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Abstract Stroke is one of the leading causes of death
and disability worldwide. Current treatment strategies for
ischemic stroke primarily focus on reducing the size of
ischemic damage and rescuing dying cells early after
occurrence. To date, intravenous recombinant tissue
plasminogen activator is the only United States Food
and Drug Administration approved therapy for acute
ischemic stroke, but its use is limited by a narrow
therapeutic window. The pathophysiology of stroke is
complex and it involves excitotoxicity mechanisms,
inflammatory pathways, oxidative damage, ionic imbal-
ances, apoptosis, angiogenesis, neuroprotection, and
neurorestoration. Regeneration of the brain after damage
is still active days and even weeks after a stroke occurs,
which might provide a second window for treatment. A
huge number of neuroprotective agents have been
designed to interrupt the ischemic cascade, but therapeu-
tic trials of these agents have yet to show consistent
benefit, despite successful preceding animal studies.
Several agents of great promise are currently in the
middle to late stages of the clinical trial setting and may
emerge in routine practice in the near future. In this
review, we highlight select pharmacologic and cell-based
therapies that are currently in the clinical trial stage for
stroke.
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Introduction

The only treatment for ischemic stroke, recombinant
tissue plasminogen activator (rt-PA), focuses on recana-
lization to reduce the size of ischemic damage [1, 2].
There are at least two other major categories of investiga-
tional therapies that are currently under development for
ischemic stroke, which are: 1) neuroprotection and 2)
neurorecovery approaches. Cerebral ischemia activates a
cascade of biochemical events that ultimately lead to the
death of brain cells. More than 20 years of research has
focused on discovering and developing so-called neuro-
protective agents that might intervene in this ischemic
cascade. Thus far, no protective agent has been shown to
improve outcome in phase III clinical trials, but newer
approaches continue to be investigated. After the infarct
has developed, recovery of motor and cognitive function
occurs to a variable degree through a number of pathways,
including recruitment of existing but latent connections
and development of new neurons and neural connections
[3–7]. The regeneration of the brain after damage is still
active days and even weeks after the stroke occurs, which
might provide a second window for treatment [8].
Therefore, neurorecovery approaches are being developed
that promote the repair of disrupted neural networks
during the subacute and chronic phase of ischemic stroke
[9]. This review covers pharmacological and cell-based
strategies under investigation that fall into the category of
neuroprotection, neurorecovery, or both. We focus our
discussion on neuroprotective agents that are currently in
clinical trials.
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Neuroprotection

Hypothermia

The impact of cold temperature on the human body has
been studied by clinicians for long time. Hippocrates [10]
advocated packing bleeding patients in snow and ice.
Approximately 180 years ago, Baron Dominique-Jean
Larrey was the first to realize that tissues could recover
from low temperatures. He realized that rapid rewarming of
hypothermic tissues led to more severe frostbite and
gangrene, and hence developed rewarming strategies to
salvage very cold body tissues [11, 12]. Hypothermia is one
of most promising treatment strategies for acute ischemic
stroke. Mild hypothermia is an established neuroprotectant
in the laboratory, showing remarkable and consistent effects
across multiple laboratories and models of brain injury. It
has been shown to improve neurological outcome in
comatose survivors of cardiac arrest and neonatal hypoxia
ischemia, and it is increasingly being used by many centers
for these conditions [13–15]. However, hypothermia
remains poorly understood as a therapy for stroke.

Mechanisms of Neuroprotective Effects of Hypothermia:
Supportive Animal Data

Animal models of focal or global cerebral ischemia have
suggested that hypothermia confers protection against ischemia
or reperfusion injury through multiple mechanisms. Brain
protection from hypothermia is associated with preserved
metabolic stores, reduced blood flow, prevention of glutamate
release, reduced generation of excitotoxins, improved cellular
ion handling and pH balance, decreased inflammation, de-
creased apoptosis, and alterations in gene expression [16–24].
Activation of peripheral leukocytes and brain resident micro-
glia also occurs after brain injury, and mild hypothermia has
been shown to inhibit this activation [25, 26]. Suppression of
this activation could be explained by the observation that
hypothermia inhibits the pro-inflammatory transcription factor
NFkB [27–29]. Hypothermia also appears to upregulate cell
survival pathways, such as activating the Akt pathway [30,
31] and increasing trophic factor expression [32, 33]. In a
systematic review and meta-analysis of animal studies of focal
cerebral ischemia, including data obtained from a total of
3,353 animals, hypothermia reduced infarct size by 44% (95%
confidence interval, 40-47%) [34]. Thus, hypothermia has the
potential to affect multiple aspects of cell physiology.

