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Summary: This review will focus on matrix metalloproteinases
(MMPs) and their inhibitors in the context of spinal cord injury
(SCI). MMPs have a specific cellular and temporal pattern of
expression in the injured spinal cord. Here we consider their
diverse functions in the acutely injured cord and during wound
healing. Excessive activity of MMPs, and in particular
gelatinase B (MMP-9), in the acutely injured cord contributes
to disruption of the blood-spinal cord barrier, and the influx of
leukocytes into the injured cord, as well as apoptosis. MMP-9
and MMP-2 regulate inflammation and neuropathic pain after
peripheral nerve injury and may contribute to SCI-induced
pain. Early pharmacologic inhibition of MMPs or the
gelatinases (MMP-2 and MMP-9) results in an improvement

in long-term neurological recovery and is associated with
reduced glial scarring and neuropathic pain. During wound
healing, gelatinase A (MMP-2) plays a critical role in limiting
the formation of an inhibitory glial scar, and mice that are
genetically deficient in this protease showed impaired recovery.
Together, these findings illustrate complex, temporally distinct
roles of MMPs in SCIs. As early gelatinase activity is
detrimental, there is an emerging interest in developing
gelatinase-targeted therapeutics that would be specifically
tailored to the acute injured spinal cord. Thus, we focus this
review on the development of selective gelatinase inhibitors.
Key Words: Spinal cord injury, matrix metalloproteinases,
neuropathic pain, recovery, therapeutics.

INTRODUCTION

Matrix metalloproteinases (MMPs) are involved in a
wide range of proteolytic events requiring matrix remodel-
ing in normal development, wound healing, and repair
throughout life [1, 2]. In brain and spinal cord injuries,
MMPs have been shown to degrade components of the
basal lamina, leading to disruption of the blood-brain barrier
(BBB) [3–5], and to contribute to oxidative stress [6],
demyelination [4], leukocyte trafficking, and a progressive

neuroinflammatory response [3, 4, 7]. In this review, we
will focus on the roles of MMPs and the therapeutic
implication of their inhibitors in spinal cord injury (SCI).
For the past decade, MMPs have been studied in a

variety of neurodegenerative diseases, as well as in
experimental models of central nervous system (CNS)
trauma [3, 4, 8]. Studies of the latter have demonstrated
that MMPs, expressed acutely after injury, are key
mediators of pathogenesis. Their short-term blockade
with either broad-spectrum MMP inhibitors or more
specific gelatinase inhibitors is neuroprotective and
results in neurologic recovery [5, 6]. Given these exciting
findings, there is considerable interest in defining those
MMPs that mediate early pathogenesis by establishing
the therapeutic window for intervention and by develop-
ing more specific inhibitors for MMPs.
Here we provide a brief overview of MMPs and their

regulation, we address their complex roles in both the
acute and chronically injured spinal cord, and we
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consider the emergence of specific MMP inhibitors that
will likely lead to a more complete understanding of the
role of these proteases in the injured spinal cord and to
the development of therapeutics that are specifically
tailored to the patient with SCI.

OVERVIEW OF THE BIOLOGY OF MMPS

MMPs are best known for their ability to cleave
constituents of the extracellular matrix (ECM). In more
recent years, their targets have greatly expanded to
include other proteinases, proteinase inhibitors, clotting
factors, chemotactic molecules, latent growth factors,
growth factor-binding proteins, cell surface receptors,
cell-cell adhesion molecules, and almost all structural
ECM proteins [9]. Processing of these molecules
influences cell functions as diverse as cellular differ-
entiation, migration, regulation of growth factor activity,
survival or apoptosis, angiogenesis, inflammation, and
signaling [1, 2].

Classification and protein structure
The MMPs constitute a family of both a zinc- and a

calcium-dependent endopeptidase that includes 23
human (24 murine) MMP members [1]. Based on protein
structure and substrate specificity, MMPs are divided into
collagenases (MMP-1, MMP-8, MMP-13, and MMP-
18), gelatinases (MMP-2 and MMP-9), stromelysins
(MMP-3, MMP-10, and −11), membrane-type MMPs
(MMP-14 [MT1-MMP], MMP-15 [MT2-MMP], MMP-
16 [MT3-MMP], MMP-17 [MT4-MMP], MMP-24
[MT5-MMP], and MMP-25 [MT6-MMP]), and other
MMPs [1, 2]. In general, MMPs contain three structural
domains: 1) the N-terminal propeptide domain, 2) an
internal catalytic domain, and 3) a C-terminal hemopexin
domain. MMPs are initially produced as inactive zym-
ogens, with a cysteine residue at the propeptide region
that binds the zinc ion present at the catalytic site.
Activation requires removal of the propeptide domain to
expose the active catalytic site. The transmembrane domain
is found only in the membrane-type MMPs (MT-MMPs)
and is linked to the plasma membrane either by a trans-
membrane domain or by a glycosylphosphatidylinositol
linkage attached to the hemopexin domain.

