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Abstract Cerebral edema is a common finding in a
variety of neurological conditions, including ischemic
stroke, traumatic brain injury, ruptured cerebral aneurysm,
and neoplasia. With the possible exception of neoplasia,
most pathological processes leading to edema seem to
share similar molecular mechanisms of edema formation.
Challenges to brain-cell volume homeostasis can have
dramatic consequences, given the fixed volume of the
rigid skull and the effect of swelling on secondary
neuronal injury. With even small changes in cellular and
extracellular volume, cerebral edema can compromise
regional or global cerebral blood flow and metabolism or
result in compression of vital brain structures. Osmother-
apy has been the mainstay of pharmacologic therapy and
is typically administered as part of an escalating medical
treatment algorithm that can include corticosteroids,
diuretics, and pharmacological cerebral metabolic sup-
pression. Novel treatment targets for cerebral edema
include the Na(+)-K(+)-2Cl(−) co-transporter (NKCC1)
and the SUR1-regulated NCCa-ATP (SUR1/TRPM4) chan-
nel. These two ion channels have been demonstrated to be
critical mediators of edema formation in brain-injured
states. Their specific inhibitors, bumetanide and gliben-
clamide, respectively, are well-characterized Food and
Drug Administration-approved drugs with excellent safety

profiles. Directed inhibition of these ion transporters has
the potential to reduce the development of cerebral edema
and is currently being investigated in human clinical trials.
Another class of treatment agents for cerebral edema is
vasopressin receptor antagonists. Euvolemic hyponatremia
is present in a myriad of neurological conditions resulting
in cerebral edema. A specific antagonist of the vasopressin
V1A- and V2-receptor, conivaptan, promotes water excre-
tion while sparing electrolytes through a process known as
aquaresis.
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Overview of Perturbations in Brain Fluid Homeostasis

Cerebral edema in the neurointensive care setting can occur
with a heterogenous group of neurological diseases, which
typically fall under the categories of metabolic [1, 2],
infectious [3], neoplastic [4], cerebrovascular [5–7], and
traumatic [8, 9] brain injury. Irrespective of the inciting
process, cerebral edema results in the pathological accu-
mulation of fluid in the brain’s intracellular and extracellu-
lar spaces. This occurs secondary to alterations in the
complex interplay between 4 distinct fluid compartments
within the cranium; fluid is present within: 1) the blood in
the cerebral blood vessels, 2) the cerebrospinal fluid in the
ventricular system and subarachnoid space, 3) the intersti-
tial fluid of the brain parenchyma, and 4) the intracellular
fluid of the neurons and glia. These fluid compartments are
not isolated, and specific movements of solutes and water
from one compartment to another occur under normal
conditions. When dysregulation of this normally tightly
controlled fluid balance occurs, in either the cerebral
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endothelial cells or the glia and neurons, volume and solute
compositions are pathologically altered. From a fluid
mechanics perspective, cerebral edema can result in
increased intracranial pressure and death secondary to
cerebral compression, due to the confined space within
the fixed-volume cranium. Additionally, alterations in the
precisely regulated ion gradients that typically exist across
neuronal plasma membranes interfere with action potential
generation, propagation, and metabolism, leading to dys-
function or death at the cellular level (Table 1).

Cerebral Edema

Historical conventions that dichotomize edematous states
into “cytotoxic” or “vasogenic” categories are fading, as a
better understanding of the pathophysiological processes
that underlie edema formation in brain-injured states is
elucidated. Although it is not optimal to use historical terms
to describe new paradigms, conventional terms remain
useful for differentiating the sequential events in edema
development. After brain injury, alterations in ionic
gradients lead to a step-wise temporal progression from
what is known as cytotoxic (cellular) edema to ionic edema,
and finally to vasogenic edema [10]. Ischemia leads to the
cessation of primary active transport via Na+-K+-adenosine-
triphosphatase (ATPase). Resultant to this, co-transporters
(secondary active transport) and passive transporters (via ion
channels) attempt to maintain cellular processes. By doing
so, neurons and neuroglia accumulate osmotically active
solutes intracellularly that cause cellular swelling and
eventually passage of fluid into the extracellular space [11].
Although aquaporin-4 (AQP4), the most abundant water
channel in the brain [12], has been implicated in the
pathogenesis of post-stroke cerebral edema [13–16], the
primary driver behind the formation of cytotoxic edema is
truly the intracellular accumulation of sodium. Eventually,
endothelial and neuroglial dysfunction impairs the ability to
maindtain the integrity of the blood–brain barrier and
vasogenic edema ensues.

