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Abstract Historically, the brain has been considered an
immune-privileged organ separated from the peripheral im-
mune system by the blood-brain barrier. However, immune
responses do occur in the brain in neurological conditions in
which the integrity of the blood—brain barrier is compromised,
exposing the brain to peripheral antigens and endogenous
danger signals. While most of the associated pathological pro-
cesses occur in the central nervous system, it is now clear that
peripheral immune cells, especially mononuclear phagocytes,
that infiltrate into the injury site play a key role in modulating
the progression of primary brain injury development. As in-
flammation is a necessary and critical component for the sub-
sequent injury resolution process, understanding the contribu-
tion of mononuclear phagocytes on the regulation of inflam-
matory responses may provide novel approaches for potential
therapies. Furthermore, predisposed comorbid conditions at
the time of stroke cause the alteration of stroke-induced im-
mune and inflammatory responses and subsequently influence
stroke outcome. In this review, we summarize a role for mi-
croglia and monocytes/macrophages in acute ischemic stroke
in the context of normal and metabolically compromised
conditions.
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Introduction

Stroke, a focal reduction of cerebral blood flow, causes energy
depletion, excitotoxicity, and ion imbalances across the plas-
ma membrane. This ischemic cascade results in loss of cellular
integrity and subsequent cellular demise by necrosis or apo-
ptosis [1]. The dying cells and debris elicit sterile inflamma-
tion, an inflammatory response in the absence of microbes, in
the ischemic brain [2]. Damage-associated molecular patterns
(DAMPs), which include modified or oxidized lipid species,
cytoplasmic proteins, DNA, RNA, and modified extracellular
matrix components, are released from the intracellular com-
partment at the time of cell demise, triggering stroke-induced
inflammation [3, 4]. Regardless of the specific trigger (i.e.,
microbial or endogenous), innate immunity via pattern recog-
nition receptors (PRRs) is believed to elicit inflammatory re-
sponses in stroke. DAMPs activate families of Toll-like recep-
tors and scavenger receptors on microglia, perivascular mac-
rophages, and endothelial cells [5]. The cytokines,
chemokines, adhesion molecules, and matrix metalloprotein-
ases these cells produce facilitate the infiltration of circulating
immune cells into the injured brain [6].

Owing to a tight correlation between the presence of in-
flammation and injury in the stroked brain, postischemic in-
flammation has been considered a negative contributing factor
to stroke outcomes. However, a growing body of evidence
indicates the importance of immune-mediated responses for
central nervous system (CNS) injury repair and recovery [7],
revealing the controversial complexity of inflammatory re-
sponses in ischemic stroke. Besides microglia, a host of im-
mune cells, including neutrophils, monocytes/macrophages,
natural killer cells, and lymphocytes, infiltrate into the stroked
hemisphere. Not only are the types of infiltrating immune cells
temporally and spatially regulated [8], but the ischemic envi-
ronment drives the function of infiltrating cells depending on


http://dx.doi.org/10.1007/s13311-016-0463-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s13311-016-0463-1&domain=pdf

Mononuclear Phagocytes in Stroke

703

the poststroke stage-specific milieu [9]. Among peripheral
immune cells, monocytes/macrophages play a pivotal role in
postischemic inflammation. Furthermore, the recognition of
their distinct pro- and anti-inflammatory subsets and of mono-
nuclear phagocyte phenotypic switching have provided fur-
ther insight into the interactions between the immune system
and CNS disease progression.

Impact of Stroke on Immunity

Excessive immune responses in the poststroke brain lead to
disturbances in peripheral immunity. The literature has consis-
tently described stroke-induced early peripheral immune acti-
vation, which is defined by increased inflammatory cytokines
in both experimental animal models and humans [10-13].
This early immune activation often progresses to immune
suppression in patients with stroke. Some studies have sug-
gested that lymphopenia and immunosuppression occur as a
compensatory mechanism against brain damage by attenuat-
ing autoreactive T-cell targeting of CNS self-antigens [14, 15].
Other studies have demonstrated that stroke-induced immune
suppression increases the risk of secondary infections and
increases mortality rates in patients [16, 17]. Up to 65 % of
patients with stroke suffer from pneumonia and urinary tract
infections [18, 19], and approximately 30 % of them die from
stroke-related infections [20—22]. Studies focusing on the in-
nate immune system have shown that stroke impairs the respi-
ratory burst and subsequent generation of inflammatory me-
diators in granulocytes and monocytes [23, 24]. Alterations of
peripheral immunity are also associated with atrophy of lym-
phatic organs, such as the spleen and thymus. This type of
atrophy was accompanied by a reduced number of leukocytes
in the spleen and an early transient increased number of leu-
kocytes in the blood followed by a sharp reduction, demon-
strating the deployment of immune cells into the circulatory
system in response to stroke [25, 26]. The reduced number of
leukocytes in the periphery was attributed to immune cell
migration to injured sites as the reduction of peripheral im-
mune cells in the spleen and blood temporally coincided with
the increased appearance of immune cells in the stroked brain
[8, 25].

The trafficking of immune cells in the poststroke brain is
both temporally and spatially coordinated [8, 25, 27, 28]. With
an early rise of resident microglia after stroke, peripheral im-
mune cells, including monocytes/macrophages, myeloid den-
dritic cells, and neutrophils, appear in the brain within 1 day
poststroke, peak in number at 3 days poststroke, and remain
sustained until 7 days poststroke. These events are followed
by relatively small increases of T and B lymphocytes. Stroke-
induced disruption of the blood—brain barrier (BBB) facilitates
the migration of immune cells into the brain [29-31].
Circulating monocytes gain access to brain parenchyma via

endothelial migration and differentiate into tissue macro-
phages. Although many studies have found that microglia
and monocytes/macrophages contribute to brain inflammation
and injury in stroke, both cell types have overlapping func-
tions and the ability to polarize toward pro- (M1) or anti-
inflammatory (M2) phenotypes. As such, their expression of
common antigens and the morphological similarity between
them have resulted in equivocal findings on their roles in
stroke [9, 32-34]. The unique temporal and spatial presence
of microglia and macrophages in the context of stroke suggest
distinctive and complementary roles of each cell type in re-
sponse to stroke injury.