Modulation of MMPs
MMPs are regulated by various mechanisms that

include gene transcription, mRNA stability, translational
control, zymogen activation via proteolysis, inhibition by
endogenous inhibitors, and their localization [9]. MMPs
are regulated at the transcriptional level and by post-
translational modification. Most MMPs are not constitu-
tively expressed at detectable levels. Transcription of

MMP genes is thought to be mediated by intracellular
signals in response to growth factors, cytokines, chemo-
kines, and components of the ECM [9].
Post-translational modifications provide a second level

of regulation. Although most MMPs are secreted as
inactive zymogens, a subset of MMPs including MMP-
11, MMP-27, and the MT-MMPs are activated primarily
intracellularly by serine proteases of the pro-protein
convertase class such as furin [9]. Some MMPs are
cleaved in their propeptide domains, by serine protei-
nases such as the uPA–plasmin system and trypsin.
Activation of other pro-MMPs is mediated by already
activated MMPs. For example, pro-MMP-7 is activated by
MMP-3, andMMP-7 activates pro-MMP-1 and pro-MMP-9
[10]. MT1-MMP activates pro-MMP-13 and this activated
MMP-13, which may then go on to activate MMP-9 [11,
12]. MMP-2 is activated at the cell surface through a unique
and complex mechanism involving MMP-14 (MT1-MMP)
and tissue inhibitors of matrix metalloproteinase (TIMP)-2
[9]. Indeed, the transmembrane MT-MMPs (MT1-MMP,
MT2-MMP, MT3-MMP, and MT5-MMP) are all able to
activate pro-MMP-2, except for MT4-MMP and human,
but not mouse).MT2-MMP are the onlyMT-MMPs that are
unable to activate MMP2 [9].

Endogenous inhibitors of MMPs
There are four knownmammalian TIMPs: 1) TIMP-1, 2)

TIMP-2, 3) TIMP-3, and 4) TIMP-4. The N-terminal
domain of TIMP proteins contains the MMP inhibitory
domain, whereas the C-terminal domain of the TIMPs
mediates important protein–protein interactions, in partic-
ular with the hemopexin domains of pro-MMPs [13].
Following activation, TIMPs modulate MMP activity by
binding to the catalytic sites of MMPs, forming tight 1:1
noncovalent complexes [9, 13]. The TIMPs differ in their
affinity for specific MMPs, and their interaction does not
always lead to inhibition. The latter is exemplified by
TIMP-1, which binds pro-MMP-9, thus protecting this
protease from MMP-3 cleavage.

MMPS AND THE INJURED SPINAL CORD

Here we profile those MMPs that have been studied in
the injured spinal cord, focusing on their unique temporal
and cellular profiles in the injured cord (Table 1).

Time course and cellular localization
One of the earliest studies of MMPs in SCI focused on

the gelatinases MMP-9 and MMP-2 in the contused
cords of rats [14]. Gelatin zymography revealed prom-
inent MMP-9 activity by 12- to 24-h postinjury followed
by a rise in MMP-2 by 5 days postinjury. These findings
have since been confirmed in other species and models,
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including hemisection and compression. Zymography and
Western blots revealed a transient increase in MMP-9 at 1-
day postinjury followed by a gradual rise in MMP-2, which
then remained elevated for weeks thereafter [6, 15–18].
Although less studied, MMP-1 is also up regulated 1-day
postinjury in a similar model of SCI; however, its time
course has yet to be studied [18]. Together, these findings
highlight a unique temporal profile for MMP-1, MMP-9,
and MMP-2 in the injured cord, with the first and second
dominating in the more acute phase, and the third
associated with wound healing.
Several studies have profiled the expression of

virtually all known MMPs after SCI by evaluation of
mRNA transcripts. In a murine model of spinal cord
compression, there is up-regulation of mRNA transcripts
encoding MMP-9, MMP-3, MMP-7, MMP-10, MMP-11,
MMP-13, MMP-19, and MMP-20 within 24 h of injury,
whereas increased expression of MMP-2, MMP-12, and
MMP-13 is delayed in onset until 5 days after injury
[19]. A similar trend is reported in a spinal cord
contusion model in the rat [20].
During their peak expression in the acutely injured

spinal cord, both MMP-1 and MMP-9 are localized to
neurons and glia [18]. In addition, MMP-9 is detected in
blood vessels, neutrophils, and macrophages [5, 6, 18].
MMP-2 localizes to reactive astrocytes and neurons in
the chronically injured cord [17, 20]. Finally, MMP-12 is
expressed primarily in microglia/macrophages [19].
Similar to other MMPs, its temporal and cellular
expression varies according to type and severity of
injury.

MMPS AND THEIR INHIBITORS IN INJURY
AND RECOVERY PROCESSES

SCI produces secondary tissue damage that continues
to evolve days and weeks after the initial insult,
accompanied by corresponding functional impairments.
Reducing the extent of progressive tissue loss following
SCI represents an essential step toward recovery after
SCI. MMP inhibitors have been tested in several animal
models of acute and chronic injury (Table 2). The overall
impression is that early blockade of MMPs stabilizes the
barrier, reducing apoptotic cell death, and confers both
early and long-term neuroprotection.

