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Summary: Injury to the spinal cord is known to result in
inflammation. To date, the preponderance of research has
focused on the acute neuroinflammatory response, which begins
immediately and is believed to terminate within hours to (at most)
days after the injury. However, recent studies have demonstrated
that postinjury inflammation is not restricted to the first few hours
or days after injury, but can last for months to years after a spinal
cord injury (SCI). These chronic studies have revealed that
increased numbers of inflammatory cells, such as microglia and
macrophages, and inflammatory factors, including cytokines,
chemokines, and enzyme products are found at markedly delayed
times after injury. Here we review experimental work on a
selection of the novel inflammatory factors observed chronically
after SCI, including the nicotinamide adenine dinucleotide

phosphate-oxidase (NADPH) oxidase enzyme and galectin-3. We
will discuss the role of these proteins in inflammation with regard
to both detrimental and beneficial effects of neuroinflammation
after injury. Finally, the potential of these proteins to serve as
therapeutic targets will be considered, and a novel therapeutic
approach (i.e., the agonist for metabotropic glutamate receptor 5
[mGluR5], [RS]-2-Chloro-5-hydroxyphenylglycine [CHPG]) will
be discussed. This review will demonstrate the expression and
activity profiles, roles in potentiation of injury, and therapy studies
of these inflammatory factors suggest that not only are these
chronically expressed factors viable targets for SCI treatment, but
that the therapeutic window is broader than has previously been
thought. Key Words: Galectin-3, inflammation, metabotropic
glutamate receptor 5, microglia, NADPH oxidase.

INTRODUCTION

Spinal cord injury (SCI) is initially caused by amechanical
insult promoting secondary biochemical and physiological
changes. These changes contribute to permanent loss of
sensory and motor function and lead to delayed cell death,
glial scar formation, impaired regeneration, and neuro-
inflammation. However, SCI is not a static disorder, and
evidence exists demonstrating progressive tissue loss with
time, including chronic demyelination [1] and syringomyelia
development [2]. The inflammation of the nervous system
may serve as the mechanism by which SCI progresses from
an acute to a chronic disorder. The immediate and ephemeral
inflammation, occurring within the first hours to days after
injury, is the acute stage. Chronic neuroinflammation, on the

other hand, is a relatively new concept in the field, supported
by findings of elevated inflammatory cell numbers in the
injured spinal cord months to years after the initial insult [3,
4]. Overall, neuroinflammation involves the activation and
recruitment of endogenous and systemic immune cells,
including microglia, macrophages, and lymphocytes, and
the expression of factors designed to respond to the injury
and aid in repair (see Alexander and Popovich [5] for a full
review). Microglia are the resident immune cells in the
central nervous system and play an integral role in the
neuroinflammatory response after SCI (see Loane and
Byrnes [6] review).
To date, it is unclear if chronic neuroinflammation is

deleterious or beneficial, and the current research is
controversial. Studies have found that inhibition of
inflammation or knockout of an inflammatory pathway
can both improve [7] and deter [3] recovery. In fact,
inflammatory cells themselves can produce both neuro-
toxic and neuroprotective substances [3]. A careful
consideration of this dual role of inflammation will be
given within this review.
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A number of inflammatory factors are involved in the
response to injury of the spinal cord; most are known to be
up-regulated acutely after injury and remain elevated or
active for only a few hours [8]. However, a number of
chronically up-regulated neuroinflammatory factors, includ-
ing nicotinamide adenine dinucleotide phosphate-oxidase
(NADPH) oxidase and galectin-3, among others, have been
identified in recent years. A notable finding for many of
these factors is that they play a significant role in both
potentiating the inflammatory response and contributing to
resolution of inflammation. However, many of these factors
have not been studied in detail with regard to SCI, nor have
they been fully considered as therapeutic targets for SCI
treatment. However, one therapy has been shown to target
both NADPH oxidase and galectin-3, the metabotropic
glutamate receptor 5 (mGluR5) agonist (RS)-2-Chloro-5-
hydroxyphenylglycine (CHPG). Therefore, we now provide
a detailed review of these chronic inflammatory factors,
including a consideration of their role in inflammation and
in SCIs, and the use of the novel anti-inflammatory mGluR5
agonist as a therapy to target these factors (FIG. 1).