Microglia

Microglia, resident macrophages in the CNS, are part of the
mononuclear phagocyte system. They arise in the brain from
early development and persist into adulthood. A long-standing
controversy regarding the ontology of microglia led to a view
that a subset of primitive myeloid precursors localized in the
yolk sac give rise to early microglia [35-37]. Microglial pre-
cursors express CX3CR1 and CD45 and travel to the
neuroectoderm in a matrix metalloproteinase-8- and matrix
metalloproteinase-9-dependent manner [36, 38]. Importantly,
these are not exchanged with fetal liver or bone marrow-
derived hematopoietic stem cells and they possess self-
renewing capability under physiologic conditions [35, 36,
39, 40]. The morphology and protein expression of microglia
are not uniform, and this heterogeneity could explain differ-
ential microglial responses in different surroundings [41, 42].
In the resting state, resident microglia constantly monitor the
surroundings. The microglial surveillance maintains hemosta-
sis in the developing and adult CNS by controlling the number
of synapse and neuronal firings and remove debris [43, 44].

Upon an ischemic event, microglia rapidly react to the dan-
ger signal and become activated [28]. The activated microglia
peak at 2 to 3 days poststroke and remain sustained for several
weeks [8]. Recent evidence suggests that activated pericytes,
located on the abluminal side of endothelial cells lining the
microvasculature, leave the vessel wall, and give rise to acti-
vated microglia following stroke [45, 46]. However, this re-
quires further investigation. Studies indicate that microglia are
susceptible to energy deficits and their activation and recruit-
ment depend on the metabolic status of the lesion environ-
ment. In a permanent occlusion model, microglia reside in
the penumbra but not in the infarct core. However, animals
with transient ischemic stroke have microglia in both the in-
farct core and penumbra [47]. Adenosine triphosphate (ATP)
released from damaged cells contributes to microglial activa-
tion and migration in the injured site [48].

Microglia functions have been associated with both detri-
ments and benefits in stroke outcomes. The toxicity originates
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from in vitro studies that demonstrated neuronal survival is
attenuated by exposure to both microglia treated with proin-
flammatory stimuli and the supernatant of the treated microg-
lia [49, 50]. These activated microglia release cytotoxic fac-
tors such as superoxide, nitric oxide, and tumor necrosis factor
(TNF)-ox [51-55]. Similarly, the detrimental role of activated
microglia in vivo has been reported. Ritzel et al. [56] reported
that microglia are vulnerable to severe ischemia. These cells
display proinflammatory properties with elevated levels of
reactive oxygen species and TNF, supporting their role in
poststroke inflammation. Rats treated with minocycline for
4 weeks after middle cerebral artery occlusion had reduced
microglial activation with improved neurogenesis and neuro-
logical function [57, 58]. Additionally, indomethacin, an anti-
inflammatory agent that inhibits microglia activation, en-
hances neurogenesis in focal brain ischemia [59]. There are
several contradicting reports that argue for beneficial roles for
microglia in stroke. A report by Kim et al. [60] showed re-
duced neurogenesis with minocycline treatment. The deple-
tion and replenishment of microglia were respectively aug-
mented and reduced by N-methyl-D-aspartate- or oxygen glu-
cose deprivation-induced neuronal cell death [61, 62].
Faustino et al. [63] also reported that microglia depletion en-
hances inflammation and injury in acute neonatal focal stroke.
Selective ablation of proliferating microglia after focal ische-
mia in a transgenic mouse also demonstrated exacerbation of
stroke injury with an altered inflammatory response [64]. A
similar beneficial effect of microglia in stroke was reported in
a study where there was a 60 % increase in infarct size by
selective elimination of microglia, which the effect was re-
versed by repopulating the cells [65]. In contrast, microglia
ablation was either protective or had no effect in models of
other neurodegenerative diseases, including Alzheimer’s dis-
ease [66], amyotrophic lateral sclerosis [67], and experimental
autoimmune encephalomyelitis [68].

Monocytes and Monocyte-Derived Macrophages

Monocytes and macrophages belong to the mononuclear
phagocyte system and are derived from macrophage/
dendritic cell progenitors in the bone marrow [69]. While
monocytes are also formed in the liver and spleen [70-72],
the view that monocytes are derived from the bone marrow
has been established since the early 1960s and still dominates
[73]. The monocytes produced from the bone marrow exit to
the circulatory system in a C-C chemokine receptor 2 (CCR2)-
dependent manner and enter tissues to give rise to tissue mac-
rophages [74]. Circulating monocytes possess 2 distinct phe-
notypes with unique functional properties in human and mice.
Based on the expression of specific surface markers, these
cells are classified into proinflammatory (classically activated)
or anti-inflammatory (alternatively activated) subsets. In
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humans, monocytes differentially express CD14 and CD16
(FeyRIIl). The proinflammatory subset consists of 95 % of
monocytes that express CD14"CD16™ and the rest expressing
CDI14"CD16" are classified as an anti-inflammatory subset
[75, 76]. Rodent monocytes share similarities to human mono-
cytes, although the subset composition is different. Mouse
monocytes are divided approximately equally between pro-
and anti-inflammatory subsets as identified by Ly-6C (Gr-1)
expression. Monocytes expressing a high level of Ly-6C (Gr-
1*, Ly-6C™) are classified as a proinflammatory subset, and
monocytes expressing a low level of Ly-6C (Gr-1-, Ly-6C'°)
are classified as an anti-inflammatory subset [77, 78]. In rats,
10 % to 20 % of monocytes that express low CD43 are clas-
sified as a proinflammatory subset and the remaining mono-
cytes that expresses higher levels of CD43 are classified as an
anti-inflammatory subset [79]. Recently, CD43 has also been
used to distinguish monocyte subsets in mice [80]. Classically
activated proinflammatory monocytes express CCR2 with
low or no expression of CX3CR1 across different species.
CCR2 expression is critical for the trafficking of circulating
monocytes into inflamed tissue where they give rise to mac-
rophages. The anti-inflammatory monocytes, which do not
express CCR2 but do express higher levels of CX3CR1, patrol
blood vessels in a steady state, performing in situ phagocyto-
sis [78, 81].

