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Abstract Amyotrophic lateral sclerosis (ALS) is a clinically
heterogeneous disorder characterized by loss of motor neu-
rons, resulting in paralysis and death. Multiple mechanisms of
motor neuron injury have been implicated based upon the
more than 20 different genetic causes of familial ALS. These
inherited mutations compromise diverse motor neuron path-
ways leading to cell-autonomous injury. In the ALS transgenic
mouse models, however, motor neurons do not die alone. Cell
death is noncell-autonomous dependent upon a well orches-
trated dialogue between motor neurons and surrounding glia
and adaptive immune cells. The pathogenesis of ALS consists
of 2 stages: an early neuroprotective stage and a later neuro-
toxic stage. During early phases of disease progression, the
immune system is protective with glia and T cells, especially
M2 macrophages/microglia, and T helper 2 cells and regula-
tory T cells, providing anti-inflammatory factors that sustain
motor neuron viability. As the disease progresses and motor
neuron injury accelerates, a second rapidly progressing phase
develops, characterized by M1 macrophages/microglia, and
proinflammatory T cells. In rapidly progressing ALS patients,
as in transgenic mice, neuroprotective regulatory T cells are
significantly decreased and neurotoxicity predominates. Our

own therapeutic efforts are focused on modulating these
neuroinflammatory pathways. This review will focus on the
cellular players involved in neuroinflammation in ALS and
current therapeutic strategies to enhance neuroprotection and
suppress neurotoxicity with the goal of arresting the progres-
sive and devastating nature of ALS.
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Overview of Motor Neuron Injury in Amyotrophic
Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is the most prominent
adult motor neuron disorder, affecting mostly motor neurons
in the cerebral cortex, brainstem, and spinal cord [1]. Al-
though first clinically described by Charcot in 1874, much
of our understanding of the pathophysiology has occurred in
the last 2 decades [2]. In 1993, the first genetic cause in ALS
was identified, a point mutation in the gene encoding Cu2+/
Zn2+ superoxide dismutase (SOD1). The following year, the
human cassette containing the G93A mutation of SOD1
(mSOD1) was inserted into a mouse [3–5]. Surprisingly, these
mSOD1 transgenic mice developed a motor neuron disease
similar to human ALS. Currently, > 150 genetic mutations and
> 20 different genes have been identified that can lead to the
same clinical disease of ALS in patients [6, 7]. Thus, multiple
mechanisms converge leading to inflammation and selective
motor neuron death (Fig. 1).

The study of patients in combination with the ALS animal
model has identified many complex molecular and cellular
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injurious pathways occurring peripherally at the neuromuscu-
lar junction and centrally at the cell body of the motor neuron
[8–24]. Histopatholgy in the animal model reveals a disrup-
tion at the neuromuscular junction that appears first followed
by a “dying back” of the axon [25]. Postmortem examination
of ALS patient tissues reveals an obvious loss of motor
neurons in the central nervous system (CNS), while many
remaining neurons demonstrate central chromatolysis, numer-
ous inclusions, swelling of the perikaryon and proximal axon,
mitochondria swellings, vacuoles, and neurofilament accumu-
lations [26]. Intracellular inclusions of ubiquitinated
misfolded proteins, including transactive response DNA bind-
ing protein 43 kDa, SOD1, phosphorylated neurofiliaments,
fused in sarcoma, and/or cystatin C occur in both hereditary
and nonhereditary cases, and are a pathologic hallmark of
disease [27–32]. The processes involved in motor neuron
injury can be further categorized into mechanisms that are
“cell autonomous” occurring within the motor neuron, and
“noncell autonomous” involving multiple non-neuronal cells
contributing to the disease process [33].

