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Abstract Stroke is a leading cause of death and disability in
the USA, yet treatment options are very limited. Functional
recovery can occur after stroke and is attributed, in part, to
rewiring of neural connections in areas adjacent to or remotely
connected to the infarct. A better understanding of neural circuit
rewiring is thus an important step toward developing future
therapeutic strategies for stroke recovery. Because stroke dis-
rupts functional connections in peri-infarct and remotely con-
nected regions, it is important to investigate brain-wide network
dynamics during post-stroke recovery. Optogenetics is a revo-
lutionary neuroscience tool that uses bioengineered light-
sensitive proteins to selectively activate or inhibit specific cell
types and neural circuits within milliseconds, allowing greater
specificity and temporal precision for dissecting neural circuit
mechanisms in diseases. In this review, we discuss the current
view of post-stroke remapping and recovery, including recent
studies that use optogenetics to investigate neural circuit
remapping after stroke, as well as optogenetic stimulation to
enhance stroke recovery. Multimodal approaches employing
optogenetics in conjunction with other readouts (e.g., in vivo
neuroimaging techniques, behavior assays, and next-generation
sequencing) will advance our understanding of neural circuit
reorganization during post-stroke recovery, as well as provide
important insights into which brain circuits to target when de-
signing brain stimulation strategies for future clinical studies.
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Introduction to Stroke Recovery

Approximately 800,000 strokes occur each year in the USA
and most stroke survivors suffer long-term deficits. The only
proven therapies for ischemic stroke are intravenous tissue
plasminogen activator (tPA) and intra-arterial thrombectomy,
both of which must be administered within 6 h of stroke onset,
a scenario that is applicable to very few patients [1–4]. In-
creasing attention has therefore focused on understanding
how the surviving brain gains new function, and developing
potential therapies that promote long-term post-stroke
recovery.

Functional Recovery After Stroke

Functional recovery after stroke has been observed in both
human and animal studies [5–7]. After injury, the brain un-
dergoes reorganization and rewiring and this can occur in
areas adjacent or remotely connected to the infarct [8–10].
Significant turnover of dendritic spines and axonal sprouting
in the peri-infarct zone after stroke is correlated with improved
functional outcome [7, 8, 11, 12]. Cortical remapping during
stroke recovery is accompanied by the development of
prolonged sensory responses and new structural circuits in
the peri-infarct and connected cortical areas, such as premotor,
motor, and somatosensory cortex [8, 13, 14]. Sprouting of
axons is an activity-dependent process [15], and increasing
neuronal activity can result in release of neurotrophins, such
as nerve growth factor and brain-derived neurotrophic factor,
which have been shown to improve recovery by enhancing
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axonal sprouting and dendritic branching [16–18]. An axonal
sprouting transcriptome after stroke has been reported, with a
molecular growth program that regulates the axonal sprouting
processes [19]. This axonal growth transcriptome can poten-
tially reveal important candidates that mediate repair and re-
covery after stroke. Some of these candidates have recently
been demonstrated as important regulators of post-stroke ax-
onal sprouting, including ephrin-A5, which inhibits axonal
sprouting [20], and growth and differentiation factor 10,
which promotes axonal sprouting [21].

As stroke can disrupt functional connections and cause
brain-wide network changes [22], it is important to understand
the spatial and temporal progression of neural circuit dynamics
and to identify which neural circuits are beneficial for stroke
recovery. Brain imaging studies in stroke patients have yielded
important insights about functional cortical remapping [23–25].
In stroke patients with good recovery, there is often a transient
bilateral activation that occurs in both cortical hemispheres
while moving the affected limb, suggesting the involvement
of contralesional cortical activation in stroke recovery
[23–25]. Data from our laboratory and that of others have
shown that increasing the excitability of the ipsilesional motor
cortex (iM1) after stroke is beneficial for recovery [5, 23, 26,
27]. However, it is less clear whether activation of other areas
such as the contralesional cortex is beneficial or maladaptive, or
not involved [28]. Furthermore, most cortical remapping stud-
ies have relied on peripheral stimulations such as limb move-
ment, which is limited to sensory and/or motor cortex activa-
tion, and have neglected subcortical and other remotely con-
nected brain regions. Stroke can cause a transient reduction of
cerebral blood flow (CBF), and depression of neuronal metab-
olism in remotely connected brain regions, a phenomenon
known as diaschisis [29]. For example, a common form of
diaschisis observed in stroke patients is crossed cerebellar
diaschisis where stroke causes a depression of brain function
in the cerebellum [30]. It has been reported that crossed cere-
bellar diaschisis may be a good prognostic indicator for stroke
recovery [30, 31]. As stroke can cause changes in peri-infarct
and connected remote regions, it is important to investigate
brain-wide network dynamics during post-stroke recovery,
and to determine which of these changes are beneficial for
recovery.

Current Brain Stimulation Techniques Used to Study
Stroke Recovery

Clinical and research efforts have focused on promoting plas-
ticity and recovery after stroke. Various strategies have been
shown to enhance recovery in preclinical models and patients,
including pharmacological treatment, rehabilitation (e.g.,
constraint-induced therapy) [32–34], stem cell transplantation
[35, 36], and brain stimulation [37–43]. In particular, brain

stimulation is a promising area of research because it allows
direct activation and manipulation of the target area’s excit-
ability. A number of studies have used invasive and noninva-
sive brain stimulation techniques to study recovery after
stroke [37–43]. These include cortical microelectrode stimu-
lation, deep brain stimulation, transcranial magnetic stimula-
tion (TMS), and transcranial direct current stimulation
(tDCS). As discussed in the previous section, post-stroke re-
covery involves changes in perilesional reorganization, re-
cruitment of ipsilesional and contralesional areas, and changes
in interhemispheric inhibition. Studies suggest that an initial
transient activation in both hemispheres positively correlates
with recovery [44–46], while further prolonged activation of
the contralesional cortex can worsen recovery [9, 47]. The
interhemispheric competition model, which supports this po-
tential for contralesional activation to adversely affect stroke
recovery (Fig. 1) [48, 49], states that in a normal nonstroke
brain each cortical hemisphere maintains independent pro-
cessing, and each inhibits the other through transcallosal fibers
[49, 50]. However, stroke disrupts this interhemispheric bal-
ance when the ipsilesional cortex fails to maintain its inhibi-
tion on the contralesional cortex. This results in an excessive
inhibition from the contralesional cortex to the ipsilesional
cortex through the transcallosal fibers, which further reduces
motor output of the affected limb and results in worsened
recovery [49–51].