Hypothermia in Ischemic Stroke: Current Clinical
Literature

A few clinical studies of mild hypothermia in acute
ischemic stroke have been published or are ongoing [35,

36], and have collectively shown feasibilty, although not
completely without complications [37–45] (Table 1). A
significant challenge is that stroke patients are generally
awake (not having endotracheal intubation), and the
affected vessel often remains occluded for days or
indefinitely in the absence of reperfusion therapies. Similar
to what has been encountered in the cardiac arrest and brain
injury studies, attaining and maintaining the target tempera-
ture is challenging. Another issue is the rebound increased
intracranial pressure experienced during rewarming, a phe-
nomenon not well studied in laboratory models [37]. A few
clinical studies have used intravascular cooling devices to
cool acute stroke patients. In the Cooling for Acute ischemic
Brain Damage (i.e., COOL-AID) trial, a randomized pilot
feasibility study using endovascular device, most patients
tolerated hypothermia, and the clinical outcomes were
similar in both the hypothermia group as well as in standard
medical management group. There was a suggestion of
reduced lesion growth on diffusion-weighted imaging in
patients receiving hypothermia. The International Cooling in
the Treatment of Stroke (ICTuS) trial [42], nonrandomized
clinical trial using a different intravascular cooling device,
also addressed administration of rt-PA to improve chances of
recanalization followed by hypothermia. The Intravenous
Thrombolysis Plus Hypothermia for Acute Treatment of
Ischemic Stroke (ICTuS-L) study [43], a randomized
multicenter trial of hypothermia and rt-PA in acute stroke
patients, is the most recent study of catheter-based cooling.
In this study, a total of 58 patients were randomized, 30 to
normothermia and 28 to hypothermia at 33°C for 24 hours.
In the hypothermia group, 24 patients received rt-PA.
Cooling was well tolerated and did not affect the occurrence
or severity of brain hemorrhage in patients given rt-PA.
There were no differences in 90-day outcomes, although the
study was not powered to determine efficacy. Pneumonia
was the main adverse event that occurred more frequently in
cooled patients. Overall, these patients tolerated cooling well,
and the incidence of cerebral hemorrhage did not increase.
Thus, hypothermia is feasible in ischemic stroke patients, but
its benefit is not yet known.

Optimal Cooling Hypothermia can be classified based on
the depth of cooling from a normal body temperature of 37
to 38°C: mild (32-35°C), moderate (28-32°C), and deep
hypothermia (<28°C). Animal studies of stroke and
hypothermia have demonstrated that even modest cooling
has considerable potential as a neuroprotective strategy, and
the extent of neuroprotection is similar whether the
temperature is reduced to 34°C or 25°C. The depth of
cooling seems to be a less critical factor, provided that brain
temperature is lowered below 35°C. Side effects of
hypothermia appear to occur more frequently with each
degree of Celsius reduction in temperature. Temperature
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reductions to 35°C have been shown to be feasible and safe
with surface cooling in awake, acute ischemic stroke
patients, in combination with meperidine to treat shivering
[46]. The ICTuS-L trial [43] found intravascular cooling to
33°C in combination with intravascular thrombolysis safe
and feasible.

Future Directions

Currently, hypothermia suffers from lack of technological
development, and cooling technologies are in their infancy.
Current technologies provide reasonable control of body
temperature, but they may cool patients too slowly to
optimally target intra-ischemic treatment window. A phase
2/3 efficacy trial of mild endovascular cooling has just
begun to date. Focal cooling is likely to be advantageous
for stroke because it seems likely that a reduction of local
tissue temperature is all that is required to confer protection
and minimize the time to target temperature and adverse
effects, such as shivering and infection. A few preclinical
studies have shown that neurotensin and its analogs, 3-
iodothyronamine and hydrogen sulfide, can all decrease
body temperature to the depth and for durations previously
shown to be neuroprotective in animal models [47].