Evidence for immune and glial cells (i.e., noncell-
autonomous injury) affecting the fate of motor neurons comes
from the mSOD1 transgenic mouse. In chimeric mice with
selective expression of mSOD1 in motor neurons, an ALS
phenotype either does not develop or develops very late in the
life of the mouse [34–36]. Similarly, selective mSOD1 ex-
pression in non-neuronal cells also does not lead to the ALS
phenotype, but motor neurons can develop signs of injury
[37–40]. The addition of mSOD1-expressing astrocytes and
microglial cells has been shown to accelerate disease

progression, and wild-typemicroglia and astrocytes have been
shown to slow disease [37, 39, 41, 42]. Other non-neuronal
cells such as oligodendrocytes have also been shown to con-
tribute to motor neuron injury, although through noninflam-
matory mechanisms [43–45]. To summarize the last 20 years
of experimental manipulation of transgenic animals, ALS
appears to be a multifactorial disease with many mechanisms
leading to injury, but requiring non-neuronal cells for rapid
disease progression and motor neuron death.

Much of the noncell-autonomous toxicity can be defined as
“neuroinflammation”. Once thought to be only a consequence
of motor neuron death, neuroinflammation is now established
as an important factor not only in the pathogenesis of ALS, but
also in many other neurodegenerative diseases, including
Parkinson’s, Alzheimer’s, multiple sclerosis, HIV-associated
encephalopathy, and cerebrovascular disease [46–51]. Much
of what has been learned in ALS regarding neuroinflamma-
tion has come through discoveries in these other neurodegen-
erative diseases. Neuroinflammation is now understood to
contribute to the balance between neuroprotection and neuro-
toxicity. Evidence of the dual nature of inflammation in ALS
exists in both human patients and animal models. During
periods of slow disease progression, an anti-inflammatory
process governs neuroinflammation. During periods of rapid
progression, however, neuroinflammation is governed by a
strong proinflammatory state. In this review, we discuss the
key cellular players, the early neuroprotective phase (Fig. 2)
and late injurious responses (Fig. 3), and potential treatment
strategies to modulate these responses.

Immune Cells Involved in the Neuroinflammation of ALS

Microglia

Microglia are considered to be one of the first lines of defense
for the CNS against injury and infection. As a component of
the innate immune system, microglia colonize the CNS during
early development to serve as the resident macrophages [39,
52]. Microglia, in addition to sampling the environment and
presenting antigen, have patterned recognition receptors such
as CD14 and Toll-like receptors (TLRs) 2 and 4, that when
stimulated result in an innate immune response. These recep-
tors have been suggested to be involved in multiple diverse
neurodegenerative diseases [51, 53, 54]. Depending on the
stimulus and surrounding cytokine milieu, microglia can be
activated along a continuum with the ability to acquire a
classically activated (M1) or alternatively activated (M2) phe-
notype [54–58]. In general, M1 promote a neurotoxic T-cell
response and are cytotoxic owing to the secretion of reactive
oxygen species (ROS) and proinflammatory cytokines, in-
cluding interleukin (IL)-1, IL-6, and tumor necrosis factor
(TNF)-α, and a reduction in protective trophic factors
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[59–63]. In contrast, M2 produce high levels of anti-
inflammatory cytokines and neurotrophic factors including
IL-4, IL-10, and insulin-like growth factor (IGF)-1 in addition
other neruoprotection signals such as CD200 and fractalkine
[51, 60, 64–68].

In patients with ALS, microgliosis occurs specifically with
motor neuron injury in the motor cortex, along the
corticospinal tract, and in the ventral horn of the spinal cord
[24, 53, 69–72]. Interestingly, positron emission tomography
imaging, with either 11C-PK11195 or translocator protein
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radioligands that bind microglia, has been used to image
microglial activation corresponding with the location motor
neuron injury in patients with ALS [72, 73]. This radiographic
evidence in humans correlates the with evidence in the G93A
mSOD1 transgenic mouse, which demonstrates microglial
activation even before motor neuron cell death [74, 75].