Inflammation and barrier breakdown
Experimental models of SCI suggest that MMPs

support infiltration of inflammatory cells into the injured
cord and most likely contribute to early disruption of the
blood-spinal cord barrier. As leukocytes transmigrate
across the vascular wall, they release MMPs, which in
turn degrades tight-junction related proteins and the

surrounding basal lamina. Zonulae occludens-1, VE-
cadherin, and occludin are substrates for MMP-2,
MMP-3, MMP-7, and MMP-9 [21–24]. Basal lamina
proteins, such as fibronectin, laminin, and heparan
sulfate, are also degraded by MMPs [25]. Involvement
of MMPs in barrier disruption is supported by the finding
that the broad-spectrum MMP inhibitor BB-3103
decreases endothelial gap formation and occludin loss
[26].
Of the MMPs expressed by leukocytes, MMP-9,

conveyed by infiltrating neutrophils, is a key mediator
of early pathogenesis in the injured cord. Immunologi-
cally depleting neutrophils prior to SCI results in reduced
MMP-9 activity in the injured cord, suggesting that these
leukocytes are the principal source of this protease in the
injured tissue [14]. In a murine model of spinal cord
contusion injury, barrier disruption to the protein lucifer-
ase, is maximal at 24-h postinjury [27], a time point that
corresponds to peak activity of MMP-9 [5]. Moreover,
barrier disruption is reduced in MMP-9 null mice, as well
as mice treated with the broad-spectrum MMP inhibitor
GM6001 early during the maximal expression 3 h to 3
days after injury. Similar to findings with GM6001,
intrathecal administration of the selective gelatinase
inhibitor SB-3CT at 2 h before injury to the rat spinal
cord reduces both MMP-9 activity and barrier disruption
by 1-day postinjury and decreaes apoptotic cell death [6].
Similar findings supporting greater stabilization of the

barrier have been reported in spinal cord injured MMP-
12 null mice [19]. MMP-12, also known as macrophage
metalloelastase, is critical for the migration of blood-
borne macrophages across the endothelial basement
membranes into inflammatory sites [28]. Spinal cord
injured MMP-12 null animals show attenuation of blood-
spinal barrier breakdown. It is likely that MMP-12 also
influences the migration of macrophages into the injured
cord. Comparisons of cell density of Iba-1-positive
elements reveal fewer macrophages and microglia in
MMP-12 null mice compared with wild type animals
[19].

Oxidative stress and apoptosis
Oxidative stress contributes to pathogenesis in the

injured spinal cord [4]. MMPs are regulated by reactive
oxygen species, including nitric oxide and hypochlorous
acid [29, 30]. Transgenic rats that over-express the
antioxidant enzyme superoxide dismutase 1 (a crucial
endogenous antioxidant enzyme responsible for eliminat-
ing superoxide) showed enhanced neuroprotection after
SCI [31]. Active MMP-9 is increased at days 1, 3, and 7
after SCI in wild type rats, whereas there is no increase in
the superoxide dismutase 1 transgenic rats. The end
result is reduced disruption of the barrier and decreased
apoptosis [6].
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After SCI, MMP-2 contributes to apoptotic cell death,
and is up-regulated along with neuronal and glial
apoptosis. This temporal relationship raises a question
as to whether or not MMP2 is a determinant of apoptosis
after SCI [32]. Supporting this possibility, spinal cord
injured mice, treated with an MMP-2/MMP-9 inhibitor
delivered subcutaneously daily for 5 days, showed
reduced levels of apoptosis in both neurons and glial
[32]. Such a reduction in total cell death may contribute
to long-term recovery.
Collectively, these studies provide strong evidence for

pathological MMP-directed disruption of the blood-brain
barrier, leukocyte infiltration, and cell apoptosis after
SCI. Because early blockade of MMPs stabilizes the
barrier, reduces leukocyte infiltration, and confers both
early and long-term neuroprotection, it suggests that
early inhibiton of MMPs may be an efficacious strategy
for SCI.

Glial scar formation
Prolonged inhibition of MMPs, especially with broad-

spectrum inhibitors during wound healing can be
detrimental to neurological recovery [33]. One reason-
able explanation is that some MMPs, expressed during
wound healing, are beneficial. There is growing literature
to support this hypothesis. In the more chronically
injured cord, MMPs are key regulators of the local
microenvironment, degrading the ECM, and modulating
the formation of an inhibitory glial scar [34].
After SCI, a variety of growth-inhibitory molecules are

up-regulated [35]. A glial scar, an interface that is
inhibitory to axonal regeneration, forms at the site of
injury and is composed of reactive astrocytes, microglia/
macrophages, and ECM molecules, especially chondroi-
tin sulfate proteoglycans (CSPGs) [35]. In response to
injury, astrocytes, oligodendrocyte progenitors, and
macrophages increase the expression of CSPGs, which
in turn inhibit neurite outgrowth in vitro and regenera-
tion in vivo [36, 37]. MMPs degrade the core protein of
some CSPGs, as well as other growth-inhibitory mole-
cules, such as Nogo and tenascin-C [34]. CSPGs, such
as neurocan and versican, are degraded by MMP-2,
whereas tenascin-C, brevican, neurocan, NG2, phos-
phacan, and versican are degraded by MMP-3 [34]. By
degrading CSPG and other inhibitory molecules, MMPs
support axonal regenerative potential in the injured CNS
[2, 34].
In a rat hemisection model, in situ zymography reveals