Albumin

Human serum albumin is a major component of plasma,
cerebrospinal fluid, and interstitial fluid, and an important
circulating carrier, which is synthesized mainly in the liver.
The multiple beneficial effects of higher serum albumin
levels include binding to free fatty acids, metabolites and
drugs, providing energy to neurons for metabolism and
repairing injured neurons, supporting endothelial cell
function by inhibiting apoptosis, reversal of blood-element
aggregation, and exerting antioxidant effects [48–50].

Mechanisms of Neuroprotective Effects of Albumin
Therapy: Supportive Animal Data

The neuroprotective effects of human albumin have been
demonstrated in models of acute cerebral ischemia, including
transient and permanent middle cerebral artery occlusion
models or global ischemia models [48, 51–54]. It has also
been shown to improve cerebral perfusion [54, 55], to
normalize changes in diffusion-weighted magnetic resonance
imaging [53], to reverse postischemic microvascular stasis
[56], and to contribute to the systemic mobilization and
supply of free fatty acids to the postischemic brain [57].
These studies used albumin doses of 1.25 g/kg to 2.5 g/kg
and found them to be markedly neuroprotective, with a
therapeutic window of 4 to 5 hours [48]. The potential ability

of albumin to maintain the permeability of microvasculature
has been suggested as the pathophysiological basis for its
possible synergistic effect with rt-PA. Several specific
albumin-binding sites are expressed by microvascular endo-
thelial cells on their surface [58–60]. Albumin binds to
endothelial glycocalyx and maintains the normal permeability
of microvessel walls, serving as a carrier for various molecules
through its capability of transcytosis across endothelium [59,
61, 62]. Tang et al. [63] demonstrated significantly reduced
blood brain barrier permeability in a transient focal ischemia
rat model when treated with rt-PA along with albumin, and
hence significantly attenuating deleterious effects of rt-PA.
Albumin is also an important inhibitor of platelet aggregation
[64–66]. Albumin also increases the production of the
anti-aggregatory prostaglandin (PGD2) from cyclic endo-
peroxides [65]. The use of albumin also binds platelet-
activating factor with high affinity [66, 67], and decreases
platelet-activating factor induced responses in platelets [68].
The coating of thrombogenic surfaces with S-nitrosylated
albumin reduces platelet adhesion and aggregation,
which is an effect attributable to both the direct anti-
platelet actions of nitric oxide and the anti-adhesive
properties of albumin itself [64]. Another protective mecha-
nisms exerted by high-dose albumin infusion in ischemic
stroke may be scavenging of the accumulating lysophospha-
tidylcholine and preventing its pro-inflammatory and pro-
apoptotic effects [52, 69].

Clinical Literature The Albumin in Acute Stroke (ALIAS)
pilot clinical trial [70] found that 25% human albumin (in
doses ranging up to 2.05 g/kg) was well tolerated by
patients with acute ischemic stroke without major dose-
limiting complications, and rt-PA therapy did not affect the
safety profile of albumin. Based on these results, a large,
randomized, double-blind, placebo-controlled, multicenter
clinical trial designed to ascertain the therapeutic efficacy of
albumin in acute ischemic stroke within 5 hours from onset
is currently ongoing to date.

Magnesium

Magnesium is an endogenous calcium antagonist that
regulates vascular tone, blood pressure, and cell membrane
function. There is extensive experience with magnesium
use, largely in pre-eclampsia/eclampsia, which confirms its
safety and tolerability. There are a number of potential
mechanisms by which magnesium may act, including
increased regional blood flow to ischemic brain areas
[71], nonspecific antagonism of all subtypes of voltage-
sensitive calcium channel [72], noncompetitive blockade of
the N-methyl-D-aspartate acid subclass of glutamate recep-
tor [73–78], presynaptic glutamate release inhibition [79–
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82], potentiation of adenosine action, enhanced recovery of
cellular energy metabolism after ischemia [83, 84], and
improved mitochondrial calcium buffering [85]. The neuro-
protective effects of magnesium have been found in many
models of ischemic cerebral damage [86–88]. In permanent
or transient middle cerebral artery occlusion models in
rodents, systemically administered magnesium reduced
infarct volume [87, 88]. In embolic middle cerebral artery
occlusion, magnesium significantly reduced infarct volume
and improved neurological outcome even when given 6
hours after onset of ischemia [78]. A number of small
clinical trials of magnesium that were undertaken, initially
established its safety for use in acute stroke [89, 90].
Several of these small pilot trials in stroke have reported
reduced proportions of magnesium-treated patients being
dead or disabled at 3 to 6 months [89–94]. The odds ratio
for death or disability in a systematic review of these pilot
trials was 0.73, but with a wide 95% confidence limit (0.38,
1.41) [95]. However, the Intravenous Magnesium Efficacy
in Stroke (IMAGES) trial using a 12-hour treatment
window found magnesium to be largely ineffective, with a
benefit in lacunar strokes only [94, 96]. In the Field
Administration of Stroke Therapy-Magnesium (FAST-
MAG) pilot trial [97], no adverse events related to field
administration of magnesium were observed. Because of
the concerns that the Intravenous Magnesium Efficacy in
Stroke (IMAGES) trial applied an unrealistically long
enrollment period, the FAST-MAG efficacy trial was
established and is ongoing [98]. The FAST-MAG trial uses
pre-hospital randomization and treatment in the field. More
than 1000 patients have been randomized to date, with
more than 70% patients treated within the first hour of
symptoms, which is by far the fastest treatment in any
stroke trial ever accomplished. Table 2 summarizes the
clinical trials of magnesium in ischemic stroke.