Astroglia

Astrocytes have many complex functions, including regulat-
ing extracellular neurotransmitter concentrations, exerting
metabolic or ionic homeostatic function, providing structural
and trophic support for neurons, and also contributing to the
immune response [76, 77]. Astroglia contribute to motor
neuron injury in both immune and nonimmune mechanisms.
In patients with ALS and in animal models, astroglia have
diminished expression of glutamate transporter-1 (excitatory
amino-acid transporter-2), leading to glutamate excitotoxicity
[10, 78, 79]. Astrocytes can also contribute to the immune
response via pattern recognition receptors, including TLRs
and mannose receptors. Following activation, astrocytes can
secrete neurotoxic factors and cytokines, such as C-X-X motif
chemokine 10, chemokine (C-C motif) ligand 2, and IL-6,
greatly affecting the local environment [24, 40, 53, 76, 80].

In patients with ALS, astrogliosis occurs more diffusely
than microgliosis, occurring in the spinal cord as well as in the
gray matter and subcortical white mater [81, 82]. In the G93A
mSOD1 transgenic mouse, activation of astrocytes occurs
concomitantly with a decrease in motor neurons [75, 82,
83]. Although astrocyte numbers increase with disease pro-
gression, astrocytes do not proliferate like microglia, but may
be derived from ependymal cells lining the central canal of the
spinal cord or oligodendrocyte precursor cells [24, 84–88].

Additional Local Immune Cells

Local dendritic cells (DCs) have been less well characterized,
but also serve an important function in the disease process.
DCs sample the local environment and present foreign anti-
gens, and are increased in both human patients with ALS
and in the mSOD1 transgenic mouse [89, 90]. During the
course of disease, microglia/macrophages, DCs, and T
cells contribute to the cytokine milieu that dictates the
local neuroinflammatory response.

T Lymphocytes

T cells play an important role in governing acquired immune
responses to diverse antigens. Specific T-cell subpopulations
infiltrate the CNS during disease progression and contribute to
the neuroinflammatory reaction in ALS [91–93]. In CNS
tissues of both human patients with ALS and animal models,
CD4+ T helper (Th) lymphocytes are observed in association

with microglial activation, and cytotoxic CD8+ are observed
in these tissues at later stages of disease [70, 93]. Several
CD4+ subsets have been described, but most focus on 4
distinct subsets: Th1, Th2, Th17, and regulatory T lympho-
cytes (Tregs). Each subpopulation has specialized functions to
control immune responses [94]. Like the classification of
microglia/macrophages, CD4+ T cells can fall into 2 simpli-
fied classes: those that are neuroprotective (Th2 lymphocytes
and Tregs), and those that are proinflammatory and neurotoxic
(Th1 and Th17 lymphocytes). In 1995, Sakaguchi et al. [95]
identified and described CD4+CD25+ immune suppressive
cells with a role in self-tolerance. Tregs were then introduced
to neurodegeneration with discoveries in multiple sclerosis
[96, 97]. Understanding the role of Tregs play in neurodegen-
eration has spread, encompassing many different neurodegen-
erative diseases, including ALS [51, 98]. The role of Th17 is
less well defined in the mSOD1 transgenic animal, but evi-
dence from patients with ALS supports their involvement in
the neuroinflammatory process [98–101].

Additional Peripheral Immune Contributions

Additional contributions from the peripheral immune system
that have been investigated include the protein complement
system, as well as peripheral monocytes/macrophages. Com-
plement factors are mostly synthesized in the liver, but in
mSOD1 transgenic animal models, complement factor C1q
transcription was noted to be upregulated in motor neurons
[102]. However, the role of the complement pathway still
remains controversial [103–106]. The role of peripheral mono-
cytes in ALS is also controversial. Several authors suggest that
peripheral monocytes infiltrate the ALS spinal cord contribut-
ing to motor neuron loss [107, 108]. These results are incon-
sistent with previous parabiosis experiments that demonstrated
no infiltration into the CNS from the periphery unless the
blood–brain barrier was disrupted [84, 109–112]. However,
monoctyes/macrophages have been demonstrated to aid in the
inflammatory response of peripheral axons [113]. Additionally,
immune system alterations, including decreased CD14+ mono-
cytes early in the disease course, as well as evidence of mono-
cyte activation in the blood, are documented in patients with
ALS [114]. Further investigation is needed in both areas to
define their contribution to neuroinflammation in ALS.

