS. Anti-CD14 antibody conjugated with magnetic
microbeads was used according to the manufacturers protocol
(Miltenyi Biotec).
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Magnetic activated cell sorting (MACS)

Anti-GLAST (ACSA-1) antibodies were used for MACS ac-
cording to the manufacturers protocol (Miltenyi Biotec).
bNCSCs and GFAP::CD14 EBs were subjected to MACS to
obtain astrocyte cultures. SOD19%** EBs were subjected to
MACS using anti-GLAST to deplete SOD19%** MN cultures
from SOD19%** astrocytes.

Culture suspensions containing around 3 x 10° cells were
labeled with anti-GLAST antibodies. Thereafter, anti-mouse
IgG magnetic microbeads (Miltenyi Biotec) were applied to
the cells for 15 minutes at 4 °C. Cells were re-suspended in
MACS buffer (Miltenyi Biotec) and the cell suspension was
loaded onto a MACS separation column (Miltenyi Biotec) and
placed in the magnetic field of a MACS separator.

The column was rinsed three times with 0.5 mL of MACS
buffer. In the case of the SOD19** cell line, the GLAST-
positive fraction was removed to minimize the influence of
SOD19%*4 astrocytes on SOD19%** MNs. For bNCSCs and
GFAP::CD14 EBs, the GLAST positive fractions were used
for the experiments.

For differentiation assays, 5 x 10* of SOD19%** cells were
seeded on 0.01% poly-l-ornithine and 10 pg/mL laminin coat-
ed coverslips. In case of co-cultures, around 2 x 10* bNCSCs
or GFAP::CD14 mESC-derived astrocytes were seeded first
followed by SOD19%** MNGs.

Oxidative stress assay

Oxidative stress was induced by hydrogen peroxide (H,O,) in
SODI™T MNs and SOD19%** MNss plated alone or together
with bNCSCs. In addition, bNCSCs were treated alone with
H,0, at similar concentrations to test their survival capacity
under these conditions. On day 4 of differentiation assay,
H,0, (60 uM, 150 uM, 300 uM) was added for 3 hours to
the cultures. Thereafter, the coverslips were fixed and ana-
lyzed for MN or bNCSC survival (GFP-positive or RFP-
positive cells, respectively). For each condition at least three
experiments were performed.

Animals

Transplantations were performed in Crl:NU(NCr)-Foxnlnu
(nude; nu/nu) NMRI adult male mice (n=12), (body weight
25-35 g; Mollegaard and Bomholgard Breeding and Research
Centre, M&B A/S, Bombholt, Denmark, http://www.taconic.
com). The serial sections were from the spinal cords of six
animals — three of which received bNCSCs and SOD1°”**
MN precursors (treatment group) and three only SOD19%*#
MN precursors (control group)—were analyzed under
confocal microscope for MN survival and glial response. All
animal experiments were approved by the Local Ethical
Committee for Animal Experimentation, Uppsala, as

required by Swedish Legislation and in accordance with
European Union Directives.

Surgery

The animals were anesthetized by spontaneous inhalation of
Isoflurane. After onset of anesthesia the mouse was placed on
its stomach on a heating pad (36 °C) and the skin cleaned with
ethanol (70%). Following a procedure previously established
in rats [27], an incision was made in the midline of the neck
skin and local anesthetic (Xylocain©, 10 mg/ml) applied to
the wound. After blunt dissection of the superficial and deep
back muscles, the laminae of the cervical vertebrae were ex-
posed. The vertebra prominens (C7) was held fixed with a pair
of forceps, a partial laminectomy was made of vertebrae C3 to
C5, and the exposed meninges were gently opened. 4 uL (2
injections of 2 uL each, around 50 000 cells per mouse) of
equal proportion of bNCSCs and SOD1°%** MN precursors
were injected into the left spinal cord using a Hamilton syringe
with a metal needle (26 gauge) attached to a stereotactic frame
and connected to an infusion pump (KD Scientific Legato
130). For the control group an equal amount of cells contain-
ing only SOD19%** MN precursors were injected. The needle
was kept in place for 2 minutes before removal. The wound
was closed in layers using ethilon nylon suture 6.0 and 4.0,
respectively. The animals were given 50 pl buprenorphine
(Temgesic©) subcutaneously every 12 hours for 3 days after
the operation.