MMP-related gelatinase activity in the injured site, which
is spatially and temporally correlated with scar formation
[15]. In vitro and in vivo data support the possibility that
MMPs facilitate migration of astrocytes. In vitro scratch
wound assays show attenuated migration of cultured
MMP-9 null astrocytes or astrocytes treated with an
MMP-9 inhibitor [38]. Moreover, in spinal cord injured

MMP-9 null mice, glial scar formation is abrogated along
with reduced CSPG immunoreactivity at the lesioned
epicenter [38].
The importance of MMP-2 in promoting functional

recovery in the chronically injured spinal cord has been
evaluated in MMP-2 deficient mice. MMP-2 null mice
show greater CSPG immunoreactivity, fewer serotoner-
gic fibers caudal to the injury site, and significantly
reduced motor recovery compared with wild-type mice
after a contusive SCI [17]. Such a finding may result
from reduced sprouting across the lesioned site.
Finally, the complexity of MMPs in SCI is further

realized in the context of axonal dieback. After SCI,
infiltrated macrophages mediate long-distance axonal
retraction from the initial site of injury. The involvement
of MMPs in dieback is supported by in vitro studies
showing that a broad-spectrum inhibitor or a specific
MMP-9 inhibitor prevents macrophage-induced axonal
retraction [39].
In summary, MMPs limit the formation of an inhib-

itory glial scar and degrade the inhibitory proteins, as
well as cleave extracellular proteins that sequester growth
factors [34, 40], thus supporting recovery processes.
They also mediate adverse responses including axonal
dieback.

MMPS AND NEUROPATHIC PAIN

Neuropathic pain manifests as an unpleasant somato-
sensory experience evoked by lesion or dysfunction in
the nervous system and occurs in as many as 85% of SCI
patients [41]. Types of neuropathic pain include: allody-
nia, which is a painful response to an innocuous
stimulus; and hyperalgesia, which is an exaggerated pain
response to a noxious stimulus. After SCI, neuropathic
pain can be localized in dermatomes above, at, or below
the level of injury. The complexities of neuropathic pain
create a barrier for therapeutic intervention.
Peripheral nerve injury (PNI) models are perhaps the

most common method of studying neuropathic pain, as
mechanisms can be examined without direct damage to
central pathways. Recent evidence shows that similar
inflammatory mediators of pain exist for SCI and PNI
[42], suggesting that PNI may help elucidate pain
mechanisms after SCI. In PNI, MMPs appear to induce
and maintain neuropathic pain, but a similar role after
SCI is unknown [43–45]. Prominent similarities in
cytokine profiles and microglial activation between SCI
and peripheral injury make an MMP mechanism with at
or below-level pain plausible [42].

Neuropathic pain modulation in PNI
The gelatinases (MMP-9 and MMP-2) appear to

regulate neuropathic pain after PNI through degenerative
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and proinflammatory mechanisms. Nerve injury indu-
ces a rapid increase of active MMP-9 in the axon and
dorsal root ganglia (DRG) by 24 h. MMP-9 gene
expression precedes and outlasts the active form [44,
45]. Active MMP-2 in the DRG is delayed until day 7
and persists through day 21 [43]. Although a distinct
time course has not been described for gelatinase
activity in the dorsal horn after PNI, an early MMP-9
and delayed MMP-2 pattern occurs [43]. A differential
time course suggests distinct roles of MMP-9 and
MMP-2 in the development and maintenance of
neuropathic pain.
After mechanical damage to the axon, Schwann cells

release MMP-9, initiating macrophage infiltration and
degradation of myelin basic protein [44, 46]. Exposure of
the bare axon leads to increased sodium channel
expression and ectopic hyperexcitability of afferents
[47]. As a result, action potentials outlast the stimulus
creating central sensitization, a common mechanism of
neuropathic pain.
Many proinflammatory cytokines and growth factors

mediate gelatinase expression in the nervous system,
potentially inducing neuropathic pain. Indeed, exposure
of the uninjured peripheral nerve to nerve growth factor,
tumor necrosis factor alpha or interleukin-1 beta (IL-1β)
induces robust MMP-9 expression by Schwann cells
[45]. Although neuronal sensitization occurs with ele-
vated cytokines alone [48], MMP-9 expression also
appears to mediate pain behavior. Gene deletion of
MMP-9 reduces nociceptive pain behavior after PNI
[43, 45]. In a proof-of-principle design, Kawasaki et al.
[43] intrathecally injected MMP-9 and found marked
allodynia accompanied by increased IL-1β cleavage and
microglial activation in the dorsal horn co-localized with
phosphorylated p38 MAP kinase. Blocking IL-1β signal-
ing with a neutralizing antibody prevented allodynia,
establishing IL-1β as a downstream regulator of neuro-
pathic pain by reducing microglial activation and p38
levels. Normal expression and intrathecal injection of
MMP-2 also cleaves IL-1β and activates spinal astro-
cytes at later time points, potentially maintaining neuro-
pathic pain [43]. The distinct temporal activations of
MMP-2 and MMP-9 provide novel opportunities for
therapeutic intervention during different stages of
allodynia.