Immune Cell Dialogue

During periods of neuroinflammation, microglia acquire prop-
erties of antigen presenting cells such as CD11c, CD86, and
intracellular adherin molecule 1, suggesting that these microg-
lia interact closely with Tcells [84, 89, 90, 92]. In vitro studies
demonstrate that M2 cells have the ability to induce CD4+
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Tregs with a strong suppressive anti-inflammatory function
[115, 116]. Similarly, CD4+ T cells cultured with M1 macro-
phages can produce a proinflammatory interferon (IFN)-γ
response [117]. T cells can also polarize microglia toward a
M2 neuroprotective or a M1 cytotoxic phenotype depending
on the type of Tcell and cytokine milieu [67]. Additionally, all
cytokine-producing cell types release factors that can influ-
ence activation states of the others [118–120]; chemokine (C-
C motif) ligand 2 and macrophage colony-stimulating factor
are among other factors that are secreted by astrocytes and
microglia in ALS [121]. It is thought that damaged motor
neurons initiate the inflammatory response, although the exact
mechanism is unknown. Potentially, mSOD1 released by
motor neurons activate astrocytes and microglia via a TLR
response [122, 123]. Intriguingly, mSOD1 has been demon-
strated to transform and activate microglia to a M1 proinflam-
matory state, but mSOD1 also can induce a neuroprotective
state with production of IGF-1 and progranulin secretion in
certain conditions [53, 122, 124–127]. Both of these states can
exist during the course of ALS and are determined by the
cytokine milieu created in response to motor neuron injury.

Early Neuroprotective Neuroinflammation Phase

The initial belief regarding neuroinflammation in ALS was
that all the cellular players represented a neurotoxic state. This
idea was challenged after transfer of wild-type microglia
slowed disease progression in the mSOD1 mouse [39]. Sim-
ilarly, the view of T cells in ALS was changed by experiments
that depleted the entire T-cell population by crossbreeding the
mSOD1 transgenic mice with RAG2-/- knockout or TCR-/-

knockout mice. Surprisingly, the disease course significantly
worsened in these mSOD1 Tcell-deficient mice [92, 93].
Transfer of CD4+, and specifically Tregs, rescued these mice
and extended survival [93, 128]. Th2 CD4+ T cells and Tregs
can express high levels of the anti-inflammatory factor IL-4,
polarizing microglia to the neuroprotective (M2) phenotype
[92]. Furthermore, these “neuroprotective” T cells may influ-
ence astroglial behavior by increasing their production of
neurotrophic factors such as glial-cell-derived neurotrophic
factor [93].

In the mSOD1 transgenic mouse, after disease onset, 2
clinical phases exists: An initial “slow” phase where the
mouse does not appear to worsen clinically, followed by a
“rapid” phase where the mouse declines clinically until eutha-
nasia. In 2011, Beers et al. [98] demonstrated in the G93A
mSOD1 transgenic mouse that during this initial “slow” phase
M2 factors were predominant (Fig. 2). Also during this early
phase, Th2/Tregs predominate with the secretion of IL-4, IL-
10 and other anti-inflammatory cytokines [98, 129]. Similarly,
when Tregs were passively transferred into the ALS mouse,
the “slow” phase and survival were prolonged [130].

Late Neurotoxic Neuroinflammation Phase

In the transgenic mSOD1 mouse, while the Tregs/M2 dia-
logue actively contributes to neuroprotection during the slow
phase of the disease, a transformation occurs, and a rapid
phase ensues with the concomitant injurious Th1/M1 response
and Treg function suppression (Fig. 3) [98]. During the rapid
disease course, proinflammatory and cytotoxic T cells pre-
dominate, contributing to the neurotoxic proinflammatory
environment in conjunction with production of several cyto-
kines, such as IL-1, IL-6, TNF-α and IFN-γ [93, 98]. Overall,
as the disease progresses, more Th1 cells are observed pro-
ducing elevated levels of IFN-γ, which promotes M1
microglial activation. M1 cells can then promote proliferation
and function of Th1/Th17 cells. This vicious cycle is believed
to be a significant driving force for acceleration of disease
course during the rapid phase.