A substantial number of monocytes reside in the spleen.
Swirski et al. [82] have reported that the number of monocytes
in the heart following myocardial infarction exceeds the num-
ber in circulation, identifying the spleen as a reservoir of un-
differentiated monocytes which are rapidly deployed after
myocardial infarction [82]. The role of the spleen in cerebral
ischemia has also been investigated. Both clinical and animal
studies have demonstrated transient reduction in spleen size
following stroke, which has been attributed to the poststroke
deployment of splenocytes, including monocytes [25, 83—85].
The extent of spleen atrophy is associated with the severity of
stroke-induced brain injury, leading to the view that the spleen
plays a contributory role in stroke pathology [26, 86].
Increased apoptosis in the spleen, albeit controversial (see
Kim et al. [25]), and cell release from the spleen are related
to reduced spleen size [26]. Others have also reported that
splenectomy or splenic irradiation reduces ischemic injury in
animal models of stroke [87—89]. While these data provided a
rationale for targeting the spleen as a therapeutic strategy for
patients with stroke, there are reports that argue against this
approach. Kim et al. [25] addressed the role of splenic mono-
cytes in ischemic stroke. In this study, pro- and anti-
inflammatory monocyte subsets were longitudinally deter-
mined at acute and subacute phases of ischemic stroke from
1 h to 7 days poststroke in the spleen, blood, bone marrow,
and brain. The study showed that both monocyte subsets were
decreased in the spleen and blood with compensatory produc-
tion of monocytes in the bone marrow at later time points,
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while the number of monocytes in both subsets was signifi-
cantly increased in the brain after stroke. However, the remov-
al of spleen at the time of stroke did not provide neuroprotec-
tion despite splenectomized mice having fewer monocytes in
their brains [25]. While the time of splenectomy and nonse-
lective ablation of both monocyte subsets by splenectomy
may confound the interpretation of the spleen’s precise role
in stroke pathology, the increased incidence of hemorrhagic
and ischemic stroke in patients with splenic injury or splenec-
tomy [90], and the protective role of the proinflammatory
Ly6C™ monocyte subset in acute stroke [91], suggests that
the role of individual monocyte subsets in the spleen should
be carefully investigated.

Monocyte Trafficking

There are reported discrepancies in the order of infiltration of
neutrophils, monocytes, and lymphocytes into the stroked
hemisphere [8, 92]. Despite the controversy, the presence of
these immune cells in the postischemic brain clearly indicates
the mobilization of peripheral immune cells into the site of
CNS injury [93, 94]. Among these cell types, the accumula-
tion of monocytes/macrophages in the stroked hemisphere has
been consistently associated with injury development in acute
stroke. Chemokine gradients generated in the injury sites are
the major driving force behind trafficking of monocyte subsets
from the periphery to injury sites (Fig. 1). Studies on experi-
mental autoimmune encephalitis (EAE) in mice demonstrated
the importance of the monocyte chemoattractant protein-1
(MCP-1)/CCR2 axis in monocyte recruitment [95]. In this
model, the trafficking of monocytes, but not T cells, was
coupled to the severity of EAE progression.

As a cognate receptor for MCP-1, CCR2 expressed on
monocytes is an essential contributor to monocyte recruit-
ment. Similarly, the crucial role of the MCP-1/CCR2 axis on
monocyte trafficking in the ischemic brain has been reported
in several studies [96-98]. Ly-6C" (CCR2") proinflammatory
monocytes are chemoattracted to MCP-1 and they are specif-
ically recruited to injury sites, becoming classically activated
M1 macrophages. Secreted by microvascular endothelial
cells, monocytes/macrophages, and astrocytes upon injury,
MCP-1 expression increases in the stroked hemisphere. The
overexpression of MCP-1 led to increased infarct volume and
enhanced the recruitment of monocytes to the injury site [99].
In contrast, the absence of CCR2 or MCP-1 led to reduced
infarct size [96, 100]. Relevant to the MCP-1/CCR2 axis in
monocyte trafficking, a study demonstrated involvement of
the scavenger receptor CD36 in exacerbating stroke-induced
injury in hyperlipidemic mice [101]. The exacerbation was
linked to the role of CD36 in regulating MCP-1 expression
in a host-specific manner and CCR2 expression on immune
cells, showing the influence of peripheral immunity on the

CNS via the MCP-1/CCR2 axis. Compared with the proin-
flammatory axis, the Ly-6C'° monocyte subset that expresses
CX3CR1, a receptor for CX3CLI1 (fractalkine), does not ex-
press CCR2. These anti-inflammatory Ly-6C'® (CCR2/
CX3CR1*) monocytes are recruited to normal tissues and de-
velop into resident M2 macrophages that function in host de-
fense and repair after injury [102]. Compared with the proin-
flammatory MCP-1/CCR2 axis, there was less involvement of
the anti-inflammatory CX3CL1 (fractalkine)/CX3CR1 axis in
the acute phase of stroke [101], which may be related to less
recruitment of Ly-6C' subsets in the ischemic brain at this
time point [25].

