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Abstract Phelan–McDermid syndrome (PMS), also called
22q13.3 deletion syndrome, is a neurodevelopmental disorder
characterized by global developmental delay, intellectual dis-
ability, severe speech delays, poor motor tone and function,
and autism spectrum disorder (ASD). Although the overall
prevalence of PMS is unknown, there have been at least
1200 cases reported worldwide, according to the Phelan–
McDermid Syndrome Foundation. PMS is now considered
to be a relatively common cause of ASD and intellectual
disability, accounting for between 0.5 % and 2.0 % of cases.
The cause of PMS has been isolated to loss of function of one
copy of SHANK3, which codes for a master scaffolding
protein found in the postsynaptic density of excitatory synap-
ses. Reduced expression of SH3 and multiple ankyrin repeat
domains 3 (SHANK3) leads to reduced numbers of dendrites,
and impaired synaptic transmission and plasticity. Recent
mouse and human neuronal models of PMS have led to im-
portant opportunities to develop novel therapeutics, and at
least 2 clinical trials are underway, one in the USA, and one
in the Netherlands. The SHANK3 pathway may also be

relevant to other forms of ASD, and many of the single-gene
causes of ASD identified to date appear to converge on several
common molecular pathways that underlie synaptic neuro-
transmission. As a result, treatments developed for PMS
may also affect other forms of ASD.
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History

Phelan–McDermid syndrome (PMS; OMIM ID 606232) was
first described in 1985, and characterized at the time by dys-
morphic features, profound intellectual disability (ID), and
absent speech in a 14-year-old boy, thought to be caused by
a pericentric inversion of chromosome 22 [1]. Subsequent
case reports describing similar dysmorphic features and devel-
opmental delays continued to appear in literature, most of
which identified deletions in the terminal end of the long
arm of chromosome 22. The critical region causing PMS
was eventually refined by Anderlid et al. [2] to an area of
approximately 100 kb in 22q13.3, which contains three genes:
ACR, SHANK3, and RABL2B (Fig. 1) [3]. ACR codes for a
protein that aids in fertilization in spermatozoa, and its loss
was deemed unlikely to contribute to the syndrome [4].
RABL2B codes for a G-protein that regulates cellular vesicular
trafficking, but expression of RABL2A, located on chromo-
some 2, is thought to compensate for any loss of RABL2B
[5]. SHANK3, also called ProSAP2, remained a candidate
gene as its expression is found in many regions of the brain,
and the protein encoded is localized to the postsynaptic den-
sity, where it binds with other proteins that help maintain
synaptic structural integrity [6, 7]. In 2001, Bonaglia et al.
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[8] described a patient with a translocation between chromo-
somes 12 and 22, affecting only SHANK3, who had symptoms
consistent with PMS, providing evidence that the loss of
SHANK3 was most likely responsible. In 2006, this hypothe-
sis was confirmed by Wilson et al. [9] by evaluating 56 pa-
tients with PMS, all of whom demonstrated loss of 1 copy
(haploinsufficiency) of SHANK3. Subsequently, many studies
have been published to document small deletions and muta-
tions that affect only SHANK3, and result in a similar pheno-
type, including ASD and ID [10–14]. By convention, for the
remainder of the paper, we will use SHANK3 to indicate the
human gene, Shank3 for the rodent gene, and SHANK3 or
Shank3 for the corresponding protein in humans or rodents,
respectively.

ETIOLOGY

SH3 and multiple ankyrin repeat domains 3 (SHANK3/
Shank3) protein is expressed at low levels in all brain regions
during early postnatal development; peak expression corre-
lates with a significant increase in synaptogenesis and synap-
tic maturation [15–17]. Shank3 mRNA is localized to proxi-
mal and distal dendrites, and is highly expressed the hippo-
campus, cerebellar granular cells, caudate putamen, and tha-
lamic nuclei [18]. Immunohistochemistry techniques have al-
so implicated Shank3 in peripheral nervous system function-
ing, including neuromuscular junctions [19].