Intracellular accumulation of sodium during the “cyto-
toxic (cellular) edema” phase derives from a multitude of

transporters, including ion channels [10]. These ion
transport proteins located in the cell membrane are
activated or upregulated by factors associated with ische-
mia, such as elevated levels of extracellular potassium,
alterations in pH, inflammatory mediators (such as cyto-
kines), and excitatory neurotransmitters (such as gluta-
mate). An example of this is the NKCC1 transporter, which
normally mediates sodium entry into cells [17–19]. Another
example is an ion channel that has been shown to be
transcriptionally upregulated after ischemic injury and
trauma (i.e., the SUR1- regulated NCCa-ATP) [SUR1/
TRPM4] channel). Activation of this channel results in
the net influx of cations, driving the osmotic influx of
water, thereby causing cellular swelling. In this review, we
highlight the mainstay of pharmacological treatment for
cerebral edema (osmotherapy), and then we focus on
emerging treatment targets (i.e., the molecular processes
that are actually responsible for edema formation, including
the ion transporters, NKCC1 and SUR1/TRPM4, and
vasopressin receptors).

Osmotherapy

Cerebral edema (and its effect, elevated intracranial
pressure) occurs in a heterogeneous group of conditions
treated in the neurointensive care unit. A profound and
morbid example can be seen in the development of
“malignant edema” in patients after large vascular territory
ischemic stroke [20]. A multi-organ system treatment
algorithm is the standard of care, with hyperosmotic
therapy, in the form of mannitol and hypertonic saline,
being the mainstays of traditional pharmacologic treatment.
These powerful medications, which draw fluid into the
intravascular space via an osmotic gradient, are effective
and their use is widespread.

Among the various osmotic agents available for admin-
istration to treat cerebral edema, mannitol (administered
rapidly in a 1 gm/kg bolus) has been the most commonly
selected medication in the neurointensive care setting [21].
However, mannitol may lead to systemic hypotension,
decreased cerebral perfusion, acute renal failure, and

Table 1 Novel targets to treat cerebral edema

NKCC1 SUR1/TRPM4 Vasopressin-receptor

Location Neurons, neuroglia, endothelium,
choroid plexus

Neurons, neuroglia, endothelium Basolateral membrane of the cells lining
the collecting ducts of the kidneys

Activation ATP Depletion of ATP Vasopressin

Specific antagonist Bumetanide Glyburide (glibenclamide) Conivaptan

Function Loads sodium and chloride into cells
to maintain level of [Cl−]i

Conducts monovalent cations Absorption of free water in collecting
tubule of kidney
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delayed accumulation within the extravascular compart-
ment that leads to a paradoxical rebound elevation in
intracranial pressure [22, 23].

Another agent, hypertonic saline, is gaining increasing
clinical interest due to its reported efficacy in treating
cerebral edema and elevated intracranial pressure [24, 25].
Bolus dosing of hypertonic saline was first studied and
documented almost 1 century ago by Weed and McKibben
[26]. Hypertonic saline avoids the diuretic effect of
mannitol while still being effective at reducing brain
water. After administration, cerebral perfusion may actu-
ally be increased [27]. Various concentrations are clini-
cally used, with as much as 30 mL boluses of 23.4% saline
in a single dose. Rapid increases in serum sodium in this
setting do not appear to cause the neurological complica-
tions that may be encountered in the context of rapid
correction of hyponatremia [28].