Phenotype of Mononuclear Phagocytes

Inflammation is an orchestrated biological event in response
to encountered pathogens or danger signals in the host tissue.
Optimal inflammation includes destruction of host tissue if it
is necessary. However, an equally important aspect of inflam-
mation is its self-limiting capability, which results in resolu-
tion of inflammation to reestablish homeostasis. Mononuclear
phagocytes, specifically microglia and monocyte-derived
macrophages, are critical modulators in inflammatory and res-
olution phases of stroke. The polarization of mononuclear
phagocytes toward either proinflammatory or anti-
inflammatory subsets greatly affects their function.
Classically activated (M1) mononuclear phagocytes produce
proinflammatory factors, clear pathogens, and present anti-
gens. This subset expresses CD16, CD32, CD86, major his-
tocompatibility complex (MHC) II, and inducible nitric oxide
synthase (iNOS). Alternatively activated (M2) mononuclear
phagocytes function in wound healing and repair through
phagocytosis and immune tolerance [103]. The M2 cells are
further divided into M2a, M2b, and M2c subtypes [103—105].
The M2a subset expresses arginase-1, Yml, and Fizz, and is
involved in immunity against parasites, T helper 2 cell recruit-
ment, tissue repair, and growth stimulation. M2b cells express
high levels of interleukin (IL)-10, MHC II, and co-stimulatory
CD86. This subset exhibits both pro- and anti-inflammatory
features and is associated with adaptive immunity. Arginase-1,
CD163, and CD206 are markers for M2c¢ cells, which mainly
function in scavenging cell debris during the repair process [9,
103]. Apart from M1 and M2 phenotypes, a novel Mox phe-
notype has been described in atherosclerotic lesions of a hy-
perlipidemic mouse model. Mox cells are characterized by
high expression of heme oxygenase-1 and Nrf2-dependent
redox-regulatory genes. This subset is proinflammatory with
reduced phagocytic function, which may be related to their
localization in atherosclerotic lesions [106]. In addition, an
M3 phenotype, which can be induced by macrophage colony
stimulating factor or IL-34, has been described without exten-
sive published data [107]. While the diversity of mononuclear
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Fig. 1 Trafficking of peripheral monocytes to the brain in ischemic
stroke. Stroke produces danger signals [e.g., damage-associated
molecular patterns (DAMPs)] and activates microglia. Excess cytokines
and chemokines produced by activated microglia, endothelial cells, and
astrocytes in the injury site allow for transendothelial migration of
monocytes/macrophages through the compromised blood—brain barrier.
The spleen, an immediate reservoir for monocytes/macrophages, deploys
pro- [Ly-GChi/C-C chemokine receptor 2 (CCR2)+/CX3CR11°) and anti-

phagocyte phenotypes represents a significant challenge, de-
termining the specific role of each phenotype in the context of
the stroke injury milieu will be necessary to further our under-
standing in this area.

Macrophage Polarization in Stroke

There is a relative paucity of in vivo evidence for monocyte
trafficking from the periphery to the primary injury site.
Earlier studies from myocardial infarction and Listeria
monocytogenes infection demonstrated that proinflammatory
Ly-6C™ (CCR2*) and anti-inflammatory Ly-6C'® (CCR2")
subsets are sequentially recruited to the injury site in a con-
trolled manner for respective inflammation and repair/healing
[102, 108]. However, accumulating evidence supports that
Ly-6C" monocytes recruited in inflamed tissue can differen-
tiate into both M1 and M2 macrophages. In renal
tubulointerstitial damage, bone marrow-derived Ly-6C™
monocytes polarized to M1 macrophages in the early phase
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inflammatory (Ly-6C'°/CCR2-/CX;CR1™) monocytes into circulation
upon stroke. The deployment of monocytes from the bone marrow is
delayed until later phases of acute stroke [25]. The circulating
proinflammatory monocytes enter into the stroked hemisphere via the
monocyte chemoattractant protein (MCP)/CCR2 axis during the acute
phase, giving rise to tissue macrophages. IFN = interferon; TNF = tumor
necrosis factor; MMP = matrix metalloproteinase

of inflammation but polarized to M2 macrophages in the later
phase when the inflammation was receding. In contrast, the
Ly-6C'"° monocyte subset recruited during inflammation only
differentiated into M2 macrophages [109, 110]. The differen-
tiated macrophages can convert to other phenotypes in the
specific local microenvironment, and conversion of early dif-
ferentiated M1 macrophages into inflammation-resolving M2
macrophages occurs in the periphery [111].

In the stroked hemisphere, there are multiple distinct mac-
rophage phenotypes (Fig. 2), and macrophages can convert to
other phenotypes depending on the ischemic milieu [112]. For
example, Hu et al. [113] suggested that a conversion from M2
to M1 occurs in the ischemic brain based on the observation of
early transient expression of M2 markers followed by persis-
tent expression of M1 markers as the lesion progressed.
Others have suggested the acquisition of the repair M2 phe-
notype from M1 macrophages in sterile wounds. Early recruit-
ed peripheral monocytes/macrophages are predominantly Ly-
6C" (CCR2*) cells that become M1 tissue macrophages in the
stroked hemisphere [25, 80, 114, 115]. Once recruited, these
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Fig. 2 Phenotypes and phenotypic conversion of mononuclear
phagocytes. M1 and M2 microglia and macrophage subsets are
distinguished by expression of specific markers and functions. M1
mononuclear phagocytes have cytotoxic effects involving antigen
presentation and pathogen clearance. M2 cells are involved in clearing
up debris, phagocytosis, and immune tolerance. Upregulation of CD36