Neuroprotection and Neurorecovery

Granulocyte Colony Stimulating Factor

Hematopoietic growth factors, also known as colony
stimulating factors, modulate and recruit the lineage-
specific differentiation of bone marrow stem cells leading
to generation of circulating red cells, white cells, and
platelets, and their mobilization to peripheral blood.
Interestingly, data from experimental studies suggest that
colony stimulating factors could improve stroke outcome
by reducing stroke damage and improving post-stroke brain
repair [99]. As an example, granulocyte colony stimulating
factor (G-CSF) is a growth factor of approximately 20 kDa
that acts on hematopoietic CD34+ stem cells to regulate
neutrophil progenitor proliferation and differentiation, and

is routinely used for the treatment of chemotherapy-induced
neutropenia, or for the purpose of mobilizing and harvesting
peripheral blood stem cells for subsequent autologous or
allogenic infusion. In rat and mice models of ischemic stroke,
G-CSF reduces stroke lesion volume at various doses [100],
even in the presence of thrombolysis [101–103]. G-CSF
protects neurons against glutamate-induced excitotoxicity
[100], induces functional recovery by stimulating neuronal
progenitor cells [104, 105], and promotes angiogenesis
[105–107] and neurogenesis [105, 107, 108]. G-CSF also
reduces inflammatory responses by suppressing inducible
nitric oxide synthase and other inflammatory mediators, such
as interleukin 1-β [109–111], as well as stem cell mobiliza-
tion to the brain [105]. G-CSF is released in response to
cerebral ischemia and its effects are probably mediated by a
special neuronal G-CSF receptor, because it passes even the
intact blood brain barrier, and therefore reaches injured brain
regions [100, 108]. However, G-CSF has also been reported
to lead to impaired behavioral function [112], and may be of
no benefit when given in the chronic phase of stroke [113] or
in global ischemic models [114].

The promising results in animal models led to the
implementation of phase I/II randomized clinical trials
[115–119] as summarized in Table 3. Together, these trials
show that G-CSF was well tolerated and appeared to be
safe, and significantly increased white cell counts. Larger
clinical trials aiming at confirming safety and demonstrat-
ing efficacy of G-CSF are underway. Data from these
completed and ongoing trials will inform whether larger
phase III trials of G-CSF are warranted.

Citicoline

Citicoline is a naturally occurring endogenous compound
that was originally identified as the key intermediary in the
biosynthesis of phosphatidylcholine by Kennedy [119] in
1956. Also known as CDP-Choline, citicoline is an
essential precursor in the synthesis of phosphatidylcholine,
a key cell membrane phospholipid. Citicoline has been
increasingly recognized as a neuroprotectant that may act
both in early and late stages of ischemic damage, resulting
in a plethora of experimental and clinical trials assessing
safety and efficacy of its use as a treatment for stroke.
Citicoline neuroprotective effects may occur through its
ability to improve phosphatidyl choline synthesis in the
injured brain [120]. Citicoline stabilizes and repairs
membranes [121]; favors the synthesis of nucleic acids,
proteins, acetylcholine, and other neurotransmitters;
decreases free radical formation; inhibits free fatty acid
release [122, 123]; and has anti-apoptotic effects [124]. Due
to these effects, citicoline may simultaneously inhibit
different steps of the ischemic cascade, thus protecting the
targets against early and delayed mechanisms responsible
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for ischemic brain injury, as well as facilitate recovery by
fostering synaptic outgrowth and increased neuroplasticity
[125]. Studies in animal models of ischemia and hypoxia
report that citicoline decreases neurological deficits, and
improves behavioral performance of learning and memory
tasks [126]. There have also been preclinical studies
reporting enhanced efficacy when citicoline was adminis-
tered along with or following intravenous thrombolysis
[127–129], and along with other potential neuroprotective
therapies, such as mild hypothermia [130].