SHANK3/Shank3 codes for a protein that belongs to a fam-
ily of master scaffolding proteins localized to the postsynaptic
density of excitatory synapses like N-methyl-D-aspartate
( NMDA ) , α - a m i n o - 3 - h y d r o x y - 5 - m e t h y l - 4 -
isoxazolepropionic acid (AMPA), and metabolic glutamate
receptor complexes [7]. The SHANK/Shank proteins allow
for interactions with a wide variety of different proteins
[20–23], including cytoskeletal proteins, scaffolding proteins,
and receptors to ensure proper synaptic formation and func-
tion [24] (Figs 2 and 3). The SHANK/Shank proteins also
interact with signaling molecules and enzymes to regulate
receptor endocytosis, facilitate crosstalk between signaling
pathways, and promote synaptic plasticity, a process critical
for learning andmemory [20, 21]. The loss of SHANK3 can be
caused by any number of errors in genetic coding, including
deletions [14, 25–27], and splice site [28], missense [12, 13]
or frameshift [11] mutations, resulting in deleterious effects on
neuronal physiology and synaptic functioning. Deletions re-
sult from simple 22q13 terminal deletions, ring chromosome
22, and unbalanced translocations.

The importance of SHANK3 protein in development has
been explored by inhibiting neuronal expression of Shank3
during development in rats. Hippocampal and corticostriatal
neurons were removed from the brain of postnatal Shank3-
deficient rats and were found to have an overall reduction in

dendritic spine density, branching, and length, as well as de-
creased postsynaptic thickness [29–32]. Investigation of the
postsynaptic density revealed decreased numbers of 2 major
scaffolding proteins—Homer1b/c and guanylate kinase-
associated protein—that directly interact with Shank3, sug-
gesting that Shank3 plays a role in recruiting these proteins
during synapse formation [7, 33]. After treatment with Shank3
protein, hippocampal neurons also display an increased num-
ber of dendritic spines and functional glutamate receptors
[32]. Similar observations in other studies established Shank3
as a key part of normal neuron morphology and connectivity.
Subsequent studies were aimed at describing the downstream
effects of Shank3 disruption in order to better understand the
underlying deficits in patients with SHANK3 deficiency. In
2010, Bozdagi et al. [34] performed electrophysiological stud-
ies in Shank3-deficient mice to evaluate synaptic functioning.
The results showed a reduction in basal neurotransmission due
to reduced AMPA receptor-mediated transmission, indicating
less mature synapses in Shank3-deficient mice. Long-term
potentiation, a cellular mechanism responsible for learning
and memory, was also impaired in Shank3-deficient mice,
reflecting impaired synaptic plasticity [34]. Behaviorally,
Shank3-deficient mice exhibited reduced social sniffing and
fewer ultrasonic vocalizations compared with controls [34].
Shank3-deficient mice have also demonstrated deficits in mo-
tor skills, spatial memory, and social, episodic, and long-term
memory [29]. Other studies have described enhanced repeti-
tive behaviors, increased anxiety-like behaviors, and in-
creased self-grooming and self-injurious behaviors in Shank3-
deficient mice [30].

Using induced pluripotent stem cells from patients with
PMS, Shcheglovitov et al. [35] found significantly reduced
levels of SHANK3 mRNA and protein expression, a faster
rate of NMDA receptor decay, and an overall decrease in the
number of AMPA and NMDA receptors. The structural syn-
aptic changes resulted in reduced responses to AMPA- and
NMDA-mediated electrical stimuli, and an overall imbalance
of excitatory and inhibitory neuronal response [35]. Thus, it
can be concluded that loss of SHANK3 results in detrimental
effects on proper central nervous system (CNS) development
and impaired synaptic transmission in both rodent and human
neuronal models of PMS.

Epidemiology

Although>1200 people have been identified worldwide with
PMS, the prevalence is likely underestimated as chromosomal
microarray (CMA) has yet to have fully entered mainstream
clinical practice, despite 2010 guidelines establishing it as
standard of care in individuals with developmental disabilities
[36]. A review of recent studies in ASD using CMA or se-
quencing suggests that at least 0.5 % of ASD can be explained
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by deletions (0.16 %) or mutations (0.31 %) in SHANK3 [37].
In addition, up to 2 % of ASD with moderate-to-profound ID
can be explained by loss of SHANK3 [38, 39]. Men and women
appear to be equally affected by PMS [40]. Many other areas of
epidemiological study are currently underway, including
attempts to better understand the impact of neighboring genes
on phenotypic heterogeneity and severity.