Neuroinflammation in Patients with ALS: Tregs

Most importantly, many of these immune changes in the
animal model have been confirmed in patients with nonhe-
reditary ALS [24, 70, 99, 100, 131, 132]. Henkel et al. [133]
demonstrated that in patients with rapidly progressing clinical
states, an inverse correlation was seen between Treg numbers
in the blood and leukocyte levels of FoxP3, a transcription
factor required for Treg suppressive function [134]. In a
second cohort of patients with ALS, the decreased cell num-
bers and decreased FoxP3 expression were 80 % sensitive in
predicting rapid progression in patients with ALS. After
3.5 years, 35 % of patients with ALS with decreased FoxP3
levels were deceased or ventilator dependent, while only 13%
of patients with ALS with increased FoxP3 levels were de-
ceased or ventilator dependent. Factors that are elevated dur-
ing the later period that can inhibit the suppressive ability of
Tregs include TNF-α, IL-1β, and IL-6. TNF-α has been
demonstrated to inhibit the phosphorylation of FoxP3 [135].
IL-1β was required to drive the conversion of Tregs to IL17-
producing cells [136]. IL-6 has been reported to inhibit the
generation of FoxP3+ Tregs [137]. Interestingly, anti-IL-6
treatment through toclilizumab has shown suggestive clinical
benefit and is currently being tested in patients with ALS
[138]. Clearly, understanding the interactions between periph-
eral and central immune responses will be essential in any
attempt to manipulate the disease via neuroinflammatory
mechanisms.

ALS Immunomodulation Treatment Strategies

In the last decade, neuroinflammation has been documented to
contribute to the pathogenesis of motor neuron injury in
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transgenic ALS mouse models. No therapy that appeared
promising in transgenic ALS mice, including many targeting
neuroinflammation, has improved clinical outcomes in pa-
tients with ALS. It is clear that the mouse model has a more
homogenous disease phenotype compared with the heteroge-
neous clinical disease in patients; humans are not just big
mice. Multiple factors provide insight as to why translation
of therapeutic benefit from mouse to human has failed, in-
cluding the lack of data delineating the extensive cytokine
milieu created in response to motor neuron injury. In mSOD1
transgenic mice, decreasing or deleting single proinflamma-
tory factors such as TNF-α, IL1-β, and inducible nitric oxide
synthase has had little-to-no effect on overall survival
[139–141]. Clearly, the multiplicity of proinflammatory cyto-
kines can compensate for the absence of any single factor, and
it is unlikely that continuing efforts to target a single factor
will provide significant therapeutic benefit in patients with
ALS.

Drugs targeting neuroinflammation such as celecoxib, cef-
triaxone, thalidomide, and minocycline were reported to en-
hance survival in transgenic mice, yet none were effective in
human ALS trials [142–144]. Some critics have suggested
suboptimal animal study design such as inadequate powering
or administration of drug to mice prior to onset of signs of
disease, while in patients with ALS administration can only
begin well after the appearance of disease symptoms and signs
[145, 146]. Similarly, targeting the downstream effect of ROS
has shown benefit in ALS animal models but not in patients
with ALS [147]. Immunosuppressive drugs such as glucocor-
ticoids, cyclophosphamide, azathioprine, and cyclosporine,
among others, that have proven efficacy in diverse immuno-
logical disorders have not shown efficacy in ALS [148, 149].
If neuroinflammation is an appropriate therapeutic target in
ALS, wemust ask why these immunomodulatory medications
have failed in clinical trials. Is it too little too late? Is neuro-
inflammation a meaningful therapeutic target only in a small
population of the diverse ALS phenotypes? Or is it possible
that these therapies failed to hit the appropriate targets? Un-
fortunately, in most studies, neither the appropriate target is
defined nor is there evidence that the therapies actually hit the
putative target.