Multiple, randomized clinical stroke trials have investi-
gated citicoline and reported that administration of citico-
line was effective early in the post-ischemia recovery
process, as demonstrated by improved level of conscious-
ness [131], and improvements in the modified Rankin score
[132]. Oral treatment with citicoline within the first 24
hours after onset of moderate to severe stroke was reported
to increase the probability of complete recovery at 3 months
in a meta-analysis of 4 randomized clinical trials, with the
highest favorable response observed in the 2000-mg dose
group [133]. This was followed by a comprehensive meta-
analysis of 8 randomized clinical trials of citicoline, which
enrolled 2063 patients reporting that treatment with citico-
line was associated with absolute reductions of 10 to 12%
in rates of long-term death and disability, although no
individual trial demonstrated treatment benefit unequivo-
cally [134]. Pooled analysis of 2 citicoline trials collecting
serial magnetic resonance imaging data similarly suggested
a dose-dependent reduction in infarct growth [135]. The
safety of citicoline has also been established in many trials;
there is no difference in side effects between the placebo
and citicoline groups [132]. Citicoline is currently approved
in many countries for use in stroke, head trauma, and other
neurological disorders. An international, multicenter, phase
III randomized trial (International Citicoline Trial on Acute
Stroke [ICTUS]) comparing the efficacy of a 2-gram daily
dose of citicoline started within 24 hours of ischemic stroke
onset and continued for 6 weeks against a placebo is
currently ongoing to date.

Neurorepair and Neurorestoration: Cell-Based Therapies

The adult brain responds to acute injuries, such as stroke,
by inducing neural progenitor proliferation, which might be
an endogenous attempt at self-repair, a process that is active
for days and even weeks after a stroke and is altered by
several endogenous and exogenous modulators. Functional
recovery may occur in a small brain injury using rehabilitation
measures, but for large ischemic strokes the restoration
may require new synaptic connections within and away
from the damaged tissue. Functional neuroimaging has
demonstrated changes in a number of features of brainT
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function after stroke, including global derangement in
brain function and behavior in the initial hours/days,
followed by a period of growth characterized by
demonstrable structural and functional changes in both
the ipsilateral and contralateral hemispheres that last
several weeks, that is finally followed by pruning and
reduction in functional over-activation as well as estab-
lishment of a static pattern of brain activity and behavior.
This growth-related period may be a key target for certain
restorative therapies during the early phase of acute stroke
[136]. Hence, the treatment strategies targeting the
prospects of repairing the neuron system, either by
modulating endogenous neurogenesis or using exogenous
stem cells to replace the lost cells or support the remaining
cells in the post-ischemic brain, provide a unique
approach for brain repair and restoration of function after
a devastating stroke. The potential application for stem
cell therapy is vast, but development for its use in
ischemic stroke is still in its infancy. Despite a limited
understanding of their mechanism of action, a plethora of
experimental and clinical trials assessing their use in stroke
have been already performed.

Cell Types and Their Sources for Stroke Therapy

Stem cells have the capacity to self-renew and differentiate
into different cell types, including neurons, astrocytes, and
endothelial cells. A number of cell sources for stem cell
transplantation are available, and these can be categorized
into several dimensions: exogenous or endogenous sources
of cells; embryonic, fetal, or adult derivation; neural or non-
neural origin; and pluripotential, which can divide indefi-
nitely; or multipotential, which usually regenerate their
“own tissue” but have the ability to trans-differentiate into
other tissue cell types. The cell types that have been tested
in preclinical transplantation studies in the stroke model are
summarized in Table 4.