MMP inhibitors and neuropathic pain
Outside of gene deletion, use of siRNAs and

endogenous peptide inhibitors for general and specific
inhibition of MMP-9 and MMP-2 effectively reduce
allodynia after PNI. Daily systemic administration of a
broad-spectrum gelatinase inhibitor (GM6001) 1 h to
12 days after PNI resulted in immediate and sustained
attenuation of mechanical allodynia [44]. Cellular
effects included preservation of myelin basic protein,

little macrophage influx, and low glial activation in
the dorsal horn [44]. Thus, relatively short-term
inhibition of MMPs limited the behavioral and cellular
sequella of central pain syndromes. However, an
overabundance of cells occurred in the nerve, DRG,
and dorsal horn after treatment with broad-spectrum
MMP inhibitors due to reduced apoptosis [44]. Less
apoptosis and increased cell density is not without
risk, especially after SCI. Such side effects must be
managed if broad-spectrum inhibitors are used to treat
neuropathic pain.
Temporal profiles of MMP-9 and MMP-2 provide

specific opportunities for treating neuropathic pain at
different stages. Pretreatment with MMP-9 siRNA
prevented the onset of allodynia for a maximum of 5
days. When MMP-2 siRNA was delivered late after
PNI during pronounced MMP-2 activity, allodynia was
attenuated for at least 1 day. Moreover, behavioral
benefits were accompanied by reduced cleavage of IL-
1β with both types of siRNA and reduced microglial
activation in the dorsal horn with MMP-9 siRNA [43].
Even greater reversal of allodynia occurred when
endogenous inhibitors of MMP-9 (TIMP-1) and
MMP-2 (TIMP-2) were administered during early or
late phases of MMP activation after PNI, but the effect
was transient, lasting only 3 to 24 h [43]. The largest
and longest reduction in allodynia after PNI occurred
with intrathecal injection of specific pharmacologic
inhibitors timed to periods of high MMP activity.
Inhibition of MMP-9 using Inhibitor-I (Calbiochem,
Gibbstown, NJ), starting 2 days before and through 5
days after the injury, delayed the onset of allodynia for
at least 6 days (Table 2). Using the synthetic MMP-2
inhibitor (Inhibitor-III, Calbiochem), allodynia was
attenuated for a maximum of 10 days with daily
intrathecal injections (Table 2) [43]. These results
suggest that intrathecal delivery effectively reduces
allodynia. Timing of the delivery and selection of the
type of inhibitor will be critical to clinical success in
treating neuropathic pain.

Translation to SCI
Marked similarity of behavioral and cellular mecha-

nisms of neuropathic pain exists between PNI and SCI.
Given the role of gelatinases in pain development and
maintenance after PNI, examination of MMP-9 and
MMP-2 with at and below-level pain after SCI is
warranted. While a differential time course exists with
MMP-9 and MMP-2 after both types of injury, the
relevance of delivering broad-spectrum MMP inhibitors
early is unclear, as SCI-induced neuropathic pain onset
occurs months or years after injury. Perhaps broad-
spectrum inhibitors delivered at specific time points
would be more effective for SCI, although serious
musculoskeletal side effects may result from long-term
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Table 3. Competitive MMP Inhibitors.

No. Structure Other Name IC50 (nM) or *Ki (nM) Indication/Comments Ref.
MMP-1 MMP-2 MMP-3 MMP-7 MMP-9 MMP-14

1 Batimastat, 
BB-94

3 4 20 10 19 TACE: IC50 = >20,000 nM. 
Cancer. Administered ip and 
intrapleurally in clinical trials. 
Produced musculoskeletal 
(MSS) syndrome. Discontinued 
after phase I (poor oral 
bioavailability).

(80)

2 Marimastat, 
BB-2516

0.78 0.41 14 4.1 0.79 MMP-13: IC50 = 1.2 nM
Cancer. Orally bioavailable.  
Produced MSS. Discontinued 
after phase III (lack of 
efficacy).

(54)

3 Ilomastat, 
GM6001, 
Galardin®

0.4* 0.5* 27* 3.7 0.2* 13.4* Cancer, macular degeneration, 
COPD. Discontinued after 
phase I (poor oral 
bioavailability). 

(81)

4 Rebimastat, 
BMS-275291, 
D-2163

9 39 157 23 27 40 Cancer. Musculoskeletal 
toxicity. Discontinued after 
phase III (poor response).

(82)

5 Tanomastat, 
BAY 12-9566

>5,000* 11* 134* 301* MMP-13: Ki = 1,470 nM
Arthritis, cancer, kidney 
transplant. Produced MSS, 
hematological toxicity, 
thrombocytopenia. 
Discontinued Phase III (poor 
survival rate).