NADPH OXIDASE

Components of the NADPH oxidase enzyme and
evidence of oxidative stress have been reported to be

increased after SCI and remain elevated for chronic
periods [9]. The NADPH oxidase enzyme is a protein
complex that plays a key role in the production of
reactive oxygen species (ROS) and is composed of 4
cytosolic subunits (gp40PHOX, p47PHOX, p67PHOX, and
the GTP-binding protein p21-Rac1) and 2 membrane
subunits (gp91PHOX and p22PHOX) (FIG. 2) [10]. There are
several isoforms of NADPH oxidase, differing based on
their enzymatic core. For NOX2, which is expressed in
most phagocytic cells, such as microglia, the core is
gp91PHOX [11]. Alternative forms include NOX1, NOX3,
NOX4, NOX5, DUOX1, and DUOX2, and differ in their
requirements for cytosolic and membrane subunits. In
addition to NOX2, microglia have been shown to express
functional NOX1 [12] and NOX4 [13]. Furthermore,
NOX1, NOX2, and NOX4 are expressed in neurons,
astrocytes, endothelial cells, pericytes and fibroblasts,
among other cells [14, 15]. For the purpose of this review,
we will focus on NOX2, but some of the research and
therapy approaches may overlap with NOX1 and NOX4.
Activation of the NOX2 complex involves 2 steps: 1)

up-regulation of expression of the individual protein
components and 2) protein kinase C (PKC)- or mitogen
activated protein kinase-mediated phosphorylation of the
cytosolic components [16]. Phosphorylated subunits are
then translocated to the membrane, where they assemble

FIG. 1. Diagram of the the input of the novel chronic neuroinflammatory factors NADPH oxidase and galectin-3 on cell death, and the input of
the novel anti-inflammatory treatment (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG). Trauma results in microglial activation, including NA-
DPH oxidase activity and galectin-3 expression. These proteins then act to both enhance inflammation and neurotoxicity, as well as promote
their own expression and activity. The metabotropic glutamate receptor 5 (mGluR5) agonist CHPG has activities to block this neuro-
inflammation andmay operate as a viable anti-inflammatory agent for chronic inflammation. (IL = interleukin; TGF = transforming growth factor;
TNF = tumor necrosis factor.)
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with the membrane subunits to form the active enzyme
[17–20]. The active enzyme complex produces ROS,
such as superoxide (O2

-), which is converted into other
chemically active superoxide-derived oxidants, such as
hydrogen peroxide (H2O2), hydroxyl radicals, and
peroxynitrite [21] (FIG. 2).
A time course evaluation reveals that at 6, 24, and 72 h

postinjury, gp91PHOX and p67PHOX are significantly up-
regulated into the spinal cord tissue [22, 23]. This
increase is further elevated at 14 days postinjury, which
is accompanied by an increase in the amount of
nitrosylated tyrosine, a marker of oxidative stress [22].
Our group found that components of the NADPH
oxidase enzyme system (including p22PHOX) are
significantly up-regulated from 24 h to 7 days
postinjury [24]. This up-regulation continues for at least
6 months after a spinal cord contusion injury in mice
(FIG. 3). In human tissue, gp91PHOX-positive neutrophils
have been identified in the lesion perimeter at 1 to 3 days
postinjury, whereas microglia in the spinal cord are
gp91PHOX-positive for months after injury [4]. From
5 days to several months postinjury, a portion of the
phagocytic macrophages in the injured spinal cord were
gp91PHOX-positive, although the majority of phagocytic
cells were not. Interestingly, although neurons are known
to also express some NADPH oxidase components, at
1 week after SCI it was found that most of the NOX2-
positive cells in the injured spinal cord were Iba1+
microglia/macrophages rather than MAP2+ neurons [25].