Seven days after surgery the animals were re-anesthetized
with an intraperitoneal injection of a mixture of ketamine,
xylazine and acepromazine [28], and perfused via the left
ventricle with warm saline solution (~38 °C) followed by a
cold (~4 °C) fixative solution consisting of 4% formaldehyde
(vol/vol), 14% saturated picric acid (wt/vol) in phosphate
buffered saline (PBS; pH 7.35-7.45). The relevant part of the
cervical spinal cord was removed, placed in fixative solution
for 4 hours, and thereafter cryoprotected overnight in PBS
containing 15% sucrose. The following day the tissue was
placed in TissueTech™ and frozen in liquid nitrogen.
Transverse sections (14 pm) were cut on a cryostat, collected
on SuperFrost™ Plus slides (Menzel-Glaser, Braunschweig,
Germany), and processed for immunohistochemistry and mi-
croscopic analysis as described below.

Immunohistochemistry

Cells were fixed in 4% phosphate-buffered paraformaldehyde
at room temperature (RT) for 5 minutes, washed and left in
blocking solution (1% bovine serum albumin, 0.3% Triton
X-100 and 0.1% NaNj; in PBS) for 60 minutes, and then
incubated with primary antibodies overnight at 4 °C, followed
by the appropriate secondary antibodies for 1 hour at RT
(Table 1). During the final wash, the cells were incubated with
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Table 1 Antibodies used in the
study Antigen Host Catalog number ~ Source Dilution
Primary
Human SOD1 misfolded  Mouse MM-0070-2 Medimabs 1:100
GFAP Rabbit 2016-04 Dako 1:500
Ibal Rabbit 019-19741 Wako 1:500
Beta-3-tubulin Mouse 32-2600 Invitrogen 1:500
ACSA-1 (GLAST) Mouse 130-095-822 Miltenyi Biotec 1:100
SOX2 Goat Sc-17320 Santa Cruz 1:200
GFP-FITC Goat ab6662 Abcam 1:250
Secondary
Alexa 647 Donkey o« mouse ~ A31571 Invitrogen 1:500
Alexa 647 Donkey « rabbit ~ A31573 Invitrogen 1:500
FITC Donkey o goat 705-095-147 Jackson ImmunoResearch ~ 1:200
AMCA 350 Donkey « rabbit 711-155-152 Jackson ImmunoResearch ~ 1:100
Cy3 Donkey o mouse ~ 715-165-151 Jackson ImmunoResearch ~ 1:500

Hoechst 33342 (1:10000; Invitrogen) to label cell nuclei, and
then mounted on a glass slide for analysis. bBNCSC
neurospheres were fixed for 30 minutes, immersed in 15%
sucrose overnight, cryosectioned the next day and sections
processed for immunohistochemistry.

Transverse sections from the C3-5 spinal cord were pre-
incubated with blocking solution for 1 hr at RT and then in-
cubated overnight at 4 °C with primary antibodies for the
astroglial marker GFAP or microglia/macrophage marker
Ibal followed by the appropriate secondary antibodies and
anti-GFP-FITC for 1 hour at RT (Table 1).

Microscopy and cell counting

Cells on coverslips and spinal cord cryosections were captured
using a 20x objective (NA 0.75) of a Nikon Eclipse E800
epifluorescence microscope equipped with a Nikon
DXM1200F CCD camera. For cultured cells, GFP and RFP
positive cells were counted manually for each condition. GFP
positive cells were counted in every 5th cryosection along the
length of the transplant area (ranging from ~0.8 to 1.5 mm
along the cranial-caudal axis between animals). Sections were
analysed using a Zeiss LSM700 or a Zeiss LSM780 confocal
laser scanning microscope. Images were captured using a LD
LCI Plan-Apochromat 20x (NA 0.8) or a LD C-Apochromat
40x W Corr (NA 1.1) objective.