Diagnosis

The clinical features of PMS are broad and the severity varies
widely across affected individuals. To date, no specific fea-
tures are considered pathognomonic and therefore diagnosis is
genetically driven. Haploinsufficiency of SHANK3 can be
identified with a variety of genetic tests, most commonly be-
ginning with CMA and using multiplex ligation-dependent
amplification to confirm the relative gene copy number [41].
Very small intragenic deletions (<30 kb) and mutations will
not be identified by CMA and require DNA sequencing tech-
niques to evaluate individual base pairs within the gene [42].
Although the majority of cases of PMS are caused by de novo

terminal deletions of chromosome 22, approximately 20 % of
parents may carry a balanced translocation that results in an
unbalanced rearrangement in the affected child and requires
chromosome analysis (i.e., karyotype) for detection [40].
Biological parents always require testing to rule out inver-
sions or translocations, and to clarify recurrence risk within
families.

Clinical Features

Although clinically heterogeneous, the most common presen-
tation of PMS includes global developmental delay, absent or
delayed speech, dysmorphic features, hypotonia, and autism
spectrum disorder (ASD) [2]. The behavioral abnormalities in
PMS vary, including repetitive use and spinning of objects,
chewing, stereotypic motor mannerisms, stereotypic vocaliza-
tions, unusual sensory interests and sensitivities, sleep distur-
bances, and negative reactions to changes in routine [10, 43].
ASD is also common in PMS and, in addition to the restrictive
and repetitive behaviors noted, includes the characteristic
symptoms of language delay and impaired social interactions

Fig. 1 Chromosome 22. Schematic representation of the short (p) and long (q) arms of chromosome 22, along with mapped areas of particular interest.
The genes located in area 22q13.3, ARSA, SHANK3, ACR, and RABL2B, are represented in a linear fashion, along with their respective sizes [102]

Fig. 2 SH3 and multiple ankyrin repeat domains 3 (SHANK3) protein
domains. Schematic representation of the multiple protein domains
available for interaction with other proteins [7, 21]. ANK=ankyrin

repeat domain; SH3=Src homology 3; PDZ=PSD-95-discs large-zone
occludens-1; Pro-rich=proline-rich region; SAM=sterile alpha motif
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[8]. Studies to date report a wide range of ASD prevalence in
PMS, suggesting rates up to 94 % [8, 44–46]. The discrepan-
cies in the rates of ASD in PMS are likely due to inconsistent
evaluation methods across studies and the inherent challenges
in diagnosing ASD in individuals with severe ID and devel-
opmental delay. Soorya et al. [10] used standardized methods
to evaluate for ASD, which includes the Autism Diagnostic
Interview-Revised [47], Autism Diagnostic Observation
Schedule-G [48], and the Diagnostic and Statistical Manual
of Mental Disorders-IV criteria [49], and found that 84 % of
the patients with PMS in their study met the criteria for ASD.
Patients with PMS are also commonly affected by ID, with
approximately 75 % of patients showing severe-to-profound
intellectual deficits [10, 11, 38, 50].

Medical Features

Loss of SHANK3 has an effect on multiple systems, most
notably the nervous system. Virtually every organ system
can be affected, and recent practice parameters were published
to provide guidelines for assessment and monitoring [51].
Developmental delays may not be apparent in the first
12 months of life, but a common presenting symptom in in-
fants is hypotonia, which can also contribute to poor feeding,
weak cry, and poor head control [43, 51]. Low muscle tone

and coordination deficits also contribute to significant delays
in achieving major motor milestones like rolling over,
crawling, and walking [46, 52–54]. The degree to which gross
and fine motor coordination is affected in PMS can vary by
location and severity, but gait is almost uniformly affected [10,
43], with some reports of inability to ambulate [10, 51]. Lan-
guage delays are present in>75 % of patients, with expressive
language affected more than receptive language [43]. Most
patients with PMS have limited means of communication
and cannot followmore than simple commands. Some reports
have also described a regression in motor, language, and be-
havioral skills in the context of seizure onset or exacerbation
and structural brain abnormalities [10, 11, 50, 55–57].