The lack of translation of therapeutic benefit in trans-
genic mouse models to patients with ALS underscores at
least 2 complicating factors: the significant heterogeneity
of disease in patients with ALS, and the lack of bio-
markers to differentiate patients with ALS with slowly
progressing disease from those with rapidly progressing
disease. In mSOD1 transgenic mice, early slowly
progressing disease can be readily differentiated from
later rapidly progressing disease; the spinal cords of the
former are characterized by increased protective Tregs
and M2 microglia/macrophages, while the spinal cords
of the latter are characterized by decreased Tregs and

increased Th1 lymphocytes and M1 microglia/macro-
phages. However, in the heterogeneous population of
patients with ALS enrolled in any study, populations of
patients progressing rapidly are intermixed with patients
progressing slowly. Even though neuroprotecitve immune
factors may be present in the spinal cord in early disease
and neurotoxic immune factors in later disease in pa-
tients with ALS, readily available access to spinal cords,
disease heterogeneity, and an inability to separate slow
from fast progression significantly limit therapeutic ben-
efit. In the absence of the ability to separate fast from
slow progressors, or the presence of an admixture of
neuroprotective and neurotoxic cellular immunity, thera-
peutic efforts may need to simultaneously downregulate
proinflammatory cellular immunity and upregulate anti-
inflammatory cellular immunity.

One potential target and treatment strategy would be
to decrease the signals activating the inflammatory re-
sponse. This approach includes the use of interfering
RNA to decrease production of misfolded toxic proteins.
These techniques have lead to success and positive re-
sults in animal models [150, 151]. Currently, this ap-
proach is being translated in the clinic to patients with
ALS; however, no long-term outcome data have been
published [152]. There is concern, though, that once the
vicious, irreversible proinflammatory cycle begins, this
approach may not be successful.

To modulate effectively neuroinflammation in ALS, the
studies in transgenic mice suggest potential targets that are
not modulated by present-day anti-inflammatory or immuno-
suppressive therapies. During early stages of disease in the
mSOD1 mouse, microglia are neuroprotective (M2), while in
later, rapidly progressive stages of disease microglia are cyto-
toxic (M1). T lymphocytes are similarly neuroprotective early
in disease (Th2/Tregs) and neurotoxic later in disease (Th1/
Th17). Therapies that target all populations of T lymphocytes,
including Tregs, Th2, Th1, and Th17 cells, would simul-
taneously suppress both protective and cytotoxic popula-
tions. Thus, potentially effective therapies would need to
enhance protective T cells (Tregs/Th2) and/or suppress
cytotoxic T cells (Th1/Th17), but suppressing both popu-
lations simultaneously would not change the balance be-
tween pro- and anti-inflammatory responses, and might
not promote beneficial effects. Similar therapeutic strate-
gies targeting microglia or monocyte/macrophage popula-
tions should preferably attempt to enhance microglial M2
responses and suppress microglial-mediated M1reponses
simultaneously.

The successful transfer of Tregs into ALS mice to upregu-
late neuroprotective pathways and downregulate cytoxic path-
ways makes therapies targeting Tregs attractive. Passive trans-
fer of Tregs has become an effective clinical therapy in graft-
versus-host disease [153, 154]. Treatment with cytokines and
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growth factors such as IL-2, granulocyte macrophage colony-
stimulating factor, or IGF-1 have been shown to increase
Tregs reliably in other diseases [155–157]. Epigenetic modi-
fication of FOXP3 is also under investigation for potential
treatment opportunities [158]. Future therapies in ALS involv-
ing Tregs may incorporate all these approaches to tip the
balance back towards neuroprotection. One significant cau-
tion in Treg therapy is the potential of these cells to be
converted to Th17 proinflammatory cells in the presence of
the increased proinflammatory cytokine milieu, which may
promote disease progression.

Other cellular based therapies targeting immune cells are
also under investigation. Early attempts with CD34 hemato-
poietic stem cell transplantation were not successful at en-
hancing survival or suppressing the neuroinflammatory re-
sponses within the spinal cord, for reasons mentioned above
[159]. However, transplantation of mesenchymal stem cells
has had promising results in animal models, and early-phase
trials in patients with ALS are in progress [160]. In these later
studies, the goal is not to replace the injured motor neuron, but
to use these stem cells as a Trojan Horse to deliver growth
factors to repair motor neurons and thereby halt disease pro-
gression. Another cell-based therapy to repair injured motor
neurons is to inject embryonic stem cells directly into the
spinal cord of patients with ALS; to date, 18 patients with
ALS have been implanted and are being carefully monitored
[161, 162].