Statistical Analysis

Datasets for oxidative stress and survival assays were ana-
lyzed using two-way ANOVA followed by the Bonferroni
multiple comparisons tests. MN survival was analyzed using
a two-tailed Students t-test. All statistical analyses were per-
formed in GraphPad Prism 5.04. The confidence interval was
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stated at the 95% confidence level, placing statistical signifi-
cance at p<0.05.

Results
Improved survival of SOD1%%** MNs in vitro

Both SOD1™" and SOD1°%** mESC lines formed EBs with
abundant expression of HB9::GFP and gave rise to GFP* MN
precursors in culture (Supplementary Fig. 1).

bNCSCs neurospheres abundantly expressed RFP, the neural
crest stem cell marker SOX2 and GLAST (after MACS purifi-
cation), and continued to express RFP in differentiation assay in
co-culture and co-implants (Supplementary Figs. 2, 3 and 4).
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Fig. 1 Survival of SODIVT and SOD1°?** MNs in vitro. The
SOD19%** cell line shows a reduced MN survival compared to the
SODI™T cell line between days 2 and 7. Asterisks indicate the level of
statistical significance by two-way ANOVA followed by Bonferroni
multiple comparison test (*** p<0.001). Data shown is in mean+ SEM
of three independent experiments
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The poor survival of SOD19%*4 MNs in vitro has been

compared to MNs derived from the HB9::GFP cell line in a
previous study [21]. Here we compare the survival of
SOD19%*A MNs with SOD1™T MNs to confirm that the re-
duced survival is due to the SOD19%** mutation. Cells from
both cultures were subjected to differentiation assay and GFP*
MNs were counted after 2, 5 and 7 days of differentiation. The
number of MNs declined more rapidly in SOD19%** cultures
at day 5 of differentiation (p<0.001) (Fig. 1).

During MN differentiation from mESCs, a population of
astrocytes is also present. Previous studies have shown a neg-
ative effect of SOD19%*# astrocytes on MNs [21]. We there-
fore examined if a reduction of the astrocyte population in
SOD19%4 cultures will improve MN survival and if co-
culture with bNCSCs, or with GFAP::CD14 astrocytes will
improve the survival of SOD19%*4 MNs.

After reduction of the astrocyte population in SOD19%*4
cultures there was an approximate 75% increase in the number
of SOD1°%** MNs 12 hours after purification compared to
non-purified cell cultures (Fig. 2a; p<0.01). The survival of
SOD19%** MNs was significantly increased in co-culture
with bNCSC by day 7 (Fig. 2b; p<0.01 and p <0.05), where-
as co-culture of SOD19%** MNs with GFAP::CD14 astrocytes
did not affect MN survival (Fig. 2c).

We detected close contact between SOD19%** MNs and
bNCSCs, but did not observe immunoreactivity for misfolded
SOD1 in bNCSCs, suggesting that aggregated SOD1 was not
transferred from SOD19%** MNs to adjacent bNCSCs

(Fig. 3).

bNCSCs improve survival of SOD1%*** MNs in vitro
under oxidative stress

We compared the survival of SOD19%** MNs and SOD1WT
MN's under oxidative stress. Survival of SOD1%%*4 MNs was

markedly decreased (p<0.01 and p<0.05) compared to
SOD1"T MNs, indicating that SOD19%** MNs are more sus-
ceptible than wildtype MNs to oxidative stress (Fig. 4a). Co-
culture of SOD1°”** MNs with bNCSCs under oxidative
stress showed a significant increase in SOD19%** MN surviv-
al compared to SOD19%** MNss cultured alone (p<0.001 and
p<0.05, Fig. 4b).

We next tested if bNCSCs are susceptible to oxidative
stress under similar oxidative stress conditions and found no
effect of H,O, exposure on the survival of bNCSCs in vitro
(Supplementary Fig. 3).