Hypertonic saline has attributes beyond those expected
for a simple osmotherapeutic agent. It affects the vaso-
regulatory, immunomodulatory, and neurochemical envi-
ronment of the brain and the blood–brain barrier in ways
that may benefit different categories of brain injury [29–
31]. In addition, the systemic effect of decreasing serum
levels of arginine vasopressin may result in attenuating the
development of cerebral edema at a critical level, the ionic
stage of edema formation. Because arginine vasopressin
stimulates the activity of the NKCC1 transporter, inhibition
of this pathway plays a direct role in cell volume regulation
during periods of ischemia and injury [32].

Several studies have demonstrated the efficacy of 23.4%
hypertonic saline in the treatment of cerebral edema.
Animal models of intracranial hypertension have demon-
strated its efficacy without secondary complications [33–
35]. In a study published by Qureshi et al. [36], the effects
of equi-osmolar doses of mannitol, 3% hypertonic saline,
and 23.4% hypertonic saline were investigated in a canine
model of intracerebral hemorrhage. Immediate intracranial
pressure reduction was most prominent after 23.4%
hypertonic saline administration.

Only a few retrospective studies have examined the use
of 23.4% hypertonic saline for the treatment of increased
intracranial pressure in humans [24, 25, 37]. They all
demonstrated a favorable effect in lowering intracranial
pressure. A prospective study examining the effect of
23.4% hypertonic saline on intracranial pressure, cerebral
perfusion pressure, and post-treatment brain tissue oxygen
tension was carried out by Rockswold et al. [38]. They
studied 25 consecutive patients with severe traumatic brain
injury who were treated with 23.4% hypertonic saline. The
authors demonstrated a significant decrease in intracranial
pressure and an increase in brain tissue oxygen tension. At
the same time, there was a significant increase in cerebral
perfusion pressure. There are no definitive prospective data

to advocate the use of one osmotic agent more than the
other. Clinical practice guidelines at the Massachusetts
General Hospital and other institutions incorporate the use
of both agents. Administration of one does not preclude use
of the other, and both are frequently alternated as needed.

When mass effect from lesional edema is too great for
management by osmotherapy alone, evaluation of the
patient for decompressive craniectomy is warranted. The
surgical treatment of cerebral edema after massive middle
cerebral artery infarction remains controversial. Historically,
there has been reluctance to perform this operation
because of a high rate of mortality and profound morbidity
in survivors. Until recently, only case series and non-
randomized case–control studies suggested any benefit of
decompressive craniectomy [39–43]. Several recent ran-
domized controlled trials have demonstrated improved
survival after decompressive craniectomy in certain stroke
populations [6, 44–46]. These findings may have been
influenced by the “early” timing of craniectomy in their
protocols, potentially averting secondary brain damage
associated with cerebral edema [47], although the inclusion
of patients who may not have truly needed decompression
also may have favorably influenced outcome. In contrast,
worse outcomes were reported for decompressive craniec-
tomy in traumatic brain injury when compared to maximal
medical therapy alone [48]. However, applicability of these
findings is tempered based on choice of operative technique
(bifrontal procedure), a long study accrual time, differences
in study arms (significantly more patients with bilaterally
unreactive pupils included in the surgical group), and
minimal mean elevations in intracranial pressure leading
up to randomization. There exist no prospective trials
regarding the effectiveness of decompressive craniectomy
for infratentorial lesions.

Other Treatments

Several other pharmacologic methods, regarded as “second
tier” therapies, can be used to treat cerebral edema.
Barbiturates, such as pentobarbital, have been used to treat
cerebral edema when osmotherapy fails. Their mechanism
of action relates to their ability to lower the cerebral
metabolic demand, thereby reducing intracranial blood
volume. There is also evidence that barbiturates may have
neuroprotective qualities as free radical scavengers [49].
Their clinical usefulness is limited by hypotension, induced
coma (precluding a neurological examination), and in-
creased risk of infection. Although there have been no
randomized studies of barbiturates in cerebral infarction,
their use in stroke generally is not recommended. However,
barbiturates are still used in the setting of diffuse traumatic
brain injury when intracranial pressure is refractory to
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osmotherapy, cerebrospinal fluid drainage, and surgical
decompression.