Various cytokines can induce the expression of NADPH
oxidase components and activation of the enzyme. For
example, TNFα and IFNγ can operate through PKC and
the NFκB transcription factor to induce gp91PHOX

expression [26, 27]. T-cell derived cytokines, such as
interleukin-17A, can also induce NADPH oxidase activity
[28]. Cytosolic phospholipase A2, which is induced in
several injury models, may also induce NADPH oxidase
activity by directly binding to the enzyme [29]. In turn,
NADPH oxidase activity can induce NFκB activation
[27], resulting in a self-propagating feedback loop.
In vitro experiments have shown that activated micro-

glia can induce neuronal cell death, mediated through the
NADPH oxidase enzyme. Knockout of gp91PHOX

reduced neuronal apoptosis in response to injection of
lipopolysaccharide (LPS, which is a bacterial cell wall
component commonly used to initiate inflammatory cell
activation) [30]. As neurons do not respond to LPS, it
was proposed that this neuronal apoptosis resulted from
indirect actions of microglia. A recent study by Hur et al.
[31] further demonstrated that microglia exposed to
ischemia induced neuronal cell apoptosis, which could
be blocked by knocking out gp91PHOX. Furthermore,
addition of TNFα and interleukin-1β to spinal cord
explants resulted in NADPH oxidase activity and
3-nitrotyrosine (3-NT) accumulation in spinal cord
motoneurons, but only when microglia were present [26].
T cells may also play a role in NADPH oxidase-

mediated damage to the spinal cord. T cells produce

FIG. 2. Diagram of the mechanism of NADPH oxidase-induced cell death. NADPH oxidase activation by aggregation of all components
to the cell membrane results in production of superoxide (O2

-). Superoxide can then combine with nitric oxide (NO) to produce perox-
ynitrite (ONOO-), which interferes within mitochondrial activity and can induce cell death. Superoxide can also interact with the cell
membrane to produce reactive aldehydes, which also induce cell death. ATP = adenosine triphosphate.
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cytokines that contribute to NADPH oxidase activation
[28]. In addition, these cells have been shown to have
increased proliferation in response to NADPH oxidase-
derived superoxide [32]. As T cells have a delayed and
potentially sustained presence in the injured spinal cord
[33], this contribution to NADPH oxidase activity may
play a significant role in potentiating the inflammatory
response and in myelin debris clearance.
NADPH oxidase-dependent ROS production has a

number of toxic effects on cells. The interaction of ROS
and reactive nitrogen results in the formation of the
highly reactive and toxic peroxynitrite (FIG. 2). Perox-
ynitrite can nitrosylate tyrosine residues [34]; the
resultant 3-NT has been shown to be directly neurotoxic.
Studies have shown that peroxynitrite markers, such as 3-
NT, are up-regulated for at least 1 week after SCI [35]. 3-
NT can inhibit mitochondrial activity, reduce adenosine
triphosphate (ATP) production, and increase ROS pro-
duction [36]. ROS can also interact with polyunsaturated
fatty acids in cell membranes, producing reactive
aldehydes that can bind to and interfere in normal protein
function, causing additional toxicity [23].

Neurons are not the only cell type susceptible to
inflammatory NADPH oxidase production in the spinal
cord. Microglial NADPH oxidase activity and ROS
generation has also been shown to induce oligodendrocyte
cell death, which can have devastating consequences in
SCI. Oligodendrocytes are responsible for myelination of
axons in the spinal cord. Oligodendrocyte or oligodendro-
cyte precursor cell death results in a reduction of remyeli-
nation of newly sprouting or spared axons near the injury
site, impairing recovery of function. Oligodendrocyte
precursors have been shown to be susceptible to micro-
glial-induce peroxynitrite production. LPS-stimulated
microglia that are co-incubated with oligodendrocyte
precursors can significantly reduce oligodendrocyte cell
survival [37]. Endothelial cells, and thus blood-brain barrier
(BBB) integrity, is also influenced by ROS production. An
in vitro study with endothelial cells showed that increased
exposure of endothelial cells to ROS resulted in an
increased contractile function of the endothelial cells and
increased adhesion molecules expression [28]. This effect
can in turn induce an increase in cellular migration into the
spinal cord, and can thus further the inflammatory response.