SOD1%%** MNs show increased survival in the presence
of bNCSC:s in vivo

SOD19%** MNs alone or together with bNCSCs were im-
planted into the left spinal cord of nude mice, and the survival
of implanted MNs was assessed one week after implantation.
In all animals which received SOD19%** MN precursors to-
gether with bNCSCs, significantly more GFP* SOD19%*4
MNs were detected compared to animals that received
SOD19%3A MN precursors alone (Student’s t-test, p<0.05,
Fig. 5a). The surviving MNs were located in the proximity
of bNCSCs or localized as single cells in the spinal cord pa-
renchyma (Fig. 5b,c). Immunolabeling with the astrocytic
marker GFAP revealed that bNCSCs differentiated primarily
to GFAP positive cells (Fig. 5e).

The improved survival of MNs in the presence of bNCSCs
after implantation prompted us to investigate if bNCSCs affect
the glial response in the recipient spinal cord in the vicinity of
implanted MN precursors. As expected, there was an in-
creased immunolabeling for GFAP and Ibal from the minor
injury at the injection site, but these changes were similar in
the two experimental groups (Fig. 5d,e). However. the glial
response for GFAP and Ibal within the area where bNCSCs
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Fig. 2 Increased survival of SOD19%** MNs in vitro by removal of
SOD19%3** astrocytes and addition of bNCSC. Removal of astrocytes
from SOD19%* cell cultures results in an increased number of
SOD1°%*A MNs (a). Survival of SOD19%*4 MNs increased when co-
cultured with bNCSCs (b). SOD19%** MN survival showed no

improvement when co-cultured with GFAP::CD14 astrocytes (c).
Asterisks indicate the level of statistical significance by two-tailed
Student’s test (a) or two-way ANOVA (b) (** p<0.01,*p<0.05). Data
shown is in mean + SEM of three independent experiments
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Fig. 3 SOD19%4 MNs in the presence or absence of bNCSCs in vitro.
Co-cultured SOD19%** cells (GFP) and bNCSCs (RFP) display close
contact on day 7 (a) and 9 (b), misfolded SOD1 was only detected in

were located seemed reduced compared to adjacent areas lack-
ing bNCSCs (Fig. 6a,b).

Discussion
There is an urgent need for novel therapeutic strategies with
enhanced effect for ALS patients. Here we show that bNCSCs

exert a significant survival promoting effect on SOD19%34
MN in vitro as well as after co-implantation to the spinal cord.
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SOD19%3A MNs. SOD19%* MNss cultured alone show reduced survival
and the presence of misfolded SOD1 on day 7 (¢) and day 9 (d). Scale bar:
50 um

Previously, we detected several beneficial effects of bNCSCs
on co-cultured and co-transplanted cells. Thus, bNCSCs
strongly increase proliferation of insulin producing beta-cells
in co-transplants of mouse pancreatic islets in streptozotocin
diabetic mice [19, 29], and in co-culture with beta-cells [17].
bNCSCs protect insulin-producing cells from cytokine in-
duced apoptosis in vitro [18], an effect which appears to re-
quire direct bNCSC- cell contact through catenin-cadherin
junctions [30]. Co-implantation of bNCSCs with mouse and
human pancreatic islets improves their survival after
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Fig. 4 Effect of hydrogen peroxide (H,0,) on SOD19%** MN survival
in vitro. Survival of SOD19°** MNs was reduced compared to SOD1WT
MNs under oxidative stress (a). Survival of SOD19%*4 MNs increased
when co-cultured with bNCSCs (SOD19%** MNs + bNCSCs) compared

transplantation and increases beta-cell proliferation, vascular-
ization of transplants and their re-innervation [29]. We also
found their survival supporting effect in spinal cord slice cul-
tures exposed to excitotoxic stress (unpublished observation).