Invasive brain stimulations, such as cortical electrical stim-
ulations in the ipsilesional M1, have demonstrated improved
motor function and increased dendritic plasticity after stroke
[39, 52, 53]. The combination of electrical cortical stimulation
with rehabilitative training can further enhance motor recov-
ery, improve structural plasticity, and is more efficacious than
rehabilitation alone [54–56]. Cortical microstimulations were
promising in preclinical studies, and clinical trials were suc-
cessful in phases I and II. However, phase III trials did not
indicate an advantage with the combined cortical electrical stim-
ulation and rehabilitation approach [38, 57, 58]. Some improve-
ments that could be made in future cortical stimulation trials

Fig. 1 The interhemispheric competition model states that homotopic
areas in the healthy brain inhibit each other. When stroke occurs this
interhemispheric inhibition is disrupted, leading to a strong inhibition to
the ipsilesional hemisphere. The result is a disinhibited and thus
excessively activated contralesional cortex, which can further reduce
motor output of the affected limb and worsen recovery
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include ways to better localize the site of stimulation and patterns
of reorganization to the target site, and more patient-specific and
severity stage-specific stimulations. Deep brain stimulations
targeting the thalamus (Th) and periaqueductal gray matter for
post-stroke movements and neuropathic pain have demonstrated
efficacy in human studies [59–61]. Deep brain stimulations in the
cerebellar dentate nucleus in rats have also been shown to pro-
mote post-stroke recovery and enhance synaptic plasticity and
reorganization in the perilesional cortex [62–65].

Noninvasive stimulations such as tDCS and repetitive TMS
have also demonstrated promising results in promoting post-
stroke recovery in both animal and human studies [66, 67].
TMS and tDCS have also been widely used to investigate the
role of the contralesional cortex, although stimulations in the
contralesional cortex have shown inconclusive results [23, 41,
45, 68]. This could be due to the timing of manipulation and
severity of stroke. Nevertheless, these brain stimulation tech-
niques have been shown to promote recovery when stimulating
the ipsilesional cortex and their noninvasive application is a ma-
jor advantage, as cortical excitability can be modulated in a pain-
less procedure [43, 69, 70]. However, these techniques are lim-
ited by imprecise and indiscriminate activation or inhibition of all
cell types near the stimulated site, thus they can stimulate multi-
ple cell types, such as neurons, astrocytes, and oligodendrocytes,
which have all been shown to affect remodeling and recovery
[71–75]. Furthermore, specific excitatory or inhibitory circuit
modulations are nearly impossible with these techniques.

In contrast, optogenetics circumvents these issues because
it can activate or inhibit specific cell types and circuits with
millisecond temporal precision [76, 77]. This cell type speci-
ficity allows manipulation of specific circuits and thus more
targeted manipulations, which should help pinpoint the cir-
cuits and molecular mechanisms that underlie diseases.
Optogenetic approaches have been used in rodents to probe
neural circuits for several neurological/neurodegenerative dis-
eases, including Parkinson’s disease [78, 79], epilepsy [80,
81], and stroke [26, 82]. In the next sections we will first
introduce optogenetics and its developments, and then review
the current understanding of remapping and recovery after
stroke from recent studies using peripheral and optogenetic
stimulation, as well as the use of optogenetic stimulation to
enhance post-stroke recovery.

Introduction to Optogenetics

The Optogenetics Toolbox and Developments

Optogenetics encompasses a novel set of light-gated ion chan-
nels, which revolutionized the bottom-up strategy for linking
neuronal action potentials of cell populations to neuronal cir-
cuits controlling behavior. The blue light-sensitive
channelrhodopsin (ChR2) from Chlamydomonas reinhardtii

was the first microbial opsin to be genetically inserted into
neurons and used for sustained control of millisecond-
precision action potentials [83]. The 7 transmembrane protein
ChR2 incorporates a covalently all-trans retinal that absorbs a
blue photon (470 nm) and changes its conformation to
the 13-cis-retinal, which induces the 6°A pore to open.
The pore is closed within milliseconds as the retinal
relaxes back to the all-trans form [84]. Upon stimula-
tion with blue light, ChR2 opens and allows cations to
flow into the cell, causing depolarization and neuronal
firing. Halorhodopsin (NpHR), the main rhodopsin for
neuronal inhibition, was discovered from the halophilic
bacterium Natronobacterium pharaonis [85]. Unlike
ChR2, NpHR is a chloride pump activated by yellow
light (580 nm) and transports 1 chloride ion into the
cell per photon, and thus requires constant light for
continuous inhibition. Owing to the spectral separation
between NpHR and ChR2, these two opsins allow opti-
cal inhibition and activation in 1 experiment [86].

Extensive screening for new microbial opsins, mutagene-
sis, and human codon optimization has led to a variety of
optogenetic tools for fast excitation, inhibition, and switch
on/off at different wavelengths [76, 87]. One of the most
widely used ChR2 is a humanized variant (ChR2-H134R) in
which algal codons were substituted with mammalian codons
and a single point mutation was inserted at position H134, in
order to achieve higher expression levels and generate larger
photocurrents than the wild-type ChR [88]. The optogenetic
toolbox is rapidly expanding, including development of ultra-
fast and more consistent neuronal spiking tools like ChETA
[89], and yellow/red-shifted ChR variants such as VChR1
(545 nm), ReaChR (590–630 nm), and Chrimson (625 nm)
[90–92]. Higher wavelengths penetrate better into brain tissue
because of less absorption and scattering, which allows
targeting of deep brain structures and even transcranial optical
activation of neurons [90]. Similar improvements have been
made with optogenetic tools for inhibition. A red light-
drivable version of NpHR, Jaws, was recently developed
[93]. In addition, a 200-fold more light-sensitive chloride-
conducting ChR (iC1C2) was developed that allows neuronal
inhibition with blue light [94]. Besides being more sensitive to
light, iC1C2 opens for a longer time, up to a minute after
stimulation, and can be deactivated by red light. This is more
advantageous as increased light sensitivity and longer channel
opening allow less laser exposure, thus reducing heat damage
to tissues. Similarly, a more superior neuronal silencing tool
than NpHR has been discovered. These higher light-sensitive
proton pumps (Arch and ArchT) were discovered from
arachaebacteria and allow more efficient neuronal silencing
with less light exposure [95].

Step-function opsin (SFO) is another family of ChR but
exhibits prolonged activation, even after the light is off, and
can be deactivated by yellow light [96]. The newer stabilized
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step function opsin (SSFO) has an inactivation time constant
of approximately 30 min [97], and is thus particularly suitable
for stimulation paradigms that require prolonged activation
without continuous exposure to the laser. This is advantageous
as continuous laser pulses at high power can cause heat dam-
age to tissues. Furthermore, there are an array of developments
in optical control of signaling pathways, including Opto-XRs,
which allow G protein-coupled receptor-mediated signaling
(Gq, Gs, or Gi/o-coupled), light-gated enzyme activation,
and light-sensitive protein–protein interactions [98, 99]. These
optogenetic tools are very useful for manipulating specific cell
types and circuits when probing the neural circuit mechanisms
that underlie diseases.