Corticosteroids also are used to treat cerebral edema in
the intensive care setting. Although there appears to be a
strong benefit associated with the use of corticosteroids in
vasogenic edema related to brain tumors, a large meta-
analysis found no benefit of corticosteroids in ischemic
stroke or intracerebral hemorrhage [50].

Novel Targets for Cerebral Edema

All of the treatments discussed thus far act in a nonspecific
or indirect manner, either to remove edema fluid after it has
formed (osmotherapy), or to compensate for edema by
providing more space for brain swelling (barbiturates,
craniectomy). Ideally, swelling would be prevented in the
first place by inhibiting the formation of edema, a strategy
that requires a deep understanding of the molecular
mechanisms responsible for edema formation. Progress is
being made in identifying such novel targets.

NKCC1

The ionic stage of edema represents the earliest phase of
endothelial dysfunction (and by association, blood–brain
barrier disruption), ultimately leading to vasogenic edema
[51]. This is a critical stage in edema progression that heralds
the accumulation of excess brain water. Once transendothe-
lial permeability alterations are established, rapid changes in
clinical status can occur. Treatments aimed at the inhibition
of this process have the potential to arrest edema develop-
ment and are currently the focus of clinical trials.

The depletion of ions and water from the brain’s
extracellular space as a result of cellular edema (impaired
Na+-K+-ATPase activity) generates gradients that drive
solutes and water from the vascular compartment into the
extracellular space [52]. The secondary active co-
transporter NKCC1, expressed on the luminal surface of
endothelial cells, plays an important role in this process by
loading sodium and chloride into the endothelial cells.
Sodium inside the endothelial cell is then expelled into the
brain’s extracellular space by the activity of the Na+-K+-
ATPase, with chloride and water following through chloride
channels and unidentified water channels, respectively.
Under physiological conditions, the activity of NKCC1
modulates the level of [Cl−]i in neurons, glia, endothelial
cells, and choroid plexus epithelial cells, thereby helping to
maintain proper cellular volume against changes in extra-
cellular osmolality and intracellular solute content [53].
Brain-injured states associated with ischemia have been
demonstrated to cause upregulation of the transporter. In a
rat model of cerebral ischemia, NKCC1 transcripts and

protein are significantly upregulated in cortical neurons, as
well as in whole brain lysates [54, 55]. These changes may
occur in ischemic conditions secondary to elevated extra-
cellular potassium and glutamate levels, substances known
to stimulate NKCC1 activity in neurons and neuroglia [18,
56, 57]. Cytokines may also be involved in ischemia-
induced upregulation of NKCC1, with interleukin-6 shown
to activate NKCC1 in capillaries [58].

Ischemia-induced increases in NKCC1 activity occur
during the early stages of ischemia, as well during the
reperfusion stage, when energy ([adenosine triphosphate]
ATP) production is still possible. NKCC1 is a secondary
active co-transporter, and ATP is needed to drive the
activity of Na+-K+-ATPase, which establishes the inwardly
directed sodium gradients required for co-transporter
activity.