Embryonic Stem Cells

Fetal tissue has been the major source of cell transplanta-
tion in animal models of stroke. Embryonic stem cells
(ESCs) are self-renewing and multipotent cells with
unlimited expandability derived from the inner cell mass
of the pre-implantation blastocyst [137]. The potential
drawback of these cells is that they tend to develop a
heterogeneous mix of neural precursors and differentiated
neurons [138], and have potential for malignant transfor-
mation producing teratomas and highly malignant terato-
carcinomas [139, 140]. Due to this potential risk, there have
not been extensive reports of transplanting undifferentiated
ESCs in stroke animals [141, 142]. Xenologous transplan-
tation has been suggested to exert a tumor-suppressive

effect on ESCs [141]. Another possible solution to
overcome these drawbacks is to differentiate ESCs in vitro
first, which seems to greatly reduce their tumorigenic
potential [142]. Recent developments in the induction of
pluripotent stem cells from somatic adult cells provide a
tremendous opportunity for this field [143–145] to consider
an alternative source of pluroipotent cells rather than ESCs.
The transplantation of induced pluripotent cells has not
been studied in stroke, but if this technique works it would
provide the advantage of both generating autologous and
specifically engineered stem cells for an individual patient.

Neural Stem Cells

Several studies have explored the possibility of trans-
planting neural stem cells (NSCs) derived from the
subventricular zone in animal stroke models and have
reported successful differentiation of these cells into
different neurons and glial cell types, with their robust
migration to the ischemic area and resultant improvement in
functional behavioral tests [146–148]. An enriched envi-
ronment appears to improve NSCs migration and functional
recovery [149]. These cells can be genetically modified to
express certain genes that may facilitate the regeneration
process [150]. As an alternative, immortalized neuronal
precursor cell lines derived from cultured adult neural tissue
offer a ready and unlimited source of cells, thereby
reducing ethical concerns in obtaining aborted fetal tissue.
Malignant transformation following therapeutic transplan-
tation of this cell type is a key concern for this approach.

Stem Cells Derived from Blood and Bone Marrow

Bone marrow-derived stem cells (BMSCs), umbilical cord
blood, and peripheral blood stem cells are alternative
sources of stem cells, and their use carries less ethical
concerns when transplanted in an autologous manner. Bone
marrow and umbilical cord blood are composed of
multiple cell types containing hematopoietic and endothe-
lial CD34+ precursor cells and nonhematopoietic mesen-
chymal stromal (MSC) or CD34_ cells. A small percentage
of BMSCs are multipotent, with the remaining representing
more differentiated committed cells [151]. BMSCs have been
shown to improve outcome in experimental models of stroke
[152, 153] and preserve cognitive function; behavioral
improvement has been demonstrated with intracarotid
transplantation of MSC [154] and CD133+ cells in rat stroke
models [155], as well as with intravenous administration of
umbilical cord stem cells [156, 157]. Autologous BMSCs
have been safely harvested from rodents after stroke and
documented to migrate to the peri-infarct area, enhance
recovery, and modulate the post-ischemic inflammatory
response. [158] There are several bone marrow-derived cell
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types that have greater potential than normal BMSCs, such
as multipotent adult progenitor cells [159], marrow isolated
adult multilineage inducible cells [160], human bone
marrow-derived multipotent stem cells [161], and very small
embryonic-like stem cells [162]. These cells are pluripotent
and can differentiate into cell types originated from
mesenchymal, endodermal and ectodermal layers [163].
When tested in an in vivo stroke model, multipotent adult
progenitor cells could significantly enhance functional
recovery in stroke animals [164]. Human bone marrow-
derived multipotent stem cells have been tested in the
myocardial animal model with a beneficial outcome [161].
The other bone marrow-derived pleuripotent cell types have
not been tested in models of ischemic brain injury to best of
our knowledge.

Olfactory Ensheathing Cells

Olfactroy ensheathing cells (OECs) are the cells
ensheathing the axons of neurons in the olfactory bulb.
These cells share the features of both the Schwann cells
and astrocytes [165]. Recently, OECs have been tested in
a stroke animal model in which they secreted trophic
factors, including stromal-cell derived factor-1 alpha. Rats
implanted with OECs showed improvement in both
behavioral measurement and functional neuroimaging
[166].

Potential Mechanisms of Stem Cell-Mediated Recovery

Multiple mechanisms have been proposed that may account
for the beneficial outcome observed in cell transplantation
studies.