In addition to controlling neuronal firing in specific cells
and brain regions, the study of neural circuits requires
methods that simultaneously monitor the activity of the neu-
ronal population. The activity of larger neuronal populations
and circuits activated during complex behavior can be concur-
rently recorded on a global scale by techniques such as elec-
troencephalography (EEG), magnetoencephelography, optical
intrinsic imaging [100], and cortical voltage-sensitive dye
(VSD), whereas for more localized neuronal populations
(smaller population of neurons) such as local deep layer mi-
croelectrode arrays [101] and calcium imaging [102], the brain
area must be selected beforehand.

More recently, optogenetic tools have overcome the limi-
tation of poorly defined cell population recordings by en-
abling cell type-specific optical recordings of large numbers
of neurons’ action potentials at both single-cell and ensemble
levels [103]. Cell identity can be achieved by targeting genet-
ically encoded calcium or voltage indicators. Calcium indica-
tors respond to an increase in intracellular Ca2+ concentration
and emit fluorescence. The current best-performing calcium
indicator is GCamP6, which has increased optical perfor-
mance toward single spike detection sensitivity in many neu-
ron types [104]. In addition, voltage-sensitive fluorescent pro-
teins, an engineered voltage-sensing domain fused with a fluo-
rescent protein, track voltage changes more directly but at the
expense of sensitivity [103]. Genetically encoded voltage in-
dicators enable optical imaging of action potentials in vivo
[105]. Fast in vivo imaging is achieved by 2-photon micros-
copy through a cranial window preparation down to layer 2/3
neurons in anesthetized [106] and awake head-restrained mice
[107], or through a miniaturized integrated microscope for
imaging deeper structures [108]. Implantation of a special
optical fiber photometry setup provides access to local
GCamP signals from deep brain nuclei [109]. The single fiber
optic invented for fiber photometry provides chronic and sta-
ble access to deep brain structures by recording GCamp fluo-
rescence emission in freely moving mice. Gunaydin et al.
[109] have used this technique to record neural activity during
social behavior in genetically and connectivity-defined pro-
jections between ventral tegmental area-to-nucleus

accumbens. Such in vivo deep brain recording of neural activ-
ity could be important to study the role of thalamocortical and
cerebellothalamic projections during stroke recovery. Notably,
both optogenetic toolsets—stimulation and recording of neu-
ral circuit activity—have been combined in an all-optical set-
ting for photostimulation and fast calcium imaging without
spectral overlap in vivo [110, 111].

Benefits of Optogenetics

The key advantage of optogenetics over conventional micro-
electrode stimulation/recording is its ability to control cell-
and circuit-specific activation and/or inhibition with temporal
precision. Given the complex network and numerous distinct
subtypes of excitatory and inhibitory neurons, cells during
electrical stimulation may cause cancellation effects between
circuits, making it difficult to characterize detailed local cir-
cuits and long-range projections. A recent study compared
optogenetic and electrical stimulation of dopamine release in
the terminals [112], and demonstrated that selective
optogenetic stimulation produced higher dopamine release
than electrical stimulation. The same study found that local
electrical stimulation produced multisynaptic modulation on
dopamine release and this effect was absent in selective
optogenetic stimulation [112]. Furthermore, Dai et al. [113]
directly compared optogenetics and electrical stimulation in
rhesus monkeys and demonstrated that both stimulation ap-
proaches produced a similar response in a lateral visuospatial
discrimination task while stimulating the intraparietal area.

A portfolio of transgenic mouse lines has been quickly
developed and made commercially available [114].
Optogenetic reporters are either inserted downstream of a va-
riety of neuronal promoters, such as the pan-neuronal marker
Thy1 [115], or cell-specificity is introduced by crossing Cre
driver lines with lines containing optogenetic probes down-
stream of a floxed STOP cassette [76, 116]. The resulting
offspring have the STOP cassette deleted in the Cre-
expressing neurons, producing mice expressing cell-type spe-
cific ChR2. Recently, various intersectional targeting tools
have been developed (Cre/Flp-dependent, Cre/Dre-depen-
dent, and Cre/tTA-dependent) that allow highly selective
targeting to multiple cells types with 2- to 4-fold higher ex-
pression than Cre-dependent only lines such as the Ai14 level
in these mice [117, 118].

Optogenetics can be used to manipulate specific cell types
and circuits by using either the Cre-inducible ChR2 transgenic
mice or viral expression of ChR2, in combination with viral
vectors expressing trans-synaptic tracers, such as the plant
lectin wheat germ agglutinin (WGA), which provides retro-/
anterograde shuttling to postsynaptic target neurons. Avariety
of circuit targeting approaches can be used, as detailed in other
reviews. As an example, we chose the cerebellar dentate-
thalamo-cortical circuit to illustrate different ways optogenetic
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strategies can be used (Fig. 2). Electrical stimulation of the
dentate nucleus in rats has been shown to promote recovery
and enhance plasticity [62–65]. Tracing studies using the ra-
bies virus have indicated that different divisions of the dentate
nucleus mediate different functions. While the dorsal dentate
is more motor and premotor, the ventral dentate involves
nonmotor functions such as motivation, cognition, and
visual-spatial functions [119–121]. Studies have reported the
presence of 3 major distinct cell types in the dentate nucleus:
non-γ-aminobutyric acid (GABA)ergic (glutamatergic), small
GABAergic, and small glycinergic [122, 123]. It is unclear
which of these cell types and/or projections mediate the ben-
eficial effect on stroke recovery. Optogenetic manipulations
can be performed at the soma or terminal, as well as in com-
bination with trans-synaptic tracers for projection targeting to
dissect the involvement of various dentate circuits in stroke
recovery (Fig. 2). One way to achieve cell-specific stimulation
is to use viral vectors with promoters such as CamKII to drive
expression of ChR2 in excitatory neurons (Fig. 2a). Injection
of CamKII-ChR2 into the Th can express ChR2 in excitatory
neurons. Subsequent stimulation in the Th will result in acti-
vation of connected areas such as the motor/premotor cortex
(CTX). For well-defined neural circuits such as the
thalamocortical connection between the Th and the CTX, a
scenario similar to the previous one can be used with the
exception of placing the optical fiber in projection terminal
regions such as the CTX (Fig. 2b). For targeting unknown
projections from deep nuclei such as the Th toward the cortex,
a retrograde tracer such as WGA-Cre [109] and a Cre-
dependent ChR2 [with a loxP-flanked STOP cassette (LSL)]
are injected into the CTX and Th, respectively (Fig. 2c). The
projection is genetically labeled if WGA-Cre and LSL-ChR2
are present leading to Cre-dependent excision of the STOP
codon and ChR2 expression. For multisynaptic neural circuits
such as dentate-thalamo-cortical pathway, viral tracers from
the rabies virus genetically engineered to cross multiple

synapses are used [124] (Fig. 2d). In this example rabies
virus-expressing ChR2 is injected into the dentate nucleus,
which travels anterogradely through the Th toward the CTX.
Optogenetic stimulation of cortical areas provides specific ac-
tivation of ChR2 in the corresponding axonal terminals.