Patients with PMS are at a higher risk of developing seizure
disorders, including febrile seizures and intractable epilepsy.
The reported prevalence of seizures in PMS ranges up to ap-
proximately 40% [10, 26, 45, 46, 52, 54, 56, 58–61], but most
case series are retrospective relying on parent report or med-
ical record review instead of prospective analysis of electro-
encephalographic results. Brain magnetic resonance imaging
is typically recommended because structural brain abnormal-
ities have been reported in approximately 75 % of patients
described in the literature [10, 26, 45, 55, 62]. Nonspecific
white matter changes, including delayed myelination and gen-
eralized white matter atrophy, are the most common

Fig. 3 Glutamatergic synapse. Protein binding in the glutamatergic
synapse important for synapse structure and function. The ankyrin
repeat domain (ANK) binds to α-fodrin and sharpin to form the actin-
based cytoskeleton and promote dendritic spine formation [103, 104].
The Src homology 3 (SH3) domain binds to glutamate receptor
interacting protein 1 (GRIP1) in order to aid in α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking [105,
106]. N-methyl-D-aspartate (NMDA) receptor formation and
functioning are mediated by guanylate kinase-associated protein

(GKAP)/postsynaptic density protein 95 (PSD-95) binding to the PDZ
domain of SH3 and multiple ankyrin repeat domains 3 (SHANK3) [6, 7,
23]. The proline-rich domain of SHANK3 binds Homer1, which
mediates metabolic glutamatergic receptor (mGluR) anchoring/
functioning [33, 107, 108], and Cortactin, which binds to the neuronal
actin cytoskeleton [7]. The sterile alpha motif (SAM) domain binds to
other SHANK3 SAM domains to aid in synaptic targeting and self-
multimerization [109, 110]. SAP90=synapse-associated protein 90
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abnormalities seen on imaging, in addition to hypoplasia of
the corpus callosum, ventricular dilatation, and arachnoid
cysts [10, 26, 45, 54, 56, 58, 60]. One retrospective review
of 10 cases of PMS focused on the cerebellum and described
hypoplasia of the cerebellar vermis in 6 patients, with enlarge-
ment of the cisterna magna in 5 [62]. At present, it is highly
speculative to relate genetic and clinical findings to brain im-
aging results; however, additional studies are underway to
clarify brain structure and function in PMS, and may eventu-
ally provide a link to the phenotype.

The gastrointestinal system is also commonly involved in
the clinical symptomatology of PMS, which includes
gastoesophageal reflux disease, constipation, diarrhea, and cy-
clic vomiting [10, 43, 46, 52, 54]. Patients with PMS have a
higher prevalence (~25 %) of congenital heart defects. The
most common defects reported have been atrial septal defects,
tricuspid valve regurgitation, patent ductus arteriosis, and total
anomalous pulmonary return; however, consistent themes in
the type and severity of congenital heart defect have not been
established [10, 36, 58, 63]. Patients with PMS also have
genitourinary abnormalities, occurring in approximately
40 % [10], and include hydronephrosis, renal agenesis, and
pyelectasis. Structural changes in the kidneys themselves have
also been reported (e.g., dysplastic, horseshoe, multicystic)
but at a lower prevalence [51]. No studies have addressed
specific aberrations in the endocrine system in PMS; however,
cases of hypothyroidism [10, 54], hypertrichosis [10], and
central diabetes insipidus [64] have been reported. Growth
patterns in PMS are typically within the normal range; how-
ever, higher rates of short stature (<5th percentile), tall stature
(>95th percentile), microcephaly (<3rd percentile), and
macrocephaly (>97th percentile) have all been described
[54, 58, 65]. Recurrent infections (ear and upper respiratory
tract), allergies (seasonal and food), and asthma are also more
common in PMS, although it is unclear if the recurring infec-
tions are due to difficulties with maintaining airways because
of low muscle tone or a result of underlying immune system
dysfunction [51]. Various dysmorphic features are also com-
mon in PMS, such as bulbous nose, ear anomalies (prominent
and/or poorly formed), long eyelashes, pointed chin, dolicho-
cephaly, hypoplastic/dysplastic nails, and large and fleshy
hands [10, 58, 60, 66].