(83)

6 Prinomastat, 
AG-3340

5.7 0.048 3.5 72 0.048 MMP-13: IC50 = 0.2 nM
Cancer, macular degeneration. 
Musculoskeletal toxicity. 
Discontinued after phase III 
(poor survival rate).

(54)

7 Cipemastat, 
Trocade®, Ro-
32-3555

1.77 3,420 694 150 7.84 MMP-13: IC50 = 7.28 nM 
Rheumatoid arthritis, 
osteoarthritis. Produced MSS. 
Discontinued after phase II 
(lack of efficacy).

(55)

8 CGS-27023, 
MMI-270

1*
15

16* 3*
9

MMP-13: Ki = 5 nM 
TACE: Ki = 54 nM
Cancer.  Oral bioavailability: 
44% dog. Produced some MSS. 
Discontinued after phase II.

(84)

9 MMI-166 >1,000 0.4 >1,000 >1,000 90 100 MMP-8: IC50 = 400 nM
Orally active in animal models 
of tumor growth and 
metastasis.

(85)

10 Tolylsam 5 5,558 49 MMP-8: IC50 = 397 nM
MMP-12: IC50 = 34 nM
MMP-13: IC50 = 201 nM

(86)

11 FR255031 77.8 91.1 >10,000 3.94 1.80 MMP-13: IC50 = 8 nM
TACE: IC50 = 231 nM

(55)

12 RS-130830 590*
233

0.22* 9.3* 0.58*
3

MMP-13: Ki = 0.52 nM TACE: 
Ki = 176 nM
Osteoarthritis. Discontinued 

after phase I.

(84)

13 SC-78080/SD-
2590

>10,000 <0.1 28.7 7,000 0.18 13 MMP-13: IC50 = 0.1 nM 
Oral bioavailability 52%-82%.

(87)
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Table 3. (Continued).
14 >10,000 400 370 1,230 >10,000 MMP-8: IC50 = >10,000 nM 

MMP-13: IC50 = 9 nM 
Oral bioavailability: rat 4.2%

(88)

15 835 228 MMP-13: IC50 = 77 nM
TACE: IC50 = 16 nM

(89)

16 >10,000 20 5.5 Protein binding 83%, high 
clearance, low systemic 
exposure

(90)

17 >10,000 5.2 137 1.9 MMP-13: IC50 = 3.5 nM
Protein binding 58%, t1/2 = 6 hr

(90)

18 9.3 2.9 Protein binding 74%. Reduced 
ischemia-induced brain edema 
in rat MCAO model.

(90)

19 ABT-770 4,600 4 42 >10,000 120 Oral bioavailability: rat 93%, 
dog 83%, monkey 95%. 
Efficacious in several cancer 
animal models. Produced 
phospholipidosis.

(91)

20 ABT-518 8,900 0.78 12 11,000 0.5 MMP-13: IC50 = 3.3 nM
Oral bioavailability >70% in 
rat, dog, and monkey. Solid 
tumors. Orally bioavailable. No 
further development reported 
after phase I.

(54)

21 >25,000 1 152 >10,000 MMP-13: IC50 = 1,130 nM (92)

22 Ro-28-2653 16,000 10 1,800 12 10 MMP-8: IC50 =15 nM
MMP-16: IC50 =23 nM
TACE: IC50 = >20,000 nM

(93)

23 >5,000* 0.23* 3,200* 0.72* MMP-13: Ki = 2.7 nM
TACE: Ki = >1000 nM

(94)

24 3,245 7 MMP-13: IC50 = 4 nM
TACE: 32% inhibition at 1 µM

(95)

25 155 1 MMP-13: IC50 = 0.8 nM
TACE: IC50 = 122 nM

(96)

26 5.2 APN: IC50 = 75.2 nM (97)
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use. Alternatively, early specific gelatinase inhibitors
may prevent the development of pain. The fact remains
that there have been no studies of the role of gelatinases
in neuropathic pain after SCI. The debilitating nature of
neuropathic pain after SCI and the potential of MMP-9
and MMP-2 to alter the course of its development and
maintenance places greater emphasis on explorative
studies of selective gelatinase inhibitors.

SYNTHETIC GELATINASE INHIBITORS

Gelatinase has been implicated in a variety of patho-
logical processes and diseases, including inflammation,
cardiovascular disease, infection, neurodegenerative dis-
ease, immune response, cancer cell invasion, andmetastasis
[2, 8, 49]. Thus, selective gelatinase inhibitors are highly
sought. However, due to the structural similarities of

MMPs, selective inhibition of gelatinase has been challeng-
ing. As recent reviews of MMP inhibitors are available
[50–52], this section will focus on gelatinase inhibitors.