Independent of the experimental paradigm, successful
optogenetics requires several controls and tests of stimulation
parameters. For virus injections a control group should be
included with a nonfunctional opsin expressed by the same
virus. Cell toxicity and leaky expression are best identified by
histology, electrical recordings, or molecular profiling. For
selective stimulation of neural circuits, homogenous expres-
sion is necessary and the fiber optical device can be adapted to
the anatomical structure and size. In general, the size of the
light source, the fiber tip (which determines the focus or
spread of light), and light intensity can be varied. With these
parameters it is possible to calculate the heat produced by the
light stimulation [125], and verify that tissue heating is limited
to approximately 1 °C— the value below which neural and
hemodynamic activity are affected [126, 127]. Thus, direct
stimulations in the lesion area or peri-infarct area may have
a negative effect on recovery. In our optogenetic studies, we
target healthy areas that project to the lesion area, which dem-
onstrated a beneficial effect on recovery [26]. Given the ap-
proximate laser power for stimulation, the frequency, dura-
tion, and intervals of stimulations should be determined em-
pirically depending on the brain region and cell type of inter-
est. For example, single action potentials in parvalbumin (PV)
inhibitory neurons of the primary somatosensory cortex are
achieved by brief (<10 ms), high powered (>10 mW) laser
pulses [128, 129], whereas longer (1 s), low-power (0.1–
3 mW) laser pulses are sufficient to drive spiking in striatal
neurons [130]. Depending on the type of opsin used, the stim-
ulation frequency and interval should match the intrinsic
photocycle for high stimulation efficiency and low opsin de-
sensitization [76, 131]. Stimulation parameters can also be

Fig. 2 Optogenetic targeting of
neural circuits in the mouse brain.
The illustration depicts various
targeting strategies, including (a)
cell-body stimulation, (b) stimu-
lation of an anatomically defined
projection, (c) identification of a
projection via retrograde terminal
stimulation, and (d) targeting
long-range, multisynaptic projec-
tions. ChR2= channelrhodopsin;
WGA=wheat germ agglutinin;
CTX=motor/premotor cortex;
Th= thalamus; LSL= loxP-
flanked STOP cassette

Optogenetic Approaches to Target Specific Neural Circuits 329



determined based on the types of neurons and their recorded
spike trains. The effect of the stimulation paradigm can be
monitored by either observing a simple behavioral response
(e.g., limb movements or circling for primary motor areas) or
simultaneous recordings of more precise or quantitative out-
put, such as electrical recordings, calcium indicator-based ac-
tivation, or laser Doppler flowmetry for assessing the
stimulation-induced neurovascular coupling response (see
BMultimodal Approaches Using Optogenetics and Other
Techniques^ below for more discussion on optogenetics and
multimodal approaches).

What We Can Learn from Using Optogenetics to Investigate
Neural Circuits in Stroke Repair

The Experimental Set-Up: Step-by-Step As discussed ear-
lier, the exact role of contralesional M1 (cM1) activation is
controversial [132]. Functional magnetic resonance imaging
(fMRI) studies in humans suggest that, owing to disrupted
interhemispheric inhibition, cM1 activity may be beneficial
in the first 10 days after a stroke [25], yet correlates with a
negative outcome if it persists [9]. With the optogenetic tools
and calcium indicators described in the previous section, neu-
ral activity of excitatory cells with contralesional connections
can be manipulated at different time points, and a direct read-
out of neural activity in the iM1 can be obtained using fiber
photometry. Figure 3 illustrates an example of the experimen-
tal set-up to address this question. 1) Injection of the Cre-
inducible ChR2 [AAV5.EF1.dflox.hChR2(H134R)-
mCherry.WPRE.hGH] in the cM1 (left) of CamKIIα-Cre
transgenic mice [rB6.Cg-Tg(CamKIIa-cre)T29-1Stl/J;
JAX005359], and injection of the calcium indicator GCaMP6
(AAV5.Syn.Flex.GCaMP6f.WPRE.SV40) in the iM1 (right).
Cre recombinase will be expressed only in CamKIIα excitato-
ry cells, thus limiting the expression of ChR2 and GCaMP6 to
these cells only in which Cre mediates deletion of the STOP
codon upstream of the inserts. An optical fiber will be im-
planted in cM1 to allow light delivery, and another optical
fiber will be implanted in iM1 for fiber photometry. 2) For
optogenetic stimulation, a laser cable is tethered to the implant
to transmit the blue light directly into the cM1. The same blue
laser light is used to excite the GCaMP6. 3) At different time
intervals during and after stimulation, the activity of iM1 is
recorded as in vivo calcium-dependent changes in the
GCaMP6 fluorescence. This powerful setting allows control
over the excitatory neuronal activity in the cM1 and provides
insights on how iM1 activity is influenced over the time
course of stroke progression. An interesting alternative would
be to couple the iM1 neural activity readout as feedback to
modulate cM1 stimulation. Such closed-loop and activity-
guided control of neural circuit dynamics can be powerful
while studying behaving mice [133].

Optogenetic Studies in Various Disease Models

Optogenetic manipulation of neuronal subtypes and neural
circuits has proven to be particularly useful in investigating
various neurological disorders. By inserting a step-function
opsin for long-lasting neuronal hyperexcitability, Yamamoto
et al. [134], in a mouse model of Alzheimer’s disease, dem-
onstrated that chronic optogenetic activation of the perforant
path for up to 5 months increased β-amyloid burden in amy-
loid precursor protein mice in the hippocampal projection area
by approximately 2.5-fold compared with the contralateral
side [134]. The side effects of chronic stimulations were epi-
leptic seizures, which might have contributed to the β-
amyloid pathology. Optogenetics has also been used to study
temporal lobe epilepsy. In an animal model of pharmacolog-
ically induced seizures, optogenetic intervention of a subpop-
ulation of GABAergic cells in the hippocampus or inhibition
of excitatory principal cells (with projections outside the hip-
pocampus) could stop the seizures. Krook-Magnuson et al.
[80] used a closed-loop stimulation set-up in which laser-
activated seizures were automatically detected with video
and EEG recording in real-time. Furthermore, optogenetics
has been widely used to study Parkinson’s disease.
Optogenetic inhibition of the subthalamic nucleus improved
6-hydroxydopamine-induced Parkinson symptoms such as
forelimb akinesia [79]. Optogenetics is also useful for dissect-
ing more complex neural circuits of behavior such as in the
psychiatric diseases of depression, addiction, and autism
[135]. In order to translate the exciting findings of rodent
studies, optogenetic probes and set-ups need to be adapted
and confirmed to induce specific behavior in primates. A first
step are viral vectors with human promoters that efficiently
drive expression of optogenetic probes [136], as well further
development of implantable wireless light-emitting diode sys-
tems to replace optical fiber-based laser stimulation [137].