Differential Diagnosis

The differential diagnosis for PMS includes many
neurodevelopmental disorders with symptoms that overlap
with PMS (Table 1). The majority of syndromes in the differ-
ential are also caused by the loss of specific genetic material.
Like PMS, each can present with various clinical symptoms,
often nonspecific, and require genetic testing to confirm the
diagnosis because of differing underlying biology, treatment
options, and course of illness. The overlapping symptoms

most commonly observed in these syndromes include hypo-
tonia, global developmental delay, language deficits, epilepsy,
and dysmorphic features.

SHANK3 and ASD

The high prevalence of ASD in PMS has led to further inves-
tigation of the role of SHANK3 in ASD and its potential over-
lap with other known genetic causes of ASD. Approximately
20 % of ASD has been associated with specific chromosomal
rearrangements, and>100 genes have been implicated [67,
68]. In addition to SHANK3, other genes that have been im-
plicated in ASD include Fmr1 [fragile X syndrome (FXS)],
MeCP2 (Rett syndrome), TSC1/2 (tuberous sclerosis), PTEN
(Cowden syndrome), andNF1 (neurofibromatosis type 1) [68,
69]. There is significant overlap in cellular dysfunction under-
lying many genetic subtypes of ASD, including deficits in
synaptic function, synaptic plasticity, and excitatory gluta-
matergic signal transmission. Sakai et al. [68] developed a
protein interaction network using proteins encoded by known
ASD-associated genes and found high connectivity between
several causes of ASD, including SHANK3 and TSC1. There
is also overlap in the downstream synaptic pathways that are
involved in many single gene causes of ASD, such as
phosphatidylinositol-3 kinase/mammalian target of
rapamycin/serine-threonin-specific protein kinase(PI3K/mTOR/
AKT1) and mitogen-activated protein kinases/extracellular
signal-regulated kinases (MAPK/ERK), all of which play critical
roles in regulating neurotransmission [68, 70, 71]. The proteins
encoded by different ASD-associated genes also have related
functions by regulating translation and synaptic pruning (e.g.,
fragile Xmental retardation protein in FXS) [72, 73], transcription
(e.g., methyl CpG binding protein 2 in Rett syndrome) [74], and
cell growth (e.g., harmartin–tuberin in tuberous sclerosis com-
plex, phosphatase and tensin homolog in Cowden, and
neurofibromin 1 in neurofibromatosis type 1) [75, 76]. The re-
spective downstream effects of these genetic aberrations are high-
ly complex and dependent on feedback mechanisms, cross-talk
between pathways, and the involvement of other genes and ge-
netic modifiers. As a result, ASD has been hypothesized to occur
as a result of synaptic dysregulation due to hypo- or
hyperconnectivity, depending on the genetic insult and the role
of affected proteins. Loss of FMRP in FXS leads to an excess of
immature synapses, for example, while loss of SHANK3 impairs
connectivity by destabilizing the postsynaptic density and nega-
tively affecting glutamatergic receptor complexes and signal
transmission. However, overlap in gene function and signaling
proteins suggests the possibility that developing targeted treat-
ment in some single-gene causes of ASD may have relevance
to other genetic causes ofASD affecting similar pathways, includ-
ing a subset of cases of idiopathic ASD.
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Treatment Implications

Currently, the first line of treatment in PMS must address the
language, motor, behavioral, and medical features. Frequent
medical follow-up is also recommended to detect and monitor
medical and psychiatric comorbidities, or to evaluate any re-
gression in developmental skills [26, 43, 51]. Speech, occu-
pational, physical, and behavioral therapies should be institut-
ed early and aggressively. Little is known about the effective-
ness of these treatments in PMS specifically and; the
supporting evidence is drawn from the literature in ASD and
developmental disorders more broadly. However, as the un-
derlying pathways responsible for the deficits in PMS are
becoming more clearly understood, biologically based treat-
ment options targeting those pathways represent hope for
disease-modifying therapeutics in the future.

Only three clinical studies to document or test the effect of
medication have been published, although additional trials are
underway. The first clinical trial in PMS studied the effect of
intranasal insulin, which has been implicated in synaptic
plasticity and memory processing in neuronal models [77],
and has improved declarative memory in patients with
Alzheimer’s disease [78]. Six patients received 0.5–1.5 IU/
kg/day 3 times daily for 12 months, resulting in beneficial
effects on cognitive functioning and motor development with-
out adverse effects on glucose levels or hemoglobin A1c
levels [77]. Although this is the only clinical trial with intra-
nasal insulin with published data, another clinical trial is cur-
rently ongoing in the Netherlands (Netherlands Trial Registry
ID: NTR3758), and a description of the trial design has recent-
ly been published [79].