Cell Replacement

Multiple studies in animal models of stroke have reported
ability of transplanted stem cells to migrate to the
ischemic brain area and differentiate into neuronal and
glial phenotypes [167, 168]. Furthermore, synaptogenesis
and integration into host neuronal circuits have been
demonstrated in the host brain, suggesting that the cell
replacement might be an achievable goal [169, 170].
However, there is now evidence that neural differentiation
is not necessary for the beneficial outcome observed in
many types of transplantation-based therapy [171]. Fur-
thermore, neuroprotective effects of peripherally trans-
planted cells without crossing blood brain barrier have
been reported [172].

Trophic Factor Production

Transplanted cells may produce trophic factors, supporting the
survival of existing neurons in the peri-infarct areas [172,
173], as well as neurogenesis and synaptogenesis [166, 174].

Table 4 A representative sampling of different cell types in animal models of ischemic stroke

Cell Source Stroke Model
Studied

Transplant
Approach

Delivery Time Outcome References
Numbers

Rat SVZ NSCs Rat embolic
MCAO

Cisterna magna 2 days Improved sensorimotor function. 147–149
Angiogenesis measured by MRI

Rat MCAO Intracerebral 3 hours Recovery in limb placing and cylinder tests 151

Mouse SVZ NSCs Rat MCAO Intracerebral 7 days Recovery in cylinder tests only in
enriched environment

150

Embryonic stem cells Mouse/Rat
MCAO

Intracerebral 2 weeks Neuron formation in rats, tumor
formation in mouse

143

Rat MSCs Rat MCAO Intracerebral 1 day Improved sensorimotor function and NSS 153

Rat MCAO Intravenous 1 or 7 days Recovery in somatosensory behavior
and NSS

154

Rat MCAO Intracarotid 1 day Recovery on adhesive removal test and NSS 155

Human umbilical cord
blood stem cells

Rat MCAO Intravenous
(dose 3×106 cells)

24 hours Significantly improved functional recovery 157

Intravenous
(dose 1×106 cells)

48 hours Significantly improved functional recovery
compared to saline or RN33b NSCs

158

Rat MAPCs Rat MCAO Intracerebral 1 week Recovery on limb placement & sticky
tape test

165

Human olfactory
ensheathing cells

Rat MCAO Intracerebral 1 day Recovery on behavioral tests 167

Mononuclear cells Rat MCAO Intra-arterial 1 day Recovery on behavioral tests 198

MAPCs = multipotent adult progenitor cells; MCAO = middle cerebral artery occlusion; MRI = magnetic resonance imaging; MSCs = marrow
stromal cells; NSCs = neural stem cells; NSS = neurological severity score; SVZ = subventricular zone
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Angiogenesis

Transplanted cells may play an important role in enhancing
neovascularization in stroke animals. Cell transplantation-
induced neovascularization has been reported with BMSCs,
NSCs, and cells from human blood origin [175–177].

Reduced Apoptosis and Inflammation

A decrease in cell death within peri-infarct areas has been
demonstrated with intravenous administration of human stem
(CD34+) cells and via intracerebral grafting of human NSCs in
ischemic stroke models [176, 178]. It is also likely that stem
cells play a pivotal role in the regulation of the inflammatory
cascade by suppressing the inflammatory response via the
production of cytokines and growth factors [179].

Facilitating Recruitment of Endogenous NSCs

The nonregenerative capability of the injured adult brain
has been challenged in recent years and neural plasticity has
been observed experimentally in both global and focal brain
ischemia in animal models [180]. Under physiological
conditions, the subventricular zone NSCs proliferate and
migrate along the rostral migratory stream to the olfactory
bulb and differentiate into granular interneurons [181].
Furthermore, newly generated neurons migrate toward
ischemic boundary regions and differentiate into neurons
[182, 183]. There is evidence that, although stroke
stimulates these processes, the endogenous response is not
enough for recovery of brain function [184]. Transplanted
cells may support the survival of newly generated neurons
and glial cells by inhibiting apoptosis at injury sites [185].