The conditions for implanting healthy supportive cells into
the spinal cord of ALS patients imply that these cells will have
not only to survive in the harmful ALS environment, but also
exert beneficial effects on diseased MNs. For this reason we
have tested if bBNCSCs are susceptible to oxidative stress and
found that they are resistant to exposure to hydrogen peroxide
in concentrations which significantly impair survival of
SOD19%4 MNs. We next examined whether bNCSCs are
“contaminated” with misfolded SOD1 from co-cultured
SOD19%** MNs. ALS appears to begin focally at a random
location and progresses contiguously through two distinct
types of neuroanatomic propagation: contiguous propagation
through the extracellular matrix independent of synaptic con-
nections, and network propagation, which is dependent on
synaptic connections [31]. In many neurodegenerative disor-
ders misfolded proteins appear to contribute to disease pro-
gression [32]. Thus, the presence of misfolded SOD1 may
contribute to disease propagation in some forms of ALS
[33]. We detected immunoreactivity for misfolded SODI in
SOD19%3* MNs generated from SOD19°*4 mESCs.
Although astrocytes co-cultured with SOD19%*4 MNs have
been reported to be "contaminated" with aggregated SOD1
[34], we did not detect aggregated SOD1 in bNCSCs, sug-
gesting that they are resistant to relocation of misfolded
SOD1. Thus, bNCSCs display properties in vitro that may
be useful for disease modifying cell therapy in ALS.

We explored these properties in co-cultures of bNCSCs
with SOD19%** MNs subjected to oxidative stress, and dem-
onstrated significantly increased SOD19%34 MN survival
compared to untreated SOD19** MN cultures. In agreement
with previous studies [11], we found that depletion of the
astrocyte population from SOD19%*# cultures, increases MN
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to when cultured alone (SOD1%*A MN) (b). Asterisks indicate level of
statistical significance by two-way ANOVA followed by Bonferroni
multiple comparison test (*** p<0.001, ** p<0.01, *p<0.05). Data
shown is in mean + SEM of three independent experiments

survival. The addition of bNCSCs, but not healthy astrocytes,
to these cultures further improved the survival of SOD19%4
MNs under both normal and oxidative stress conditions. This
finding provides additional evidence for the potency of
bNCSCs in supporting diseased SOD19** MNs. The im-
proved SOD19%** MN survival coincided with the presence
of direct contacts between bNCSCs and SOD1934 MNs,
suggesting that the positive effect of bNCSCs might be medi-
ated through intercellular connections, as was shown previ-
ously in bNCSC-beta-cell cultures [29]. We have also shown
that bNCSCs produce a broad range of trophic factors, as well
as Wnt-1 and matrix metalloproteinases [35]. This trophic
capacity, in co-operation with direct cell-cell interaction,
may explain the survival promoting effects of bNCSCs on
SOD19%** MNs under stressful conditions in vitro.

Pre-differentiated neural cells are particularly vulnerable
during the initial period after implantation into the central
nervous system. At this stage environmental conditions that
support survival and differentiation of implanted cells are
likely to be critical for their subsequent integration into
neural circuits and long-term survival. We therefore focused
on the viability of SOD19%** MNs alone, or in combina-
tion with bNCSCs, during the first week of their implanta-
tion. One week after implantation of SOD19%** MN pre-
cursors to the spinal cord, only few surviving SOD19%4
MNs were found. Survival of SOD19%4 MNs was, how-
ever, significantly increased when co-implanted with
bNCSCs, despite the fact that twice as many SOD19%4
MN precursors were implanted alone compared to the num-
ber of SOD19%** MN precursors co-implanted with
bNCSCs. These findings show that bNCSCs create envi-
ronmental conditions for SOD19** MNs, which support
their survival in the spinal cord.

Inflammatory components have been implicated in the
neurodegeneration associated with ALS [36]. As expected,
the injection procedure resulted in a local microglial and
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Number of SOD1¢%3A MIN
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SOD1%%AMN+bNCSC

GFAP
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Fig. 5 Increased survival of SOD19%** MN after co-implantation with
bNCSC to the spinal cord of mice. One week after implantation,
SOD19%** MN co-implanted with bNCSC showed significantly
increased survival compared to SOD19%** MN implanted alone.
Asterisks indicate the level of statistical significance by two-tailed
Student’s t-test (* p<0.05). Data shown is in mean+SEM of three
animals per condition (a). SOD19°** MNs when implanted alone are
located as single cells in the spinal cord parenchyma (b). When
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SOD1%%3A MN