Optogenetic Interrogation of Post-stroke Remapping
and Recovery

Cortical Remapping Post-stroke

Motor and sensory functions are governed by an intricate net-
work of cortical and subcortical connections involving both
excitatory and inhibitory circuits [138]. Brain injury such as
stroke can disrupt this balance and cause changes in both the
lesion area and remotely connected regions [22]. Wide-scale
circuit-level remapping can occur early after stroke without
formation of new structural connections; this can be partly
due to the disinhibition that occurs after stroke [23, 139]. As
described in previous sections, stroke can disrupt interhemi-
spheric inhibition, which results in disinhibition and excessive
transient activation in the contralesional cortex (see Fig. 1).
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Structural and connectivity changes continue to occur for
weeks after stroke [10, 11, 13]; thus, understanding the spatial
and temporal progression of neural circuit dynamics and
linking these altered circuits with new structural connections
will be critical for developing therapeutic strategies to pro-
mote post-stroke recovery.

Studies in both humans and animals have demonstrated
functional cortical remapping after stroke [5, 7, 48]. fMRI
and positron emission tomography (PET) imaging in stroke
patients have demonstrated activation of the contralesional
hemisphere when moving the affected limb. Longitudinal im-
aging studies indicate that this contralesional activation is
transient and gradually returns to baseline, especially in pa-
tients with good motor recovery [9, 25, 140]. However, the
role of contralesional cortex activation is still unclear. Activa-
tion in the contralesional cortex at the early post-stroke phase
(i.e., 10 days) has been associated with improved recovery
[25, 141]. Furthermore, disrupting the contralesional cortex
activity using TMS also resulted in motor impairment [45].
These studies suggest that increasing contralesional cortex
activation after stroke is beneficial. However, the interhemi-
spheric inhibition model suggests that contralesional activa-
tion may be maladaptive, and this is supported by studies
using repetitive TMS that demonstrated improvedmotor func-
tion after inhibition of contralesional cortex activation [40, 41,
47]. Thus, the role of the contralesional cortex remains con-
troversial, and its role in stroke recovery may be dependent on
time, location, and severity of stroke. Motor training studies
have also highlighted the involvement of the dorsal premotor
cortex in stroke recovery, as increased activity in this region
was detected in stroke patients with improved motor perfor-
mance [142], and disruption of the premotor area resulted in
worsened motor performance. Most of the cortical remapping
studies in humans rely on the use of limb movement, which
involves mostly motor and sensory cortical activations. Future
studies need to investigate brain-wide network changes,

including subcortical regions, that may contribute to post-
stroke recovery.

Animal studies have also revealed activity changes in peri-
infarct and remotely connected regions after stroke [8, 10, 12,
13, 82]. Imaging techniques, such as intrinsic optical imaging,
VSD imaging, and 2-photo calcium imaging, have been used
in conjunction with forelimb stimulations to study post-stroke
activation patterns and functional remapping. Remapping oc-
curs after stroke most prominently in peri-infarct zones, but is
also observed in connected regions such as the unaffected
hemisphere (e.g., contralesional cortex) [13, 82, 139, 143,
144]. Remodeling in peri-infarct zones and in the unaffected
hemisphere, such as loss and recovery of dendritic spines and
axonal sprouting, has been reported [12, 145, 146]. Prolonged
activation in reorganized cortical areas in both peri-infarct and
distant areas is correlated with increased structural plasticity
[11, 13]. In addition, stroke produces a loss of proper sensory
motor maps, and sensory representations can remap onto near-
by areas. At 1–2 months after stroke, surviving neurons that
were originally highly limb selective can evolve into
responding to multiple limbs [22, 144]. This adaptive plastic-
ity within neuronal networks contributes to cortical remapping
and recovery after stroke [8, 22, 144].

In addition to remodeling in peri-infarct zones, animals that
have a focal stroke in the motor or somatosensory cortex also
exhibit activation changes in remotely connected areas, such
as the unaffected hemisphere or subcortical regions [139].
Rapid changes in sensory processing in the peri-infarct area
can occur within minutes of stroke. Using forelimb stimula-
tions in a photothrombotic stroke model, Mohajerani et al.
[139] revealed that these sensory-evoked changes can occur
bilaterally, and in the unaffected contralesional hemisphere
these activity changes are detected at 30 min after stroke.
Interestingly, deactivation of thalamic activity by tetrodotoxin
before stroke blocked the bilateral sensory activation. Further-
more, sensory-evoked activity in the unaffected hemisphere

Fig. 3 Schematic of an all-optical experiment to investigate the cross-
talk between activation of contralesional motor cortex (cM1) and the
ipsilesional M1 (iM1) in proximity to the ischemic lesion (highlighted
by a dark gray shadow). In a 3-step approach, 1) virus is injected to target
expression of channelrhodopsin (ChR2) and GCaMP6 to homotopic mo-
tor brain areas, followed by 2) the laser-based stimulation of optogenetic

probes, and 3) detection of calcium-dependent changes in fluorescence
emission due to activation of cells in iM1 via transcallosal projections
from cM1. The potentially disrupted pyramidal projection from layer 5
neurons in the cortex through the cortical spinal tract (CST) into the
contralateral spinal cord is indicated by a dashed line
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can occur in acallosal mice despite absence of transcallosal
connections [139], further suggesting the importance of sub-
cortical circuits in interhemispheric inhibition after stroke.
How these rapid changes that occur after stroke evolve during
the recovery phase remains to be elucidated. These rapid
changes in sensory processing can also cause metabolic
changes and potentially alter neurovascular coupling which
can affect neuronal function and recovery.