proinflammatory cells lose LY6C and CCR2 expression and
become capable of releasing vascular endothelial growth fac-
tor and transforming growth factor-f3, which are prorepair
mediators [116]. A recent study also supports the view of
macrophage conversion at the injury site. Wattananit et al.
[117] showed a beneficial role for early recruited CCR2*
monocyte-derived macrophages on functional recovery
through enhancing resolution of inflammation. While there
have been advances in understanding the role of mononuclear
phagocytes in stroke, defining the phenotype of mononuclear
phagocytes relevant to their function in the poststroke brain
has been understudied. Many studies define macrophage phe-
notype based on gene expression. Despite changing expres-
sion patterns during disease progression, protein expression of
the majority of M1 and M2 markers have not been extensively
validated at different poststroke time points. There is also
substantial overlap among signature markers for M1 and
M2, representing a potential continuum of phenotypes.
Additionally, as M1 and M2 signature markers are shared
between microglia and macrophages in the stroked

and lysosomal acid lipase (LAL) is associated with M2 polarization.
Depending on the ischemic milieu, mononuclear phagocytes polarize to
the M1 or M2 subset. MHC = major histocompatibility complex;
iNOS = inducible nitric oxide synthase; IL = interleukin; HO-1 = heme
oxygenase-1; VEGF =vascular endothelial growth factor;
COX = cyclooxygenase; NRF = nuclear factor - erythroid 2-related factor

hemisphere, future studies should characterize the functions
for each specific mononuclear subset.

Inflammation Versus Resolution

M1 macrophages release cytotoxic substances, eliciting in-
flammation and contributing to cell death, while M2 macro-
phages clear cellular debris through phagocytosis and release
trophic factors [103, 105]. In the presence of microbes, the
acute inflammatory response is often rapid, specific, and
self-limiting, to avoid inflammation-mediated damage to
neighboring tissues [118]. This primordial defense response
involves initial recognition of pathogen-associated molecular
patterns via the innate immune system. Sterile inflammation
occurs in postischemic tissues in the absence of microbes
[119, 120]. The triggers of sterile inflammation are elements
of damaged tissue, collectively termed DAMPs. Regardless of
the nature of triggers, pathogen-associated molecular patterns
or DAMPs, PRRs, including Toll-like receptors and scavenger
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receptors, are thought to be involved in eliciting inflammatory
responses [121-124]. There are also nonsurface-bound secret-
ed PRRs, including triggers of the complement system. A
circulating protein Clqg, mannose-binding lectin, ficolins,
and collectins initiate the complement cascade in myeloid
cells and induce inflammatory response [125]. The comple-
ment system regulates the activation of mononuclear phago-
cytes. The binding of C1q or cleavage products of C3 with the
complement receptors on mononuclear phagocytes produce
inflammatory cytokines [126, 127], and promote phagocyto-
sis of pathogens or apoptotic cells [128-131].

As inflammation is an important process that leads to sub-
sequent resolution, clearing up debris in the injured brain has
been considered an essential process for tissue repair and re-
modeling. In the resolution phase of acute inflammation,
proresolving mediators prevent excessive inflammation and
promote the removal of microbes and dying cells. Four dis-
tinct chemical families have been identified and named
lipoxins, resolvins, protectins, and maresins. These families
are biosynthesized in acute inflammation and control the du-
ration and magnitude of inflammation via activation of mono-
nuclear phagocyte recruitment, uptake of apoptotic neutro-
phils by the phagocytes, endogenous antimicrobial defense
mechanisms, and clearance on mucosal surfaces [132—138].
An additional modulator for tissue repair and remodeling in
the CNS injury is arginase- 1. Studies indicated that arginase-1
expression is correlated with improved recovery from CNS
injury and disease [80, 139—141]. A recent study using EAE
and spinal cord injury models has shown that infiltrated mac-
rophages mainly express arginase-1 in the inflamed CNS
[142], suggesting the importance of infiltrated myeloid cells
in the CNS repair after injury. Dying cells release signals such
as ATP, uridine triphosphate, and CX5CL1. CX3CR1-express-
ing mononuclear phagocytes migrate toward the dying neu-
rons that release CX3CL1 [143—145]. M2 macrophages that
highly express CX3CR1 are considered to be a major subset
that engages in phagocytosis as shown in in vitro neuron—
microglia co-culture and organotypic slice culture [146,
147]. However, CD68, a marker of phagocytic activity, was
shown to be inversely correlated with other M2 markers dur-
ing stroke injury development [112], casting uncertainty on
the relationship between M2 marker expression and phago-
cytic function.

Phagocytosis requires recognition of lipid membrane
asymmetry of phosphatidylserine, modified or oxidized lipid
moieties, and heat shock protein 60 in the surface of apoptotic
cells [148, 149]. These signals from apoptotic cells include
brain-specific angiogenesis inhibitor 1, milk-fat globule-epi-
dermal growth factor-E8), and triggering receptor expressed
on myeloid cells 2. A list of additional apoptotic cell-
associated cellular patterns and their corresponding receptors
on mononuclear phagocytes are well summarized by Sierra
et al. [150]. It has been shown that CD36, a scavenger