Another approach to suppressing neuroinflammation
would be to decrease the population of M1 monocyte/
macrophages and enhance the population of M2 monocyte/
macrophages. Similar to Tregs, passive transfer may be an
option. Transfer or M2 microglia/macrophages has been
shown to be an effective treatment in experimental autoim-
mune encephalitis [116]. Already in clinical trial, NP001, a
novel immunomodulator of proinflmmatory monocyte/mac-
rophages, appeared to suppress neuroinflammation and slow
progression in ALS, but these results await a larger confirma-
tory study [163].

Conclusions

Effective therapy of ALS remains in its infancy, even
after many years of intense investigation and discovery.
As highlighted throughout this review, the pathways
involved in motor neuron death in ALS are complex,
with diverse cellular and molecular contributions leading
to motor neuron injury and eventual neuronal death.
Neuroinflammation in neurodegenerative disease has
evolved from what was once thought as a secondary
effect or consequence of neuron injury to being accept-
ed as making a key contribution to motor neuron path-
ophysiology and disease propagation. In ALS, the fact

that mutations in different genes can result in common
clinical manifestations of ALS, as well as the fact that
neurons do not die on their own, suggest that neuroin-
flammation is a common denominator and necessary to
induce neurodegeneration in ALS.

Despite the complexity, disease progression in ALS
that eventually leads to motor neuron death can be
divided into 2 phases. The first phase is cell autono-
mous, with motor neuron injury mediated by many
mechanisms summarized in Fig. 1. During this early
phase of slow disease progression, data gleaned from
both human and animal models suggest that the immune
system is neuroprotective with glia and T cells, espe-
cially M2 macrophages/microglia and Tregs, providing
factors that sustain motor neuron viability (Fig. 2). As
the disease progresses and the intrinsic motor neuron
autonomous injury proceeds and accumulates, and the
extrinsic noncell-autonomous repair processes fail and a
second rapidly progressing phase ensues characterized
by M1 macrophages/microglia, and Th1 and Th17 T
cells. Although the signals emitted from motor neurons
triggering both an injurious innate immune glia and
adaptive immune T-cell response have not been fully
elucidated, current data suggest that the neuroprotective
M2/Treg/Th2-mediated pathways are downregulated and
the cytotoxic M1/Th1/Th17 pathways are upregulated,
resulting in a self-propagating proinflammatory acceler-
ation of disease progression. The nature of these signals
remains unknown, but the misfolded proteins them-
selves, such as SOD1 and transactive response DNA
binding protein 43 kDa, or peptide fragments may me-
diate an M1/Th1/Th17 proinflammatory cascade leading
to the precipitous demise of the motor neuron. Such
neuroinflammation may not initiate neuronal injury, but
amplify and propagate the injury instigated by the motor
neuron-emitted “danger signals”.

Despite many studies defining the multiple intraneuronal
pathways compromised in ALS, no therapies have provided
meaningful benefits to patients with ALS. Current data sug-
gest that cell-based therapies aimed at affecting and modulat-
ing the neuroinflammatory responses in ALS might provide
these therapeutic benefits. Tregs are especially attractive as a
potential therapy as the passive transfer of Tregs in the
mSOD1mouse model of ALS demonstrated clinical improve-
ment and prolonged survival. Alternative therapies include
compounds that can maintain the early microglial M2 pheno-
type and other compounds that transform the late microglial
M1 phenotype into a protective M2 phenotype. Thus, a focus
on cell-based therapies aimed at modulating the
neuroinflammatory response in ALS, including the specific
signals involved in the microglial–T-cell dialogue, may help
arrest the progressive and devastating nature of this disease,
and provide hope for patients with ALS.
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