Recently, Lim et al. [82, 147] used optogenetic approaches
to interrogate post-stroke circuit reorganization and functional
remapping. They mapped functional cortical connectivity
with systematic ChR2 stimulation in conjunction with VSD
imaging. VSD imaging and ChR2 stimulation revealed
network-wide plasticity after stroke, and a strong parallel in
cortical connectivity was seen between ChR2 stimulations
and sensory stimulations [82]. However, the sensory stimula-
tions produced weaker responses while the ChR2 stimulations
produced stronger VSD responses, suggesting that
optogenetic stimulation using ChR2 may be more useful for
probing intracortical circuits. They observed a global de-
pressed response at 1 week after stroke and this extended to
the unaffected hemisphere. At 8 weeks after stroke, this de-
pression had recovered significantly. At the local peri-infarct
areas, ChR2 photostimulation of the peri-infarct zone revealed
a heterogeneous recovery; some areas (anterior-lateral)
remained depressed while others areas (posterior-medial) re-
covered by 8 weeks after stroke, indicating a nonuniform re-
covery of peri-infarct areas [82]. These findings are consistent
with the notion that stroke affects a brain-wide network and
further supports the involvement of noninjured remotely con-
nected regions in stroke recovery [22, 24]. Owing to the lim-
itation of the VSD technique, this study did not investigate
involvement of prefrontal circuits or subcortical circuits. Oth-
er groups have used resting state fMRI to investigate brain-
wide network changes after stroke, which allows a more glob-
al and longitudinal investigation [100, 148, 149]. Although
this is promising, the resting state frequencies are low and
the algorithms used to calculate the network dynamics still
need to be optimized for proper interpretation of these data.

Optogenetic approaches have also been used to study cor-
tical excitability within hours after stroke [150–152].
Anenberg et al. [150] used optogenetics to investigate cortical
excitability and motor output in a ministroke model generated
by occlusion of arterioles in the motor cortex. ChR2-evoked
EEG, spinal, and electromyography responses revealed a mis-
match of cortical excitability and motor output within 1 h of
stroke [150], consistent with the observed depression of excit-
ability after stroke, further supporting that cortical excitability
is impaired early after stroke and this impairment can be ob-
served in remotely connected regions. Furthermore,
optogenetics has been used to interrogate the cell types in-
volved in excitability and recovery [151]. Xie et al. [151]
examined the plasticity of inhibitory circuits after a global

ischemia stroke model that mimics cardiac arrest and heart
attacks, as inhibitory interneurons are important in regulating
excitability and plasticity after stroke. PV neurons are one of
the more abundant inhibitory neuron subtypes, and studies
have reported that PV neurons in the hippocampus are more
resistant to global ischemia [153, 154]. Using optogenetics
and Cre-dependent transgenic mice, Xie et al. [151] interro-
gated stimulation-evoked (optogenetic vs forelimb) activation
changes in the mouse somatosensory cortex after stroke with a
multichannel optrode, and investigated PV-mediated
GABAergic activity and its dendritic structural changes. De-
spite the recovery of dendritic structures in PV neurons, there
was a suppression of PV GABAergic synaptic transmission
after global ischemia [151], which could contribute to the
imbalance of excitation and inhibition after stroke, and lead
to motor and sensory deficits. Future studies can use
optogenetic approaches to interrogate the involvement of in-
hibitory networks in stroke recovery, such as specifically
targeting these PV-mediated inhibitory circuits. Other inhibi-
tory cell types such as somatostatin (SOM)-inhibitory neurons
may also be a promising target for stroke recovery, as these
SOM-inhibitory neurons in the motor cortex have been recent-
ly demonstrated to be key regulators of synaptic plasticity
changes in motor learning [155]. This work came from
Komiyama’s group, where they used optogenetic approaches
to examine the involvement of GABAergic inhibitory circuits
in synaptic plasticity changes during motor learning. They
manipulated PV- or SOM-inhibitory neurons and found that
motor learning induced subtype-specific plasticity of inhibito-
ry circuits in the motor cortex. Interestingly, while SOM-
inhibitory neurons inhibit the distal apical dendrites of excit-
atory neurons, PV-inhibitory neurons inhibit somatic and
perisomatic dendrites of the excitatory neurons [155]. It would
be interesting to investigate whether optogenetic manipulation
of SOM-inhibitory circuits can affect post-stroke recovery.

Besides the involvement of various inhibitory neuron sub-
types in recovery, GABA receptor-mediated signaling has
been demonstrated to play important roles in post-stroke re-
covery. Clarkson et al. [156] reported that increased tonic
GABA signaling (through extrasynaptic GABA-A receptors)
occurred in the peri-infarct cortex during stroke recovery, and
reducing this tonic GABA-mediated inhibition promotes re-
covery. Interestingly, while tonic GABA signaling is in-
creased after stroke, phasic GABA signaling mediated via
synaptic GABA-A receptors is decreased after stroke. Recent-
ly our group demonstrated that enhancing phasic GABA sig-
naling promotes post-stroke recovery, further highlighting the
importance of phasic GABA signaling in recovery [157]. The
GABA-B receptor may also play an important role in stroke
recovery, as these receptors are thought to mediate interhemi-
spheric inhibition [158]. Palmer et al. [158] used a combina-
tion of optogenetics and pharmacological tools to demonstrate
that long-lasting interhemispheric inhibition acts via a specific
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cortical microcircuitry mediated by dendritic GABA-B recep-
tors. Whether GABA-B receptor signaling is critical in stroke
recovery remains to be elucidated. Future studies using a com-
bination of optogenetics targeting specific circuits and specific
pharmacological inhibitors will be very helpful in dissecting
important inhibitory circuits in stroke recovery.

Optogenetic Approaches to Target Neural Circuits
in Post-stroke Recovery

In the previous section, we highlighted studies that used fore-
limb stimulations or optogenetic stimulation to investigate
cortical excitability and functional remapping after stroke.
While these studies yielded important insights on activation
patterns and circuit remapping after stroke, it is unclear wheth-
er some of these activated regions/circuits are beneficial or
maladaptive for recovery. To interrogate circuits involved in
stroke recovery, our group used optogenetics to manipulate
directly specific cell types and neural circuits after stroke
and investigate the effects on stroke recovery [26]. One of
the first brain regions we focused on was the ipsilesional pri-
mary mortex cortex (iM1). Using transgenic mice expressing
ChR2 under a Thy-1 promoter, after stroke we stimulated
neurons in the iM1 specifically, which targets multiple cir-
cuits, including corticospinal, cortico-cortico, and
corticothalamic. The ability to stimulate specific cell types
with precise timing will likely have a greater therapeutic ben-
efit and provide a clearer understanding of post-stroke recov-
ery mechanisms. Our study reported the first evidence of en-
hanced recovery using optogenetic neuronal stimulation [26].
We demonstrated that repeated stimulation of neurons in the
iM1 of freely behaving stroke mice was sufficient to activate
multiple plasticity-associated mechanisms and improve func-
tional recovery [26]. To create an ischemic infarct in the ro-
dent brains, we inserted an intraluminal suture through the
common carotid artery to occlude transiently the middle cere-
bral artery, thus producing a large infarct in the striatum and
sensory cortex that resulted in sensory-motor deficits (Fig. 4).
One of the major behavior tests we use to evaluate functional
recovery is the rotating beam test—a measure of how fast and
how far a mouse can run across a 120 cm beam that rotates
slowly at 3 rpm. We demonstrated that stimulated stroke mice
performed better on the rotating beam test in both distance and
speed traveled by day 14 (Fig. 5). As a second measure of
recovery, stimulated mice exhibited faster weight gain than
nonstimulated stroke control mice [26].