Bumetanide, a small molecule with a well-established
safety profile, is a relatively specific inhibitor of NKCC1 at
low concentrations [59]. Although this drug is commonly
used as a diuretic, its excellent delivery across the blood–
brain barrier confers great usefulness for conditions
affecting the central nervous system. Pilot studies are
underway examining the efficacy of bumetanide adminis-
tered with phenobarbital for the treatment of neurological
disorders, including neonatal seizures (ClinicalTrials.gov
identifier No. NCT00830531), and in adults the medically
intractable and surgically unresectable temporal lobe
epilepsy associated with medial temporal lobe sclerosis or
various cortical malformations [60]. Preliminary studies
suggest that bumetanide may be used at doses that provide
specific inhibition of CNS NKCC1, without producing
significant diuresis. The ionic regulation of cell volume via
this channel may have implications in the treatment of
edema in a wide range of neurological diseases, such as
traumatic brain injury [61–63], ischemic stroke [55, 64, 65],
hemorrhagic stroke [66], and tumor [67, 68]. The design of
trials to evaluate its effect on edema in brain injured states,
such as stroke and traumatic brain injury, is underway.

The formation of cerebral edema is a complex process
involving progressive, step-wise, and heterogenous aberra-
tions in molecular processes that regulate brain-fluid
physiology. As a result, agents such as bumetanide that
selectively target one aspect of the process are likely to be
more effective when deployed in combination with agents
that target other processes. A complementary and poten-
tially synergistic target for treating cerebral edema exists in
the ion channel that functions during ischemia in the
complete absence of ATP, the SUR1/TRPM4 channel.

SUR1/TRPM4 Channel

SUR1 is a regulatory subunit that associates with pore-
forming subunits to form hetero-octameric KATP channels
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[69]. SUR1 is inhibited directly by sulfonylurea inhibitors,
such as glibenclamide (United States’ [U.S.] adopted name,
glyburide). In addition and also important to the topic of
cerebral edema formation, SUR1 also regulates the activity
of a nonselective cation channel, the SUR1/TRPM4
channel [70]. This channel conducts monovalent cations,
requires nanomolar concentrations of intracellular calcium
for opening, and is activated by the depletion of intracel-
lular ATP [71]. The opening of SUR1/TRPM4 channels
causes complete depolarization and cell blebbing, charac-
teristic of cytotoxic (cellular) edema. Depolarization and
blebbing induced by depletion of ATP are prevented by
glibenclamide, consistent with a crucial role for SUR1/
TRPM4 channels in cytotoxic edema [71, 72]. SUR1/
TRPM4 channels represent an important path for sodium
flux required for formation of edema, and independent of
Na+-K+-ATPase inactivity seen in ischemia.

Unlike NKCC1, the SUR1/TRPM4 channel is normally
absent, but it is transcriptionally upregulated in the setting
of ischemic injury. It is also upregulated in the setting of
traumatic brain injury [66] and brain tumor [73, 74]. Small
mammal models of massive cerebral ischemic injury have
been used to demonstrate that the expression of SUR1/
TRPM4 channels is upregulated after ischemia, and target-
ing SUR1 may provide a new therapeutic approach. SUR1/
TRPM4 channels are crucially involved in the development
of cerebral edema and directed inhibition by glibenclamide
results in major improvements in stroke outcome. Inhibition
of this channel in a mammalian model of stroke using low-
dose glibenclamide reduced the formation of edema after
ischemia by more than 50% [75].

The potential of this therapy to be clinically effective is
currently being investigated in a clinical trial (Clinicaltrials.
gov identifier No. NCT01268683). Inhibition of this channel
to prevent cerebral edema has been issued multiple interna-
tional patents (including U.S. Patent No. 7285574 B2).

Temporally, the SUR1/TRPM4 channel becomes rele-
vant “later” after ischemic injury, when ATP becomes
completely depleted and SUR1/TRPM4 channels open,
triggering the ATP-independent passive transport of water
and solute. The combination regimen of bumetanide plus
glibenclamide might be a particularly attractive therapeutic
option because it would target both the ATP-dependent and
ATP-independent stages of edema development.