FIG. 3. Gene expression of the novel neuroinflammatory targets after spinal cord injury (SCI). Microarray data from http://pepr.cnmcresearch.
org was mined to determine the expression of (a) galectin-3, (b) p22PHOX, and (c) gp91PHOX. Expression is significantly elevated, chronically
after moderate SCI in mice for each marker in comparison with sham-injured tissue. (d) Sham-injured tissue and spinal cord-injured tissue
stained with gp91 (red) and ToPro (blue) at 28 days after a moderate contusion injury in mice indicates elevation of this protein
corresponding to the gene expression measurements. (Bar = 200 μm).
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SCI can induce systemic inflammatory responses and
changes in NADPH oxidase activity. The oxidative
activity of cells in the peripheral blood is also altered
by SCI. For example, Bao et al. [38] found that the
NADPH oxidase activity of circulating monocytes,
neutrophils, and lymphocytes was 4- to 6-fold higher in
SCI-injured patients than in trauma control patients at 6 h
to 2 weeks postinjury. ROS produced by NADPH
oxidase may also play a role in postinjury neuropathic
pain. A recent study by Kim et al. [25] demonstrated that
postinjury allodynia is associated with an increase in
microglial related NADPH oxidase component expres-
sion; pain could be alleviated by the addition of oxygen
scavengers.
There are several inhibitors of NADPH oxidase,

although most tend to be nonspecific and have multiple
off-target effects, rendering much of the chemical-
inhibition based research controversial. The most com-
monly used inhibitors include diphenyleneiodonium
(DPI) apocynin [11]. DPI directly inhibits all flavoen-
zymes, including nitric oxide synthase [37, 39]. DPI also
inhibits all NOX isoforms and is believed to operate by
modifying the heme component of NADPH oxidase,
disrupting the ability of the enzyme to generate oxygen
radicals [40, 41]. In vitro, reduction of NADPH oxidase
activity can ameliorate microglial activation and reduce
neuronal cell death. In microglia, DPI blocks NFκB
activation, which reduces inducible nitric oxide synthase
and cytokine production [42]. Inhibition of NADPH
oxidase with DPI impairs peroxynitrite production and
suppresses microglial-induced oligodendrocyte precursor
cell death [37]. Furthermore, DPI treatment reduces
endothelial cell adhesion molecule expression, leading
to a reduction in permeability to circulating cells and
improved BBB integrity [28]. One recent study has found
that femtomolar concentrations of DPI inhibit NADPH
oxidase in microglia, and reduce LPS-induced TNFα
release and nitric oxide production [16]. Furthermore, this
study found that LPS-induced microglial neurotoxicity
could be blocked by DPI [16]. These effects were found to
be preceded by a reduction in extracellular signal-related
kinase (ERK) phosphorylation, suggesting that ultra-low
DPI concentrations may act on the upstream events of
NADPH oxidase activity (in addition to or instead of it)
through direct activity at the NADPH oxidase enzyme.
Apocynin is a BBB permeable drug that reduces

NADPH oxidase activity by inhibiting the membrane
translocation of p47PHOX [43]. This drug may also have
nonspecific ROS scavenging effects [11]. Application of
apocynin inhibits microglial proliferation [24], cytokine
production [12], ROS production [44], and microglial-
mediate neurotoxicity [45]. Pre-treatment of microglia
with apocynin prior to exposure to ischemic conditions
or LPS in vitro blocks microglial-induced neurotoxicity
[31, 46]. In vivo, using a brain ischemia model, apocynin

at 2.5 mg/kg significantly reduced the infarct size and
improved functional recovery [43]. It should be noted
that apocynin at higher concentrations (3.75 and 5 mg/
kg) could induce an increase in oxidative stress and
impair recovery.
Despite the benefits observed with inhibition or knockout