@ Springer

receptor, has high affinity toward apoptotic cell-associated
cellular patterns and its interaction with oxidized
phosphatidylserine is essential for macrophage-dependent
phagocytosis of apoptotic cells [121]. CD36 is highly
expressed in microglia, monocytes/macrophages, microvas-
cular endothelial cells, platelets, and epithelial cells and it
regulates inflammation, innate immunity, angiogenesis, and
lipid metabolism through interactions with lipid and
nonlipid-based ligands [151]. Several studies demonstrated
that CD36 expression is upregulated in the ischemic brain
[152], and that CD36 is involved in stroke-induced inflamma-
tion and injury [101, 152—154]. Despite the detrimental effects
of CD36 in an acute ischemic setting, CD36-dependent
phagocytosis was associated with functional benefit in neona-
tal stroke [155]. Additionally, the clearing of red blood cells
after hemorrhagic stroke was associated with increased CD36
expression and improved functional recovery [156]. This
might be related to the role of CD36 in M2 phenotypic
switching of mononuclear cells. CD36 levels are significantly
increased in M2 phenotype mononuclear phagocytes, mediat-
ing signals to pathways for M2 polarization through endoplas-
mic reticulum stress, JNK, and peroxisome proliferator-
activated receptor-y [157, 158]. M1 and M2 macrophages
also have distinct metabolic phenotypes [159, 160]. While
M1 macrophages depend on aerobic glycolysis, fatty acid ox-
idation is required to sustain M2 macrophages. Huang et al.
[161] reported that CD36-mediated uptake of triglycerides
and subsequent lipolysis by lysosomal acid lipase are impor-
tant for sustaining the M2 phenotype [161]. Besides well-
known M2 markers, including CD301, CD206, and
RELMa, this study identified CD36 and lysosomal acid lipase
as markers for the M2 metabolic phenotype.

Sex-Associated Modulation of Mononuclear
Phagocytes

Clinical studies showed that males experience higher risk of
stroke than females [162—164]. In rodent stroke, premeno-
pausal females exhibit smaller infarct size than age-matched
males [88, 165—168]. However, the risk of stroke is increased
as females age [169—172]. More severe strokes and poorer
recovery was observed in elderly women and aged rodents,
regardless of the sex [162—164, 173—176]. A primary ovarian
hormone, estrogen has been associated with the sex difference
in ischemic stroke as treatment of estrogen in the male or
ovariectomized animals reduced infarct and neuronal death
following ischemia [177—180]. The neuroprotective effect of
estrogen is related to anti-inflammation in young but
proinflammation in the aged brain [181-184], reduced
microglial proliferation, attenuated macrophage cytokine pro-
duction, and recruitment of macrophages in ischemic injury
[185]. Accordingly, reduced CD45"/CD11b* cells (activated
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microglia and infiltrated macrophages) in the brain and fewer
spleen contractions have been related to the smaller injury in
females [166]. Splenectomy was effective in reducing the in-
jury size and CD45"/CD11b" cells in the ischemic brain only
in male mice, supporting a role for peripheral mononuclear
phagocytes to the sex differences in stroke [88]. While most
stroke studies exclude female animals owing to the hormonal
changes with the estrus cycle, evidence suggests sex as an
important biological variable to be addressed in stroke
research.

Modulatory Function of Mononuclear Phagocytes
in Comorbidities

Stroke incidence is higher in populations with cardiovascular
and cerebrovascular risk factors. Common comorbidities as-
sociated with stroke include aging, elevated blood pressure,
and metabolic dysfunctions. These conditions are often asso-
ciated with the exacerbation of ischemic outcomes and are
predictive of worse recovery [186]. The inclusion of hyperlip-
idemia and diabetes in animal models of stroke has demon-
strated that these conditions modulate postischemic inflamma-
tory responses and lesion development [101, 152, 187, 188].
In addition, increased inflammatory factors such as cytokines,
chemokines, and adhesion molecules in peripheral
monocytes/macrophages in these conditions suggest that pe-
ripheral immune status modulates CNS injury. Systemic in-
flammation is also linked to CNS inflammatory status through
priming and/or activation of mononuclear phagocytes in cere-
brovascular diseases (Fig. 3). Evidence has shown that mi-
croglia exposed to systemic inflammatory stimuli have in-
creased reactivity, leading to accelerated neuronal death and
progression of CNS disease [189—191]. It has been suggested
that primed microglia contribute to the increased response to a
second inflammatory stimulus [192]. Thus, understanding the
properties of mononuclear phagocytes in comorbid conditions
prior to stroke will provide better insight about their modula-
tory function on stroke-induced brain injury.

Aging

Aging is a nonmodifiable risk factor for stroke and it has an
impact on immune cells, leading to immunosenescence of
microglia and macrophages [193]. Studies using aged rodents
demonstrated increased brain injury size and behavioral defi-
cits, which were associated with modulation of the number or
function of mononuclear phagocytes at the injury site [168,
194, 195]. Increased CD8* T cells in the aged CNS were
associated with compromised proinflammatory functions in
microglia. The primed microglia increased inflammation and
leukocyte recruitment in the brain following stroke [196].
Comparing mononuclear phagocytes between young and old

Comorbidities

l

Systemic inflammation

"4 N\

CNS Periphery

Priming microglia Ly-6CM monocytosis

4

Deregulated inflammation

Fig. 3 Impact of comorbidities on immunity and central nervous system
(CNS) injury. Comorbidity-induced systemic inflammatory response
primes microglia in the CNS and increases the number of Ly-6C™
monocytes (monocytosis) in the periphery. Upon stroke, the primed
microglia and increased proinflammatory monocytes deregulate the
injury-induced inflammatory response. The inability to mount an optimal
inflammatory response in the stroked hemisphere negatively influences
stroke outcome