Vasopressin Receptor Antagonist

Hyponatremia is a common electrolyte disorder in the
setting of aneurysmal subarachnoid hemorrhage (aSAH)
[76]. This is usually attributed to the syndrome of
inappropriate antidiuretic hormone (SIADH) secretion [77,
78]. SIADH results in impaired systemic water excretion.
Any central nervous system disorder, such as aSAH, can

enhance antidiuretic hormone release. The retention of
water and development of hyponatremia can have profound
effects on the clinical course of patients with aSAH and
other neurological disorders. Hyponatremia has been
implicated in the development of cerebral edema and
subsequent increased intracranial pressure [79, 80]. In the
intensive care setting, control of serum sodium levels and
volume status are necessary to optimize outcomes and
prevent cerebral edema [81, 82].

The first line treatments of hyponatremia associated
with SIADH consist of enteral salt repletion, moderate
fluid restriction, administration of hypertonic saline,
and the use of mineralocorticoids and glucocorticoids
[83]. When treating ruptured cerebral aneurysms, meas-
ures must also take into consideration the concurrent
efforts at hemodilution, relative hypertension, and volume
expansion that are often used to prevent or treat cerebral
vasospasm [83, 84]. Each of these therapies has its
inherent limitations and drawbacks. Fluid restriction is
typically insufficient to rapidly normalize serum sodium
in critically ill, symptomatic patients. Fluid restriction is
also relatively contraindicated in aSAH, as it promotes
hypovolemia and can increase the risk of cerebral
ischemia [85]. Administration of hypertonic saline does
not address the fundamental water imbalance that under-
lies euvolemic hyponatremia associated with SIADH.
Mineralocorticoids, such as fludrocortisone acetate, en-
hance sodium retention, but have limited efficacy in
correcting hyponatremia, and may precipitate volume
overload through concurrent water retention [86, 87].
No current therapy promotes renal-free water excretion
and opposes the underlying pathophysiology of dilutional
hyponatremia observed in SIADH.

Conivaptan, a vasopressin receptor antagonist, can be
used in the treatment of aSAH-related euvolemic hypona-
termia secondary to SIADH. Conivaptan is a V1A- and V2
(vasopressin)-receptor antagonist [88]. In SIADH, vaso-
pressin binding to the V2 receptors in the renal collecting
ducts promotes free water reabsorption, and by antagoniz-
ing these receptors the conivaptan promotes water excretion
while sparing electrolytes including sodium. This process,
known as aquaresis, results in an increase in serum sodium
by reversing the underlying pathophysiology of SIADH
[89, 90]. Multiple studies have been performed to deter-
mine the efficacy of conivaptan in patients with euvolemic
or hypervolemic hyponatremia. In several double-blind,
placebo-controlled clinical trials, conivaptan has been
effective in improving serum sodium concentrations [91].
Serum sodium is improved by 6.3 mmol/L with a 40 mg
daily dose, and by 9.0 mmol/L with an 80 mg daily dose
[92–94]. Importantly, despite the properties of conivaptan
as a V1a-receptor antagonist, it had no effect on systolic
blood pressure or pulse rate. Conivaptan has been found to
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be effective in a heterogenous population of neurointensive
care patients [95, 96].

Conivaptan is a Food and Drug Administration-approved
drug for the treatment of euvolemic hyponatremic
patients in a hospitalized setting. By promoting aquaresis,
conivaptan directly inhibits the mechanism of patho-
physiology in aSAH-related SIADH. Potential benefits
of effectively treating this condition are related to a
decrease in cerebral edema. Although this has been
shown in a rat model of subarachnoid hemorrhage, the
effects in humans are yet to be determined [97]. Early
reports of vasopressin-receptor antagonism in brain in-
jured patients give preliminary indication that treatment
confers an acute osmotic benefit, reducing brain water and
thereby intracranial pressure [98, 99]. Euvolemic normal-
ization of serum sodium with vasopressin antagonism has
the potential to minimize cerebral edema for a wide range
of neurological diseases and is the subject a current
clinical trial proposal.

Conclusion

Cerebral edema leads to significant morbidity and mortality
in the neurointensive care setting. Improved local and
systemic control of water homeostasis may be achieved via
osmotherapy, inhibition of specific ion transporters, and
vasopressin antagonism alone or in combination.
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