Another case study examined the effect of risperidone in an
18 year-old woman with PMS. Risperidone was administered
daily, and the results showed that 6 mg/day actually worsened
behavioral symptoms, including psychomotor agitation, ag-
gression, anxiety, and insomnia, while 1 mg/day of risperi-
done produced significant improvements using the Clinical
Global Impression Improvement Scale [80, 81]. The authors
hypothesized that by blocking dopamine 2 receptors, risperi-
done promotes NMDA transmission and reverses the gluta-
matergic dysregulation due to loss of SHANK3. Further, the
authors argue that the differential effect of high- and low-dose
risperidone is consistent with results from animal models,
which suggest that risperidone has dose-dependent effects
on glutamate receptor subtypes [82].

The role of growth factors in neurodevelopmental disorders
has gained recent attention owing to their potential CNS ef-
fects. Insulin-like growth factor-1 (IGF-1) is a small polypep-
tide that crosses the blood–brain barrier and is produced at its
highest concentration during CNS development to promote
neuronal maturation and synapse formation [83]. To study
the effect of IGF-1 deficiency during development, animal
models of IGF-1 deficiency were created by introducing nullT
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mutations in the gene coding for IGF-1 or its receptor, IGF1R.
The disruption in IGF-1 levels and receptor function led to
decreased neuronal proliferation, decreased dendritic spine
formation, and dysfunctional synapse formation [84, 85]. Rel-
evant to PMS, intraperitoneal administration of IGF-1 in
Shank3-deficient mice improved AMPA receptor-mediated
transmission, restored cellular long-term potentiation, and re-
sulted in improved motor skills [86]. Administering IGF-1 to
pluripotent stem cells derived from patients with PMS also
resulted in improved NMDA- and AMPA-mediated re-
sponses, and reduced the rate of NMDA receptor decay [86].
IGF-1 is currently commercially available as mecasermin
(Increlex; Ipsen Biopharmaceuticals, Basking Ridge, NJ), a
synthetic form of recombinant human IGF-1 approved to treat
growth failure due to primary IGF-1 deficiency (Laron syn-
drome; OMIM ID 262500) [87].

The first clinical study of IGF-1 administration in patients
with PMS is currently underway, and preliminary results sug-
gest tolerability and significant improvements in both social
impairments and restrictive behaviors. In a pilot study, 9 chil-
dren with PMS, aged 5–15 years, were randomized to receive
either subcutaneous IGF-1 or placebo for 12 weeks each, sep-
arated by a 4-week washout period. IGF-1 was titrated to a
maximum dose of 0.24 mg/kg/day in divided doses, which
resulted in significant improvement on the Aberrant Behavior
Checklist Social Withdrawal subscale and the Restricted Be-
havior Subscale of the Repetitive Behavior Scale [88, 89]. No
serious adverse events were documented and, overall, IGF-1
was determined to be safe in this population [90]. This study is
currently in phase 2, and has been expanded to include a larger
sample (ClinicalTrials.gov ID: NCT01970345).

IGF-1 has also shown promise in Rett syndrome, a finding
of particular interest given the significant overlap in underly-
ing etiologies of known genetic subtypes of ASD. In 2014,
Khwaja et al. [91] developed a clinical trial evaluating the
safety and pharmacokinetics of IGF-1 treatment in 12 girls
with Rett syndrome. Subcutaneous injections were given
twice daily at 0.04 mg/kg during the first week, 0.08 mg/kg
during the second week, and 0.12 mg/kg for the last 2 weeks.
This multiple ascending dose phase was followed by an open-
label extension period with doses of 0.12 mg/kg twice daily
for a total of 20 weeks. Results showed a significant reduction
in the number of apneic episodes and a trend of improvement
in mood and anxiety symptoms, as measured by the Rett Syn-
drome Behavior Questionnaire and the Anxiety Depression
andMood Scale [92, 93]. Although a small study, results from
Phase I of this trial are promising, and Phase II is currently
underway (ClinicalTrials.gov ID: 01777542).