Our data also indicated that repeated iM1 neuronal stimula-
tions can restore the temporary depression of the ipsilesional
neurovascular coupling response after stroke [26]. Consistent
with the current concept of a global depression of blood flow
and excitability in the early stage after stroke, we observed a
decrease in CBF and neurovascular coupling response in stroke
mice at post-stroke day 5, in both ipsilesional and contralesional

hemispheres. However, repeated iM1-stimulated mice exhibited
a significant increase in CBF and neurovascular coupling re-
sponse at post-stroke day 15 [26], consistent with the view that
neuronal activity drives hemodynamic signals. Recent evidence
has shown that optogenetic stimulation of cortical excitatory
neurons increases blood oxygen level dependent (BOLD) sig-
nals [127, 159, 160]. Interestingly, we observed a sustained
larger CBF increase after the laser was turned OFF [26], which
has not been previously reported. This larger CBF increase sug-
gests that iM1-stimulated mice maintained a functional
neurovascular coupling system more similar to sham mice, as
the nonstimulated stroke mice lacked this response.

One rationale behind neuronal stimulation is that increased
neuronal activity enhances structural plasticity—such as axo-
nal sprouting or dendritic branching [15, 161]. Our data sug-
gest that stimulation may also promote functional recovery by
enhancing structural plasticity. Repeated neuronal stimula-
tions significantly increased the expression of activity-
dependent neurotrophins, including brain-derived neurotroph-
ic factor, nerve growth factor, and neurotrophin 3 [26]. These
trophic factors have been shown to enhance regrowth and
remapping of neural circuits [17, 161, 162]. Indeed, we also
detected a significant increase in GAP43 expression [26], a
growth-associated protein critical for axonal sprouting. Inter-
estingly, stimulating the iM1 increased the expression of these
neurotrophins and GAP43 in the contralesional motor cortex
(cM1), highlighting the involvement of the uninjured hemi-
sphere in stroke recovery. Future studies will determine the role
of the contralesional circuits involved in recovery, using specif-
ic circuit manipulations with various opsins and trans-synaptic
tracers. For example, using specific projection targeting with
CRE-inducible ChR2 and a WGA retrograde tracer, we can
directly stimulate only the transcallosal projecting neurons that
innervate the contralesional cortex and examine its effect on
neurotrophin expression and stroke outcome.

Multimodal Approaches Using Optogenetics
and Other Techniques: Brain-wide Screening
for Changes in Neural Circuits After Stroke

Brain-wide screening for changes in the neural circuits in-
volved in stroke recovery has benefited tremendously from
recent technical developments in the optogenetic toolbox
(see Fig. 3b). In addition, the technical devices used have been
improved and modified to better adapt to the mouse brain. For
example, wireless stimulation and readouts of head-restrained,
freelymovingmice is now possible for interrogation andmon-
itoring of neural activity during motor behavior [137, 163].
Furthermore, light delivery options have been expanded into
devices such as an optrode system for laser excitation and
multielectrode recording [164, 165], and a multifunctional
fiber system for simultaneous optical, electrical, and chemical
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interrogation [166]. If a 2-photon microscopy set-up is used to
record calcium signals, additional readouts important for
stroke recovery are now possible, such as imaging of blood
flow and synaptic structures [167].

However, optogenetic stimulation and readouts are restrict-
ed to specific brain regions and do not resolve global changes
in network activity. Therefore, at present, optogenetics is par-
ticularly useful for mapping neural connections on a regional
basis or between 2 structurally or functionally well-defined
areas [147]. This gap could be narrowed by correlating
optogenetic readouts with structural and functional in vivo
data, for example by MRI of myelin fiber bundles via diffu-
sion tensor imaging or diffusion spectrum imaging, and the
hemodynamic response via BOLD fMRI [168]. These nonin-
vasive techniques require only mild anesthesia or can be ap-
plied to awake rodents after or during the optogenetic stimu-
lation paradigm [127]. However, these techniques are still

being optimized to overcome limitations in the small mouse
brain. Notably, Po et al. [169] successfully resolved the 3-
dimensional (3D) model of main fiber tract (diffusion fiber
tracking based on diffusion spectrum imaging data) changes
in rats and found reorganization of the ipsilesional internal
capsule at 4 weeks after stroke. In addition, by combining
fMRI in the same rats they reported a transhemispheric fiber
connection through the corpus callosum that was lost in the
rats without recovery of BOLD signals at 5 weeks after stroke.
Van Meer et al. [143] applied serial diffusion tensor imaging
and resting-state fMRI, in which no stimulus was applied but
the spontaneous BOLD fluctuations were analyzed, in order to
correlate white matter integrity and functional connectivity to
stroke recovery. Similar to a scenario described in patients,
improvement of sensorimotor function is correlated with res-
toration of interhemispheric functional connectivity and nor-
malization of network configuration of the bilateral sensori-
motor cortex.

Recently, fMRI has been successfully combined with
optogenetic stimulation (opto-fMRI) and shows high potential
to provide the missing link between the specific stimulation of
brain circuits and the resulting activation of locally and re-
motely connected brain areas [127]. One of the first examples
of axonal projection targeting in conjunction with functional
imaging was described by Lee et al. [160] to allow circuit-
specific mapping. Independent stimulation of transduced
corticothalamic and thalamocortical axons between M1 and
the Th demonstrated distinct patterns of activation. Interest-
ingly, corticothalamic fiber activation produced unilateral ac-
tivation of the Th and cortex, while thalamocortical stimula-
tion produced bilateral activation. This demonstrates an im-
portant proof of concept for circuit-specific modulation.