SOD1%%A MN+

+bNCSC

implanted together with bNCSCs, SOD19%** MNs can be found both
spread out as single cells as well as in close proximity to bNCSCs (c). The
injection site showed increased immunoreactivity for GFAP and Ibal
following implantation of either SOD1G93A MN alone (d) or co-
implantation with bNCSCs (e). Arrows indicate bNCSCs differentiated
to GFAP positive cells (e). Scale bars: b,c 25 um; d,e 10 um for GFAP
and 20 pum for Ibal
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a SOD1°%** MN+bNCSC+GFAP

Fig. 6 Transplanted bNCSCs might diminish the local glial response
following implantation. Spinal cord areas partially surrounded by
bNCSC transplants showed decreased immunoreactivity for GFAP (a,
inside) and Ibal (b, inside) and a high number of co-implanted
SOD1°%A MN (a, b). Overviews show GFAP and Ibal in blue, high

astroglial response at the site of cell implantation, but this
response did not differ between the two experimental condi-
tions. However, when areas harboring implanted cells were
analyzed, immunoreactivity for host microglia/macrophages
and astrocytes appeared reduced where SOD19%*# and
bNCSCs were co-localized, suggesting that bNCSCs are able
to attenuate the local inflammatory response associated with
implanted SOD19%** MNs. The survival support by bBNCSCs
may initially rely on direct cell-cell interactions at the site of
cell implantation where bNCSCs and SOD1%%** MN precur-
sors intermingle during the injection procedure. However, the
presence of GFP™ MNs at a distance from bNCSCs and in the
vicinity of the central canal one week after implantation indi-
cates that some implanted SOD19%** MN precursors rapidly
become independent of close contact with bNCSCs. Survival
of migrated SOD19%** MNs may be supported by bNCSC-
derived diffusible molecules, such as vascular endothelial

b SOD1%* MN+bNCSC+lba1

S

D o
ek ) T q
b L

magnification confocal images show GFAP and Ibal in white and cell
nuclei in blue for areas inside and outside the area of bNCSC
transplantation. Scale bars: a,b 25 um for overviews and 10 um for
high magnification images

growth factor (VEGF), brain-derived neurotrophic factor
(BDNF), glial-derived neurotrophic factor (GDNF), and cili-
ary neurotrophic factor (CNTF) [35], all of which have trophic
effects on MNs [37]. bNCSC-derived matrix
metalloproteinase-2 and -9 (MMP-2 and -9) [36], which have
been implicated in cell migration [38, 39], may contribute to
the migratory capacity of implanted SOD1°”** MNs to the
spinal cord parenchyma and in some cases towards the central
canal (Supplemental Fig. 4). The ependyma which surrounds
this canal is a source of growth factors [40] and was previous-
ly designated as a stem cell region in the adult spinal cord [41].
Previous studies have shown that stem cells readily generate
neurons when transplanted into neurogenic areas of the adult
brain [42, 43]. The survival of SOD1%** MN precursors in
the central canal area suggests that this is a region in the spinal
cord with neurogenic properties, which are beneficial for the
survival of implanted MN precursors.
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The ability of bNCSCs to promote vascularization of co-
implanted tissue [29] may also have contributed to improved
survival of co-implanted SOD19”** MNs. Previous studies
have shown that ALS is associated with disruption of the
blood-CNS-barrier (B-CNS-B) [44—46], a process that can
contribute to the inflammatory response in areas affected by
ALS. An interesting aspect in this context is whether the
angiogenetic properties of bNCSCs in combination with their
preferential post-implantation differentiation to healthy
SOD19%A resistant astrocytes may contribute to the forma-
tion of new blood vessels with an intact B-CNS-B in the
diseased spinal cord. Implantation of bNCSCs to animal
models of ALS may clarify the potential of these cells to
recover B-CNS-B.

In conclusion, we show that bNCSCs promote survival of
SOD19%** MNs in vitro and in vivo after co-implantation to
the spinal cord. The beneficial effects by bNCSCs might be
due to their resistance to oxidative stress and their neurotroph-
ic and angiogenic support. These properties in combination
with their resistance to SOD19%** aggregates make them in-
teresting candidates for further investigations on novel thera-
peutic approaches to achieve long-term neuroprotection in
animal models of ALS.
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