of NADPH oxidase, it is important to remember that
NADPH oxidase can have beneficial effects in the injured
spinal cord. For example, phagocytic activity is heavily
influenced by ROS activity. In 2008, a study by Sun et al.
[47] demonstrated that antioxidant treatment or apocynin
administration, which reduced the ROS produced by
microglia exposed to LPS, reduced microglial phagocytic
activity. Microglial and macrophage activation are essential
in myelin debris phagocytosis, which is important in
Wallerian degeneration and the potential for regeneration
[48]. Further, phagocytosis of myelin has been shown to
induce an ROS burst in microglia that is related to a
reduction in pro-inflammatory cytokine production [49]. In
addition, Kunz et al. [50] demonstrated that NADPH
oxidase activity played an essential role in cerebrovascular
regulation, normalizing blood flow after ischemia via
activity of peroxynitrite. Of course, it is also important to
remember that NADPH oxidase-mediated ROS production
is essential in eliminating microbial or other targets in
elimination of debris.
These data suggest that NADPH oxidase generated

ROS play a significant role in the alleviation of
inflammatory response, as well as propagation of it, and
future research needs to be done to be more fully
understanding of the timing and related signals in this
pathway.

GALECTIN-3

Galectin-3, also known as MAC-2, is a 30 kDa
member of the lectins family that binds β-galactosides.
All galectins contain conserved carbohydrate-recognition
domains (CRDs) involved in carbohydrate binding.
Based on structural features and the number of CRDs,
galectins are classified as proto (one CRD), tandem-
repeat-types (two homologous CRD), or chimera. Galec-
tin-3 is the only galectin of the chimera type with a CRD
that is connected to a nonlectin N-terminal [51, 52].
Galectin-3 can be localized within tissues in the

extracellular, cytoplasmic, or nuclear compartments in
monomeric or oligomeric forms [53]. Galectins lack of a
signal sequence required for secretion through the
classical secretory pathway [51, 54]; however, galectin-
3 may be able to penetrate the lipid bilayer of liposomes
in an energy-independent manner to be released into the
extracellular space [55].
Galectin-3 appears to play a major role in control of

inflammation. Galectin-3 gene and protein expression
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have been shown to increase in a mouse model for
neonatal hypoxia-ischemia with galectin-3 found in
activated microglia/macrophages, suggesting a role for
galectin-3 in the inflammatory response [56]. Further-
more, measurements of galectin-3 in cerebrospinal fluid
samples of amyotrophic lateral sclerosis patients have
shown to be approximately twice as much as normal and
disease controls [57]. Its inhibition has been shown to
have anti-inflammatory properties in conditions, such as
rheumatoid arthritis [58]. It has been hypothesized that
galectin-3 is involved in the transition of a repetitive
injury to chronic inflammation by facilitating the scarring
processes and tissue fibrogenesis [53].
Galectin-3 expression is under the control of the AP1

transcription factor and NFκB, a proinflammatory tran-
scription factor [59], and it is involved in monocyte
chemotaxis [60], activation of NADPH oxidase [61, 62] ,
phagocytosis [63], and ROS release [64] (FIG. 1). NFκB
has been shown to be activated after SCI as early as 30
minutes after injury [65], and its activation is an
important step in the development of inflammation after
SCI [66].
Gene expression of galectin-3 is delayed and pro-

longed after SCI, with an induction at 24 h after SCI, and
a peak in expression between 14 and 28 days [24, 67].
We have found that galectin-3 mRNA expression after
moderate SCI in mice remains at a level higher than
sham through 6 months postinjury (FIG. 3). It has been
hypothesized that galectin-3 is involved in the transition
to chronic inflammation by facilitating the scarring
processes and tissue fibrogenesis [53]. In a focal
ischemia model, galectin-3 was up-regulated in OX-42+
microglia for up to 2 months after injury [68]. Galectin-3
was shown to be increased in the CA1 region of the
hippocampus following transient ischemia [69]. In
addition to macrophages and microglia, T cells have
been reported to express galectin-3 [70].
Inhibition of galectin-3 has anti-inflammatory proper-

ties in a number of models and cell culture conditions,
although SCI has not been tested yet. Several inhibitors
of galectin-3 activity have been found, including lactose
and modified citrus pectin. Modified citrus pectin, a
galactose-rich polysaccharide that binds to galectin-3,
has been found to reduce inflammation in rheumatoid
arthritis [58]. Lactose incubation with neutrophils
blocked galectin-3 mediated ROS production [64].
Furthermore, knockout of galectin-3 reduced tissue loss
and measures of oxidative stress and inflammation in a
neonatal hypoxia model [71], and reduced inflammatory
cell presence in a thioglycollate broth stimulation [72].
This protein is involved in several other biological

activities aside from inflammation, including regulation
of cellular cycle, modulation of adhesion and tumor
progression, and metastasis [73]; these activities can be
modulated by collagenase and matrix metalloproteinases.