Clinical Trials of Cell Transplantation after Ischemic Stroke

There have been no large-scale clinical trials of cell
transplantation in stroke. In a recent Cochrane review
[186] of 13 studies of stem cells in patients with ischemic
stroke, the authors identified only 3 very small randomized
control trials, with 2 of them still awaiting clarification, and
the third trial randomized 30 patients of middle cerebral
artery infarction with persistent neurological deficit 7 days
after their stroke to intravenous transplantation of autolo-
gous MSCs (n=5), or a control, standard of care group (n=
25). This study reported a statistically nonsignificant
functional improvement in treated patients at longer
follow-up without adverse cell-related events, demonstrat-
ing initial evidence for feasibility in administering ex vivo
cultured MSCs [187]. The completed, as well as the
currently ongoing, prospective clinical studies investigating
stem cell therapy for acute ischemic stroke [188–191, 199–
208] have been summarized in Table 5.

Future Development of Cell-Based Products as a Potential
Treatment of Stroke

Despite availability of large preclinical data suggesting
potentially improved clinical outcome with stem cell use in
ischemic stroke, limited clinical data exists and many
questions remain unanswered. It is vital that future
experimental studies are of high quality and have standardized
protocols and outcome measures so that they can be fairly
compared. Currently, guidelines are being formulated to guide
further research into the role of cell-based therapy in both
translational and basic research areas [191].

One possible advantage of treating stroke with stem cells is
a potentially wide therapeutic window. The optimal time of
administration post-stroke will relate to the microenvironment
of the damaged area. That is, should stem cells be adminis-
tered during the acute phase of stroke at a time when
inflammatory responses are maximal or will delayed treatment
be effective at a time when scar tissue has formed?

The ideal route of stem cell delivery is also unclear. This has
been addressed in one pre-clinical study comparing intra-
striatal, intra-ventricular, and intravenous administration of
neural precursor cells with all routes resulting in cells targeting
the lesion [192]. In contrast, another study assessing intrave-
nous administration of human umbilical cord cells in rats did
not detect any evidence of stem cells in the target lesion [176].
The implications of initial trapping of stem cells inside the
lungs after intravenous administration on the route, dose, and
type of cells used for stem cell therapy also needs to be further
evaluated [193, 194]. If intra-cerebral administration proves to
be the most effective (although this is probably fraught with
more potential risks), then should cells be transplanted directly
into the ischemic lesion or distant to it (reducing the chance of
damaging vital structures) and relying on spontaneous stem
cell migration? [141, 195, 196] Prior trials used intracerebral
injections of neural-based cells directly into the peri-infarct
area [191, 192], but an insufficient numbers of patients were
studied to draw conclusions about safety. However, there is
evolving literature that suggests a direct injection of some
types of cells may not be necessary. For example, systemic
administration of bone marrow-derived mononuclear cells,
which are smaller than purified stem cells, such as mesen-
chymal stem cells, can pass through the lungs and may
enhance recovery from a stroke. These studies support
ongoing early stage trials to assess the safety of autologous
Mononuclear cells (MNCs) in stroke patients [158, 197].

Overall, there are multiple sources of exogenous stem cells
available, but the cell type that should be transplanted for a
given stroke type and size is undetermined. Endogenous stem
cell treatment is an attractive alternative, removing the need for
immunosuppression. Recent advances offer the possibility to
harvest adult terminally differentiated cells and reprogram them
into stem cells [143, 145]. Translating this technology to
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possible clinical usage would offer the advantage of generat-
ing unlimited and autologous patient specific stem cells.
Developing technology that enables noninvasive tracking and
monitoring of NSCs and other types of transplanted cells in
vivo would greatly facilitate research in this area.

Summary

Current treatment strategies in acute ischemic stroke are vessel
and blood based. Brain-based therapies, including neuro-
protection through blocking the cellular, biochemical, and
molecular mechanisms of ischemic injury, and neurorestora-
tion by enhancing neuroplasticity and salvaging peri-infarct
areas are potential future therapies that will increasingly
complement and enhance current ischemic stroke manage-
ment. Several agents of great promise are currently in the
middle to late stages of clinical trial settings to date, and may
emerge in routine practice in the near future.

The most promising interventions providing acute neuro-
protection that are being tested in larger clinical trials include
hypothermia, magnesium sulfate, citicoline, and albumin.

The most promising therapies enhancing neurorecovery
in the subacute phase of stroke include G-CSF, citicoline,
and cell-based therapies.

Acknowledgment Full conflict of interest disclosure is available in
the electronic supplementary material for this article.
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