mice, aged macrophages, and microglia exhibited reduced
motility in response to laser-induced injury and extracellular
ATP [197]. In demyelinating models, reduced migration of
mononuclear cells [198], and impaired clearance of myelin
debris in macrophages accompanied by an age-associated de-
lay in remyelination have been observed [199-201].
Additionally, microglia isolated from aged mice displayed a
reduced capability to engulf A3 compared with young mice
[202, 203]. Studies have shown that aging differentially af-
fects the inflammatory response between microglia and pe-
ripheral macrophages. Aged microglia have an increased pro-
inflammatory response and shift toward the M1 phenotype.
Basal and stimulated secretion of TNF-« and IL-6 were in-
creased in the ex vivo culture of senescent microglia [203], and
hypertrophic morphological changes in the aged cells were
observed [197, 204, 205]. Consistent with this evidence, an
in vivo study showed that iNOS, TNF-«, and IL-6 were ele-
vated, while arginase-1 was repressed in the midbrain of aged
mice [206]. In contrast, peripheral macrophages exhibited less
classical activation, leading to an attenuated proinflammatory
response [207]. In a mouse model of age-related macular de-
generation, ocular macrophages from old mice exhibited in-
creased IL-10 but decreased IL-12 and TNF-«, suggesting
that aged macrophages are polarized toward an M2-like phe-
notype [208]. Another study also reported increased numbers
of M2 macrophages in the spleen, lymph nodes, and bone
marrow of aged mice [209]. The observations of the
deregulated pro- and anti-inflammatory balance in aged
mononuclear phagocytes and their associated negative conse-
quences suggest that strategies aimed at rejuvenating these
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immune cells would have benefits in reinstating injury-
induced recovery in the aging brain [193].

Hypertension

Hypertension is the second most prevalent risk factor for
stroke, affecting ~50 % of patients with stroke. Hypertension
increases endothelial oxidative stress and inflammation and
leads to worse stroke outcomes and higher mortality
[210-220]. Studies investigating the underlying pathophysi-
ology of hypertension indicates the involvement of
neuroimmune interactions. Chronic systemic inflammation
causes neurogenic hypertension mediated through neuroin-
flammation and oxidative stress in the rostral ventrolateral
medulla [221]. Overexpression of junctional adhesion
molecule-1 leads to leukocyte adherence to microvasculature,
resulting in hypertension in previously normotensive rats
[222]. Hypertension causes activation of astrocytes and mi-
croglia and elevates expression of adhesion molecules in en-
dothelial cells [223-225]. Microglia activation has been ob-
served in angiotensin-II-induced hypertensive rats and intra-
cerebroventricular administration of minocycline abrogated
the angiotensin-II-induced hypertension [226]. Hypertension
also affects inflammatory responses in the periphery. A clini-
cal study reported that the levels of IL-6 and TNF-« in plasma
were correlated with blood pressure in human patients [227].
It also has been shown that hypertension spontaneously acti-
vates circulating monocytes and increases reactive oxygen
species production in immune cells [228-230]. Using
leukocyte-specific CCR2-deficient mice, Ishibashi et al.
[231] revealed the importance of monocyte CCR2 in hyper-
tension. In this study, the enhanced monocyte CCR2 expres-
sion observed in hypertensive mice was reduced by
angiotensin-II inhibition, while angiotensin-II-induced vascu-
lar inflammation and remodeling were blunted in mice
transplanted CCR2-deficient bone marrow.

The relationship between hypertension and microglia phe-
notypes has recently been investigated. Both M1 (MHC 1I,
CCR7, interferon-y receptor, and iNOS) and M2 markers
(CD36, mannose receptor, Tie2, and IL-4 receptor o) were
upregulated in microglia from hypertensive mice, but not in
monocytes, which may be explained by the neurogenic regu-
lation of hypertension [232]. Other studies demonstrated that
proinflammatory M1 macrophages are predominant in the
aortas stimulated by angiotensin-II for 7 days [233, 234];
however, prolonged infusion of angiotensin-II for 14 to
28 days recruited Ly-6C™ monocytes that differentiated into
M2 macrophages [235]. Microglia from hypertensive rats had
reduced activation following stroke and lipopolysaccharide
stimulation [236]. These results suggest that chronic systemic
hypertension deregulates microglial responses and support the
importance of injury-induced activation of microglia. In con-
trast, infiltrating peripheral leukocytes were correlated with
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the extent of injury in hypertension [237], demonstrating the
detrimental function of periphery-derived mononuclear
phagocytes. The involvement of mononuclear phagocytes in
hypertension-induced exacerbation of stroke outcomes and
mortality suggests an immunological explanation for this risk
factor.

Hyperlipidemia

Cholesterols in the plasma and CNS do not exchange and their
synthesis in the brain occurs in sifu. However, in neurological
and neurodegenerative conditions in which the integrity of the
BBB is disrupted, chronic elevation of cholesterols and lipids
in the periphery influences immune responses in the CNS. In
hyperlipidemic mice, positron emission tomography imaging
and immunostaining confirmed increased microglial phagocy-
tosis, microgliosis, and higher expression of vascular adhesion
molecules. In addition, larger numbers of activated myeloid
phagocytes, T cells, and granulocytes in the choroid plexus
were observed in hyperlipidemic mice [238]. Hyperlipidemia
is associated with elevated IL-6, TNF-&, MCP-1, and CCL5
in the periphery [239]. Studies also suggest that hyperlipid-
emia shifts mononuclear phagocytes towards proinflammato-
ry activated phenotypes. An extreme hyperlipidemic condi-
tion generated by feeding a high fat/cholesterol diet to ApoE
knockout mice induced significant monocytosis in the spleen
and blood, comprised mainly of the proinflammatory Ly-6C™
subset [240]. The hyperlipidemia-induced monocytosis oc-
curs through increased production in the bone marrow, in-
creased survival in the periphery, and reduced conversion
from Ly-6C" to the Ly-6C'° subset [240, 241]. Ly-6C" mono-
cytes actively accumulate into early atherosclerotic plaques,
differentiate to M1 activated macrophages, and contribute to
the progression of atherosclerosis [242].