Interestingly, metalloproteinases are also chronically up-
regulated after SCI [74, 75]. However, these alternative
activities and a recent study by Lalancette-Hebert et al.
[76] demonstrate that galectin-3 may play a protective
role after SCI. In this study, microglia expressing
galectin-3 were selectively ablated, resulting in worsened
recovery and larger infarct volume after an ischemic
injury. In addition, galectin-3 is a mediator of the
vascular endothelial growth factor-mediated angiogenic
response and basic fibroblast growth factor-mediated
angiogenic response. Angiogenesis assays revealed that
galectin-3 inhibitors and knockout reduce vascular
endothelial growth factor-mediated angiogenesis and
basic fibroblast growth factor-mediated angiogenesis in
vitro [77]. Therefore, treatment studies targeting galectin-
3 require greater understanding of the role of this protein
in both inflammation and angiogenesis.

NOVEL THERAPY: MGLUR5 AGONIST CHPG

Within the central nervous system, metabotropic
glutamate receptors (mGluRs) are well known to be
expressed in many different cell types throughout the
brain and spinal cord [78]. These receptors are G-protein
coupled receptors that have been divided into 3 groups
(groups I, II, and III) on the basis of signal transduction
pathways and pharmacological profiles [79]. Briefly,
group I mGluRs, including mGluR1 and 5, are typically
postsynaptic and work through Gαq-proteins to release
calcium and activate ERK1 and ERK2 downstream
signaling pathways. Groups II (mGluR2 and 3) and III
(mGluR4, 6, 7, 8), on the other hand, are typically
presynaptic and are negatively coupled to adenylate
cyclase to reduce calcium increases. Recent work has
shown that mGluRs are expressed in several members of
the immune system. Microglia, for example, express
mGluR2, 4, 5, 6, and 8 [78, 80]. We have shown that
mGluR5 is expressed in microglia, in vitro, in a SCI
rodent model, and in the BV2 microglial cell line [81–
83]. Lymphocytes also express groups I, II, and III
mGluRs [84]; activation of mGluR group III with LAP4
induces an increase in ROS levels in these cells. In 2009,
we presented a discussion of the role of mGluRs in
neuroinflammation [79]; in this section we will expand
on the research into mGluR involvement in neuro-
inflammation after SCI and the use of the mGluR5
agonist CHPG as a therapy.
Glutamate levels in the spinal cord peak at approx-

imately 2 h after injury [85]. Although SCI does not
induce a change in mGluR5, 3 or 4 gene expression in
the lesion site from 30 minutes to 28 days postinjury, a
slight reduction in mGluR5 expression at the lesion
epicenter was found using Western blot at 24-h post-
injury [86]. In addition, mGluR2 is increased at 7 days
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postinjury with mild injury [86]. Away from the lesion
epicenter, studies have found changes in mGluR expres-
sion, with mGluR1 expression reduced rostral and caudal
to the lesion at 1 day postinjury, and a reduction in
mGluR2/3 from 7 to 60 days postinjury [86]. Gwak and
Hulsebosch [87] found that mGluR1 and 5 proteins were
increased in neurons and astrocytes for as much as
30 days after SCI, although they did not investigate
possible microglial expression.
The expression and function of mGluR5 has been