One interesting aspect of brain-wide screening for neural
circuits would be the ex vivo characterization of brain areas

Fig. 4 Optogenetic stimulation paradigm and experimental design. (a)
Diagram illustrates the optical fiber implant in the ipsilesional primary
motor cortex (blue bar) and the infarct regions (orange). (b) Optogenetic
stimulation paradigm. Each mouse received daily stimulations consisting
of 3 × 1-min stimulations with a 3-min rest in between. (c) Experimental
design for the optogenetic stimulation studies. Mice are trained on the

rotating beam test prior to fiber implant. Training consists of 3 pretraining
sessions, a preimplant baseline, and a prestroke baseline. Optogenetic
stimulations began at post-stroke day 5, and behavior tests are performed
on post-stroke days 4, 7, 10, and 14. Mice are sacrificed for histology or
western analysis. This figure is modified from our original study [26].
CBF= cerebral blood flow; Sac = sacrifice

Fig. 5 Optogenetic neuronal stimulations improved functional recovery
after stroke. Stimulated stroke mice performed significantly better in the
rotating beam test, with a longer distance traveled and a faster speed.
*p < 0.05, **p < 0.01, significant difference between stimulated (stim)
and nonstimulated (non-stim) group, 2-way repeated measures analysis
of variance with Fisher's least significant difference. Sham: n = 8; non-
stim: n = 16; stim: n = 21. This figure is reproduced from our original
study [26]
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identified during an opto-fMRI experiment, where brain re-
gions activated by optogenetics are detected during fMRI scan-
ning. However, conventional histology/immunohistochemistry
and subsequent fluorescence microscopy of thin slices (usually
10–30 μm) highlights changes in cell structure and molecular
composition, but does not provide the necessary 3D context,
although 3D reconstruction from images of consecutive 2-
dimensional sections can be performed. Such ex vivo analyses
could benefit from tissue-clearing protocols such as CLARITY,
which is a method that removes lipids from the brain and ren-
ders the tissue transparent, while also preserving nucleic acids
and proteins, without dislocation, using an acrylamide-based
hydrogel [170, 171]. CLARITYallows greater optical and mo-
lecular access for immunolabeling, and this procedure can be
performed in whole brain or thick slices (3 mm), which mini-
mize reconstruction of images compared with traditional tech-
niques. In combination with light sheet microscopy [172], an ex
vivo high-resolution 3D model of the cellular components of
stroke recovery can be assembled.

Translational Potential of Optogenetics
and Limitations

Optogenetic techniques have been used widely to study dis-
ease mechanisms, particularly in preclinical neuropsychiatric
and neurological disorders [26, 78–82]. The major advantage
of the optogenetics technique is its specific cell type circuit
manipulations with temporal precision, which is difficult to
achieve with existing brain stimulation techniques, such as
deep brain stimulation, TMS, and tDCS [76, 77]. Although
optogenetics is invaluable for interrogation of neural circuits
in normal and disease states, significant technical obstacles
need to be overcome before it can be used for therapeutic
applications in humans. Clinical use of optogenetics will re-
quire complementary advancement in other techniques such
as gene therapy, opsin engineering, and opto-electronics/hard-
ware development.

Efficient cell-specific targeting can be achieved with
lentiviral or adenoviral viruses expressing the optogenetic
probe tools under a cell-specific promoter [173]. Two excit-
atory (ChR2 and SFO) and 2 inhibitory (eNpHR 2.0 and
ArchT) opsins have been successfully validated in primates
[95, 136]. However, the long-term effects of ChR2 expression
is a concern, as Miyashita et al. [174] recently demonstrated
that high-level, long-term expression of ChR2-EYFP can in-
duce abnormal axonal morphology and affect the organization
of cortical circuits. Some opsin expressions can cause toxicity
such as aggregation (please see detailed reviews [131, 175]).
Another issue is that the viral genome is limited in size, espe-
cially in adenoassociated virus (AAV); thus, some of the larger
promoters such as the inhibitory paralbumin promoter cannot
be used in a viral vector. In addition, cross-species variation in

opsin expression and function still needs to be optimized and
tested with different promoters and vectors in humans. Both
lentiviral and AAV have been used widely in optogenetic
studies. These viral vectors are nonreplicating and well toler-
ated in rodents. AAV is a safer viral vector, as it is less likely to
induce insertional mutagenesis and has a low immune re-
sponse [176]. Thus, AAV2 has been commonly and safely
used in a number of human clinical trials, including treatments
for Parkinson’s and Alzheimer’s diseases [177, 178].

The success of optogenetics in humans will also depend on
advances in light delivery and monitoring devices. Light is
typically delivered through an optical fiber that is connected
to a light source (laser or light-emitting diode). Significant
light scattering occurs when the light is introduced into brain
tissue. Only about 1 % of the blue light power is delivered
within 1 mm of its source [76]. Increasing light power can
activate more opsins in a larger brain region; however, the
heat from the light source can cause damage that may affect
physiological and behavioral functions [126, 127]. As the hu-
man brain is 10 times larger than the primate brain and 2500
times larger than the rodent brain, a major challenge of
optogenetic use in humans will be activating sufficient opsins
to drive a certain behavior without thermal damage. Thus, a
low-heat light source and an opsin with a strong photocurrent
or a more red-shifted activated opsin (infrared) will need to be
developed.

The closed-loop recording and optogenetic stimulation sys-
tem has been demonstrated to be useful in rodent models for
studying seizures and epilepsy [80, 81]. Similar closed-loop
optogenetic feedback systems designed for human monitoring
would also be desirable. Recent developments in brain–ma-
chine interfaces have shown promising results, particularly for
patients with amyotrophic lateral sclerosis, cervical spinal
cord injury, and epilepsy. As part of the BrainGate2 pilot mul-
tisite clinical trial, Gilja et al. [179] have demonstrated the
translational use of a neural prosthetic system in 2 patients
with amyotrophic lateral sclerosis, with the highest perfor-
mance ever reported. The clinical NeuroPace technology, an-
other promising closed-loop sensing and stimulation system,
has been recently approved for treating patients with medical-
ly intractable epilepsy [180, 181]. Furthermore, other brain–
computer interface systems based on electrocorticography and
intracortical microelectrode arrays have also demonstrated
positive results in human studies for help restoring motor
function in neurological/neurodegenerative diseases [182].
Future developments of incorporating optogenetics in these
brain–machine interface devices would be invaluable for spe-
cific real-time circuit modulations. In addition, developments
in pharmacogenetics, such as designer receptors exclusively
activated by designer drugs, can provide a complementary
approach to optogenetics for dissecting neural circuit mecha-
nisms [183–185]. Designer receptors exclusively activated by
designer drugs can be expressed in neurons, and specific
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neural circuits can be modulated using a synthetic small mol-
ecule such as clozapine-N-oxide [185, 186].

Despite the major hurdles mentioned above, optogenetics
is an invaluable tool for understanding neural circuit remod-
eling during post-stroke recovery. Although optogenetics is
not yet at the translational clinical stage, the cell type and
circuit specificity offered by optogenetics can potentially re-
sult in greater efficacy and/or reduced side effects.
Optogenetic Btreatments or stimulation paradigms^ that were
successfully demonstrated in animal models will provide in-
sightful information for the development of novel deep brain
stimulation protocols in clinical settings. Furthermore,
optogenetic-specific manipulation studies in conjunction with
next-generation sequencing can reveal the transcriptome pro-
file of stimulated stroke animals that exhibit behavioral im-
provement, which will help identify potential novel therapeu-
tic pharmacological targets for stroke recovery.
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