An analogue of IGF-1, NNZ-2566 (Neuren Pharmaceuti-
cals Ltd, Camberwell, Australia), is also being studied in Rett
syndrome (ClinicalTrials.gov ID: NCT01703533) and FXS
(ClinicalTrials.gov ID: NCT01894958). NNZ-2566 is a syn-
thetic analogue of the tripeptide (1–3)IGF-1, which is

produced when the full-length IGF-1 polypeptide is cleaved
in the brain [94]. Although the mechanisms of action of (1–
3)IGF-1 and intact IGF-1 are different, [95], they are both
important in glutamatergic synapse formation [96]. (1–
3)IGF-1 has demonstrated a unique neuroprotective effect in
animal models [97], which is hypothesized to be related to
lower levels of proinflammatory cytokines, normalizing the
role of microglia, and addressing deficits in synaptic function
[98]. Preliminary data from the clinical trial in Rett syndrome
were recently released, and reported both efficacy and tolera-
bility of oral NNZ-2566 administration at 2 doses (35 mg/kg
and 70 mg/kg twice daily) [99]. There was evidence of signif-
icant clinical improvement, as measured by changes in the
Rett Syndrome Motor-Behavior Assessment Scale [100], the
Clinical Global Impression of Improvement [81], and a Care-
giver Top 3 Concerns Visual Analogue Scale [101]. The group
receiving a higher dose of NNZ-2566 reportedly showed
greater improvement compared with the low-dose group.
Drug tolerability, safety, and positive clinical effects described
in PMS and Rett syndrome clinical trials continue to support
IGF-1 and related compounds as promising therapeutic can-
didates in ASD.

Conclusions

The clinical features of PMS can affect multiple organ systems
in varying degrees of severity. The heterogeneity of symptoms
and severity likely depends in large part on a variety of genetic
factors that remain an area of active investigation. However,
several challenges impede a more complete understanding of
PMS. As technology has progressed, increasingly sophisticat-
ed and higher resolution genetic analyses have allowed for
greater detection of 22q13 deletions and SHANK3 mutations.
Improved access to, and greater appreciation of the need for
genetic testing will inevitably lead to increased diagnosis of
PMS in cases of ASD, ID, and developmental delay. Increased
knowledge about the frequency and type of genetic errors in
PMS and a large database of genetic samples will help deter-
mine whether the severity of clinical phenotypes and specific
manifestations of PMS are associated with additional genetic
changes. Improved understanding of the effect of neighboring
genes in the region may also aid in better prediction of disease
course. Although previous studies have been relatively small
and report conflicting results from genotype–phenotype cor-
relations, there is evidence from several studies that larger
deletion sizes, and hence more genes affected, are associated
with more severe phenotypes [10, 26, 61].

To date, the majority of clinical information about PMS has
been collected retrospectively and relied mainly on medical
record review and parental report. More clarity is needed to
better understand the extent and nature of structural brain ab-
normalities, as well as the prevalence of related neurological
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features, such as epilepsy. In addition, the natural history of
the syndrome has yet to be well studied and is a matter of
ongoing investigation as part of a Rare Disease Clinical Re-
search Network entitled Developmental Synaptopathies Asso-
ciated with TSC, PTEN and SHANK3 Mutations, funded by
the National Institute of Health. This consortium represents an
important opportunity to further clarify the range of genotype,
phenotype, and disease course, and will establish an infra-
structure to test therapies on a larger scale in the future.

The clinical and molecular relevance of PMS to other
monogenic causes of ASD may provide opportunities to de-
velop therapeutics with broader effect in ASD. Several com-
pounds are currently under study to determine their safety and
efficacy in PMS and other monogenic causes of ASD. Given
what is known about the synaptic pathology in PMS, medica-
tions that promote neuronal growth and synaptic maturation
are of significant interest. In addition to neurotrophic factors,
testing medications that target glutamatergic receptors or rel-
evant downstream signaling cascade proteins to enhance syn-
aptogenesis and plasticity may also be important in PMS.
PMS and other monogenic causes of ASD represent para-
digms of opportunity to create personalized therapies using
targeted molecular approaches.
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