explored in microglia and in SCI, using both in vitro and
in vivo models (Table 1). Blockade of group I mGluR
with the antagonist AIDA in a neuronal/glial co-culture
stretch-injury model resulted in reduced axonal signaling
abnormalities and GFAP immunoreactivity [88]. Further-
more, N-methyl-D-aspartic acid-mediated currents were
reduced in this culture model with mGluR5 agonist (RS)-
2-Chloro-5-hydroxyphenylglycine (CHPG) administra-
tion, but only when glia were present [89]. While the
exact contribution of different glial constituents was not
clarified, it is possible that some of these neuroprotective
effects were mediated by changes in microglial activity.
Finally, in 2009, we showed that spinal cord and brain
microglia exposed to the CHPG reduced their responses
to LPS, including reductions in nitric oxide and ROS
production [81–83] (FIG. 1). These effects could be
reversed by knockout of the mGluR5 receptor or by
addition of the mGluR5 antagonist 3-((2-Methyl-4-
thiazolyl)ethynyl)pyridine (MTEP). Microglial-mediated
neurotoxicity was also reduced by pre-treatment of micro-
glia with CHPG in both primary microglia and the murine
microglial cell line BV-2. A replication of these studies
using the nonspecific mGluR group I agonist (S)-3,5-
Dihydroxyphenylglycine (DHPG) demonstrated a reduc-
tion in LPS-induced microglial nitric oxide, TNFα, and
glutamate release, as well as a reduction in the number of
“activated microglia,” as measured by morphology [90].
Research into mGluR agonists and antagonists in vivo

is limited. In a rat model of global cerebral ischemia,
infusion of CHPG reduced infarct volume [91]. Alter-
natively, after a spinal cord contusion, the generic group I
antagonists AIDA and LY367385 improved acute motor

function performance and increased gray and white
matter sparing, whereas the specific mGluR5 antagonist
MPEP, had no effect on either function or white matter
sparing [92]. Therefore, it is likely that the beneficial
effects were mediated not by actions on mGluR5, but on
mGluR1. This is supported by the finding that mGluR5
activation can improve recovery after SCI [81]. Infusion
of the mGluR5 agonist CHPG for 7 days beginning 30
minutes after injury resulted in significant improvements
in locomotor function performance, as well as reductions
in lesion volume and increases in white matter sparing.
These changes were potentially mediated by alleviation
of inflammation, as measurements of proinflammatory
cytokines and numbers of microglia were significantly
reduced with CHPG treatment.
Importantly, mGluR5 agonist administration in vitro and

in vivo resulted in reductions in galectin-3 and NADPH
oxidase component expression [81, 82]. Furthermore, the
effect of mGluR activity in both microglia and in SCI may
be through an NADPH oxidase enzyme connection.
Administration of the mGluR1 antagonist LY367385,
which improves function after SCI [92], reduces
expression of p67PHOX and gp91PHOX after transient
cortical ischemia [93]. This was accompanied by a
decrease in NADPH oxidase activity [93], which may be
a result of less PKCδ activity; PKC can phosphorylate
p47PHOX and induce its translocation to the membrane
where it can interact with the other members of the
NADPH oxidase enzyme and induce activity. Similarly,
the mGluR5 agonist CHPG reduced p22PHOX and
gp91PHOX expression, as well as NADPH oxidase activity
in microglial cultures [83]. In addition, this study
demonstrated that knockdown of NADPH oxidase
components p22PHOX and gp91PHOX significantly reduced
the effectiveness of CHPG in reducing LPS-induced
microglial activation, suggesting that mGluR5 agonists affect
microglial activity through the NADPH oxidase enzyme. In
our study of SCI treatment with CHPG, both p22PHOX and
gp91PHOX were significantly suppressed by treatment [81].
However, mGluR5 activation may play a role in

neuropathic pain. Studies have shown that administration
of CHPG to naïve animals results in cold hypersensitivity

Table 1. Metabotropic Glutamate Receptor Expression in Inflammatory Cells

mGluR
Group

Subtype Agonist/Antagonist In Vitro Studies In Vivo Studies

Group I mGluR1 DHPG (group I agonist) Microglia [90]; Microglia [90]
CHPG (mGluR5 agonist) Microglia [82]; BV2 microglia [83];

neuron/glia co-culture [89]
Spinal cord injury [81];
ischemia [91]

AIDA (group I antagonist) Neuron/glia co-culture [88];
astrocytes [101]; microglia [90]

Spinal cord injury [92];
traumatic brain injury [102]

mGluR5 LY367385 (group I antagonist) Spinal cord injury [92];
traumatic brain injury [102]