Competitive inhibitors
The first-generation MMP inhibitors were broad-

spectrum peptidomimetics, containing a hydroxamate
moiety that chelated the catalytic zinc and inactivated
the protein. Examples of early peptidomimetics are
batimastat (1), marimastat (2), and ilomastat (3) (Table 3).
Although these small molecules inhibited MMPs at
nanomolar concentrations, they were not selective, and
in many cases also inhibited the a disintegrin and
metalloproteinase ADAMs (tumor necrosis factor alpha
converting enzyme TACE) proteases. Moreover, the
hydroxamate moiety is readily metabolized [51], contri-
buting to the poor oral bioavailability and limited in vivo
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Table 3. (Continued).

27 3 APN: IC50 = 48.5 nM (98)

28 Doxycycline
Adoxa®, 
Doryx®, 
Vibra-Tabs®, 
Periostat®

>100000 >100000 >100000 >100000 >100000 Approved for acne, bacterial 
infections, gum disease, and 
rosacea. Available as iv 
infusion and as oral tablets and 
capsules. 

(53)

29 Minocycline
Minocin®

125,000 180,000 Approved for acne, bacterial 
infections, and rosacea.

(57)

30 Incyclinide, 
Metastat®, 
COL-3

5,500 Acne, AIDS-related Kaposi’s 
sarcoma, cancer. Phase II.

(99)

37 >100000 4,000 >100000 20,000 MMP-13: IC50 >100000 nM
TACE: : IC50 >100000 nM

(64)

38 1,200 6.6 1,600 MMP-8: IC50 = 2.4 nM
MMP-12: IC50 = 5 nM
MMP-13: IC50 = 4.5 nM

(66)

39 RXP-03 >2,000* 20* 8% @ 2 
µM

10* 105* MMP-8: Ki = 2.5 nM
MMP-11: Ki = 5 nM
MMP-13: Ki = 16 nM

(65)

Values with asterisk (*) means Ki

FIG. 1. Phosphorus-based inhibitors.
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efficacy. Another drawback is that these broad-spectrum
inhibitors produced musculoskeletal syndrome [53].
Other zinc-binding groups have been used. Rebimastat

(BMS-275291, 4) contains a mercaptoacyl as a zinc-
binding group and tanomastat (BAY 12-9566, 5) has a
zinc-binding carboxylate group. More selective MMP
inhibitors have been developed, such as prinomastat (6)
[54] and cipemastat (7) [55]. Examples of additional
peptidomimetic and nonpeptidomimetic competitive
inhibitors are listed in Table 3. However, as zinc
chelators these inhibitors target the gelatinases, as well
as other zinc-dependent enzymes, including other MMPs.

Since their discovery in the 1950s, tetracyclines have
been widely used for their antimicrobial properties.
However, tetracyclines also have nonantimicrobial prop-
erties, and among them is the ability to inhibit MMPs
[56]. Doxycycline (Periostat®, 28) is the only drug
approved as an MMP inhibitor for the treatment of
periodontitis. Minocycline (29) is a second-generation
tetracycline analog with weak broad-spectrum MMP
inhibitory activity [57] approved for acne, bacterial
infections, and rosacea. Minocycline has been reported
to have neuroprotective effects in various animal models
of neurological diseases [58, 59]. Incyclinide (Metastat®,

Table 4. Mechanism-based MMP Inhibitors.

No. Structure Other Name Ki (nM) Comments Ref.
MMP-1 MMP-2 MMP-3 MMP-7 MMP-9 MMP-14

40 SB-3CT 73,000 28 4,000 67,000 400 110 Slow-binding inhibitor of 
MMP-2 and -9. Inhibits MMP-
14 as a competitive (reversible) 
inhibitor. Does not inhibit 
ADAM-10 -17. 

(68, 
100)

41 128,000 6 2,200 31,000 160 90 Primary metabolite of SB-3CT. 
Slow-binding inhibitor of 
MMP-14.

(75)

42 140,000 23 600 18,200 5 145 Inhibits MMP-3, MMP-7, and 
MMP-14 as a competitive 
inhibitor. 

(76)

43 NI 70 38% at 20 
µM

8% at 40 
µM

330 360 (77)

44 NI 34 22% at 20 
µM

5% at 20 
µM

520 240 (77)

45 NI 61 5% at 20 
µM

NI 380 790 (77)

46 NI 16 3,600 295,000 180 900 Slow-binding inhibitor of 
MMP-2, -9, and -14.

(78)

47 5,400 110 12,200 39,000 130 680 Slow-binding inhibitor of 
MMP-2 only.

(78)

48 11,000 50 8,700 13,000 40 590 Slow-binding inhibitor of 
MMP-2 only.

(78)

49 4,500 460 540,000 250,000 4,100 53,000 Slow-binding inhibitor of 
MMP-2 only.

(78)

50 NI 180 8% at 60 
µM

NI 3,500 740 Slow-binding inhibitor of 
MMP-2, -9, and -14.

(79)

51 NI 390 9% at 60 
µM

NI 3,300 2,100 Slow-binding inhibitor of 
MMP-2, -9, and -14.

(79)

52 NI 220 NI NI 1,900 2,100 Slow-binding inhibitor of 
MMP-2, -9, and -14. Minor 
metabolite of 54.

(79)

53 41,000 390 29% at 200 
µM

11,000 3,900 480 Slow-binding inhibitor of 
MMP-2, -9, and -14.