The proinflammatory nature associated with peripheral hy-
perlipidemia affects acute stroke injury. Previous studies from
our group reported that mice with elevated plasma choles-
terols had larger infarcts and increased proinflammatory cyto-
kine and chemokine expression in the ischemic hemisphere.
The study also demonstrated that CD36 expressed in
monocytes/macrophages is an important inflammatory medi-
ator in hyperlipidemia-induced exacerbation of poststroke
brain injury. The hyperlipidemic mice had higher CD36 ex-
pression in peripheral macrophages prior to stroke and had
lipid-laden foam cells in the poststroke brain.
Hyperlipidemic mice with targeted disruption of CD36
showed a reversal of the hyperlipidemia-associated phenotype
in the brain (i.e., reduced infarct size, less foam cell formation,
and less proinflammatory cytokine and chemokine expres-
sion) [152]. A subsequent study revealed the involvement of
CD36 expression in peripheral mononuclear phagocytes and
CNS for hyperlipidemia-induced exacerbation of infarct vol-
ume and brain edema. By exchanging bone marrow cells
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between CD36-expressing and CD36-deficient mice, the
study demonstrated that CD36 regulates MCP-1/CCR2 ex-
pression in the host and macrophages, suggesting the involve-
ment of CD36 in monocyte trafficking in hyperlipidemic con-
ditions [101]. While the observed effect is likely mediated
through the proinflammatory CCR2" subset considering the
major expansion of the CCR2* (Ly-6C™) subset in hyperlip-
idemic conditions, the relative contribution of the CCR2™ (Ly-
6C'") subset and its function remain to be explored.

Diabetes

Obesity-induced insulin resistance is associated with develop-
ing diabetes, a prevalent risk factor for stroke. The diabetic
condition is associated with chronic low-grade systemic in-
flammation. Despite the high prevalence of diabetes in pa-
tients with stroke [243], the contribution of this cluster of
metabolic conditions on stroke pathology is poorly under-
stood. Approximately 90 % of patients with diabetes are clas-
sified as having type 2 diabetes [244-246]. Studies demon-
strate that adipose tissue-resident macrophages play an impor-
tant role in the development of insulin resistance. Adipose
tissue contains both M1 and M2 activated macrophages.
Proinflammatory cytokines TNF-c«, IL-6, and MCP-1 pro-
duced from M1 adipose tissue-resident macrophages contrib-
ute to insulin resistance [241]. Ly-6C™ monocytes are pre-
dominant in the blood of type 1 diabetic animals [247], and
the monocytes isolated from patients with diabetes secrete
higher levels of proinflammatory cytokines [248-250]. It is
believed that the cytokines released from these cells influence
peripheral inflammatory status.

Studies have also shown the influence of diabetic condi-
tions on the CNS. Microglia activation with increased IFN-y
and IL-1f3 in the hippocampus and retina were observed in
diabetic rats [251, 252]. Recently, we have reported the impact
of diabetes on stroke outcomes. Diet-induced obese mice with
insulin resistance and elevated fasting blood glucose levels
had significant increases in infarct volume and edema [187].
The exacerbation was associated with increased CD36 in the
brain. In vitro LPS stimulation of peritoneal macrophages
from diabetic mice attenuated the inflammatory response
[187]. The blunted inflammatory response in diabetic macro-
phages was also reported in db/db mice, with decreased
microglial activation and proinflammatory cytokines in the
stroked brain [188]. Microglial activation and the release of
inflammatory factors are critical steps in eliciting a rapid in-
flammatory response in the context of injury. The impairment
of mounting an effective acute inflammatory response in the
diabetic condition was partly implicated for exacerbated inju-
ry in diabetic stroke. While there is not much evidence about
how M1/M2 polarized macrophages affect ischemic stroke in
diabetes, one study has shown the association of M2 activated
macrophages with improved stroke repair in type 2 diabetic

rats [253], suggesting the beneficial role of M2 macrophages
in stroke repair in the diabetic condition. Thus, mounting an
effective acute inflammatory response and subsequently re-
solving inflammation in a timely manner to limit expansion
of the primary injury is essential in the context of chronic
systemic metabolic dysfunction.

Perspectives

With recent advances in our knowledge on peripheral immu-
nity, studying the roles of mononuclear phagocytes in stroke
has been an emerging area to understand interactions between
the peripheral immune system and CNS disease. To define
individual roles for resident microglia and infiltrating macro-
phages in stroke pathophysiology, several critical questions
need to be answered. Because these 2 cell types express com-
mon antigens, devising a better tool to distinguish one from
the other will greatly benefit the field. The presence of hetero-
geneity in subsets, one with a cytotoxic proinflammatory na-
ture (M1) and the other with reparative, phagocytic, and anti-
inflammatory properties (M2), has made it challenging to des-
ignate clearly the function of each cell type. Accumulating
evidence that indicates potential conversion from one subtype
to another in the stroked brain adds further complexity. There
is a supporting view that the ischemic milieu drives microglia
and monocyte/macrophage function and this occurs in a
context-dependent manner as the ischemic environment
changes over time. There is also a view that mounting a rapid
inflammatory response in the acute phase is important for
subsequent resolution of inflammation. The ability of M2
macrophages to resolve stroke-induced inflammation supports
interventions that shift toward M2 polarization for repair/re-
covery. In-depth understanding on where each cell type and/or
subset localizes in the brain, when they populate or accumu-
late in affected and surrounding tissues, and how each cell
type/subset functions in response to injury (individually or in
concert) are critical questions to be addressed in order to ma-
nipulate each subset to optimize the immune response in
stroke. Importantly, characterization of the spatial, temporal,
and functional understandings of mononuclear phagocytes in
comorbid conditions would provide better translational strat-
egies for potential interventions.
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