MTEP (mGluR5 antagonist) Microglia [82]; BV2 microglia [83] Spinal cord injury [103]
CPCCOEt (mGluR1 antagonist) Traumatic brain injury [102]
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[94], and that administration of the mGluR5 antagonist
MPEP can reduce allodynia and hyperalgesia [95, 96].
Although no evidence of pain was observed in the SCI
study following CHPG administration [81], pain was not
specifically tested for in the study. However, as pain may
be mediated by microglial activation [97, 98], and
mGluR5 agonist administration was found to reduce
microglial activity, CHPG administration after SCI may
actually reduce pain. Therefore, future studies of the
effect of mGluR5 agonists on recovery after SCI must
consider effects on pain and the contribution of micro-
glial and neuronal responses to injury, and CHPG
administration should be considered.

SUMMARY

There is now substantial evidence that inflammation
continues for an extended period of time after SCI. This
chronic inflammation includes the activation and infiltration
of a number of inflammatory cells, including macrophages,
T cells, B cells, and microglia. Microglia are the primary
inflammatory response cell in the spinal cord; the factors
previously identified have all been shown to be expressed
on resting and activated microglia in the injured spinal cord
[24, 81]. Furthermore, microglia have been shown to play
both a neuroprotective and a neurotoxic role after injury
(see review by Loane and Byrnes [6]). In fact, studies have
shown that microglia, as with macrophages, have 2 separate
phenotypes after injury: 1) M1, or pro-inflammatory and
potentially neurotoxic, and 2)M2, or anti-inflammatory and
protective [99]. Although this review does not focus on the
expression of NADPH oxidase, galectin-3, or mGluR5 in
M1 or M2 phenotypes, it is possible that these proteins play
a role in microglial phenotypical characterization. How-
ever, we do discuss that the chronically expressed inflam-
matory factors may also play both a toxic and protective
role, providing a mechanism by which microglia and other
inflammatory cells have a dual purpose after injury. To date,
M1:M2 identification in microglia has only been completed
through 28 days postinjury, with the finding that M2
markers are not present at more delayed time points.
Therefore, it is currently unknown which role is more
prominent at more chronic time points after injury, or if any
of these factors reviewed herein have a cellular dependence
(i.e., if other cell types beyond microglia and macrophages
play a significant role).
To date, the targets identified in this review have not

been extensively studied as therapeutic targets for
treating chronic SCI. Acute administration of the
mGluR5 agonist has provided substantial improvement
in recovery after SCI [81]; however chronic investigation
of this therapy has not been investigated. Furthermore, a
very recent study by Impellizzerri et al. [100] demon-
strated an improvement in limb performance after acute

administration of the NADPH oxidase inhibitor apoc-
ynin, but chronic administration has not been studied.
Finally, no intervention strategy for galectin-3 in SCI has
been completed to date. Nonetheless, the novel anti-
inflammatory treatment of the mGluR5 agonist CHPG has
been shown to affect both NADPH oxidase and galectin-3
expression after SCI and other disorders, and may have
activities mediated through these mechanisms. However,
chronic administration of CHPG has not been studied to
date. Based on the chronic expression and activity profiles
of the inflammatory-related proteins in this review, it is
clear that more chronic administration time points should
be considered. It is possible that treatment targeting
neuroinflammation may be effective if delayed weeks and
possibly months after the initial injury.
In conclusion, the expression and activity profiles,

roles in potentiation of injury, and therapy studies of
these inflammatory factors suggest that not only are these
chronically expressed factors viable targets for SCI, but
also there is a broader therapeutic window than has
previously been thought possible. SCI is not a static
disorder, and evidence exists demonstrating progressive
tissue loss with a duration of time, including chronic
demyelination [1] and syringomyelia development [2].
Inflammation can contribute to this chronic tissue loss
and demyelination (see review by Loane and Byrnes [6]).
However, it is important to remember that inflammation
after SCI is complex and multifaceted. Therefore, future
research must consider both the beneficial and detrimen-
tal effects of the target when using ablation or inhibitory
treatments.
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