(77)

54 7% at 200 
µM

90 62% at 200 
µM

26,000 12,000 11,000 (77)

55 30% at 200 
µM

280 58% at 200 
µM

35,000 6,200 3,200 (77)

56 NI 240 25% at 200 
µM

120,000 3,500 20,000 (77)

NI=non inhibitory
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FIG. 2. Mechanism of gelatinase inhibition by SB-3CT.
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COL3 (30)) is a second-generation chemically modified
tetracycline that lacks antimicrobial properties, inhibiting
collagenases (MMP-1, MMP-8, and MMP-13), gelati-
nases (MMP-2 and MMP-9), and MT1-MMP, as well as
other MMPs [60].
Bisphosphonates are potent inhibitors of osteoclastic

activity and are widely used clinically for arresting or
preventing bone loss associated with osteoporosis, meta-
static bone disease, and other bone fragility conditions.
Bisphosphonates also inhibit various MMPs [61, 62].
Clodronate (31), pamidronate (32), alendronate (33), and
zoledronate (34), inhibit MMP-1, MMP-2, MMP-3, MMP-
7, MMP-8, MMP-9, MMP-12, MMP-13, and MMP-14,
with IC50s ranging from 50 to 150 μM. Analogs of
risedronate, NE-10244 (35), and NE-58051 (36) (refer to
FIG. 1 for their structures), inhibit MMP-2, MMP-9, and
MMP-12, with IC50s of 40, 160, and 80 μM, respectively
[63]. Carbamoylphosphonates (37) [64] and phosphinates
(38, 39) have been reported [65, 66] as MMP inhibitors.

Mechanism-based inhibitors
In 2000, Brown et al. [67] reported on the design and

synthesis of SB-3CT (40) (Table 4), the first mechanism-
based inhibitor for gelatinases. In mechanism-based or
slow-binding inhibition, the inhibitor-enzyme complex
undergoes a requisite conformational change that does
not readily reverse. SB-3CT is selective for MMP-2 and
MMP-9, does not inhibit other MMPs, and inhibits
MMP-14 (MT1-MMP) as a simple competitive (rever-
sible) inhibitor [68]. Although the biphenyl ether motif is
reminiscent of other MMP inhibitors, the basis for MMP
inhibition by SB-3CT is mechanistically unique and
different from all other reported MMP inhibitors. This is
due to the ability of gelatinases to facilitate the requisite
rate-limiting deprotonation event leading to thiirane-ring
opening with the active-site zinc ion (FIG. 2) [69].
Because the reactive thiolate is only generated within the
active site of gelatinases, indiscriminate inhibition of
other MMPs does not exist. SB-3CT has shown efficacy
in several animal models of disease, including stroke
[70], vascular permeability [71], vascular remodeling
[72], subarachnoid hemorrhage [73], cardiopulmonary
resuscitation [74], and SCI [6].
Although SB-3CT has demonstrated efficacy, it is

rapidly and extensively metabolized by hydroxylation at
the terminal phenyl ring (41) [75] to a more potent
gelatinase inhibitor than the parent SB-3CT. The sulfo-
nate (42) was designed to block the primary site of
metabolism of SB-3CT [76]. Additional sulfonates (43–
45) are slow-binding selective gelatinase inhibitors [77].
Other groups have been introduced into the terminal
phenyl ring of SB-3CT to block metabolism, including
N-methanesulfonate (46), N-acetate (47), methyl acetate
(48), and methyl acetic acid (49) [78]. In efforts to reduce
metabolism at the α-position to the sulfonyl group in SB-

3CT, 4 methyl diasteromers were prepared [79]. Of these,
50 and 51 were active slow-binding inhibitors of MMP-
2, MMP-9, and MMP-14. The p-hydroxy methyl
derivative 52 had a similar inhibition profile as 50. To
increase water solubility and metabolic stability, sulfo-
nates 53–56 were prepared in which the terminal phenyl
ring was eliminated [77]; these compounds showed
potent inhibition of MMP-2 only.

CONCLUSIONS AND FUTURE STUDIES

It has become clear that MMPs have differing roles in
both pathogenesis and recovery after SCI. How they
influence injury and recovery processes is dependent on a
number of factors that include when and where they are
expressed and the profile of available substrates. As such,
specific gelatinase inhibitors, targeting specific cellular
and temporal profiles, may be more efficacious than their
broad-spectrum counterparts. The potential to regulate
neuropathic pain after SCI through gelatinase inhibition
warrants detailed examination. Although studies of SCI
support the view that early gelatinase activity is
detrimental, in part, by promoting barrier dysfunction
and early inflammation, involvement of MMPs in the
more chronically injured cord is more complex. During
wound healing, gelatinases modulate the formation of an
inhibitory glial scar, support axonal regeneration, pro-
mote cell survival, and attenuate mechanical allodynia.
Thus, the application of broad-spectrum MMP inhibitors
in the more chronically injured cord should be
approached with caution because any benefit may be
outweighed by untoward effects.
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