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Summary: Traumatic spinal cord injury (SCI) affects the
activation, migration, and function of microglia, neutrophils
and monocyte/macrophages. Because these myeloid cells can
positively and negatively affect survival of neurons and glia,
they are among the most commonly studied immune cells.
However, the mechanisms that regulate myeloid cell activation
and recruitment after SCI have not been adequately defined. In
general, the dynamics and composition of myeloid cell
recruitment to the injured spinal cord are consistent between
mammalian species; only the onset, duration, and magnitude of
the response vary. Emerging data, mostly from rat and mouse
SCI models, indicate that resident and recruited myeloid cells
are derived from multiple sources, including the yolk sac
during development and the bone marrow and spleen in
adulthood. After SCI, a complex array of chemokines and

cytokines regulate myelopoiesis and intraspinal trafficking of
myeloid cells. As these cells accumulate in the injured spinal
cord, the collective actions of diverse cues in the lesion
environment help to create an inflammatory response marked
by tremendous phenotypic and functional heterogeneity.
Indeed, it is difficult to attribute specific reparative or
injurious functions to one or more myeloid cells because of
convergence of cell function and difficulties in using specific
molecular markers to distinguish between subsets of myeloid
cell populations. Here we review each of these concepts and
include a discussion of future challenges that will need to be
overcome to develop newer and improved immune modulatory
therapies for the injured brain or spinal cord. Key Words:
Monocytes, macrophages, neutrophils, microglia, cytokine,
chemokine.

INTRODUCTION

Spinal cord injury (SCI) elicits a robust and persistent
inflammatory response. This response, involving the
activation of resident microglia and the infiltration of
neutrophils, monocytes, and lymphocytes, has been
characterized in a number of different species including
humans. The breadth and potential impact of the
different components of post-SCI inflammation, includ-
ing post-injury activation of peripheral immune
responses, have been recently reviewed [1–5]. There-
fore, this review will focus on the development,
trafficking, and activation of myeloid cells after SCI
and will conclude with a brief overview of possible

therapeutic approaches for manipulating this distinct
component of post-traumatic inflammation.

Myeloid cells in inflammation
Myeloid cells are a family of cells derived from

hematopoietic progenitor cells and include monocytes,
neutrophils, erythrocytes, and megakaryocytes (FIG. 1).
Essentially, all leukocytes that cannot be characterized as
lymphocytes are classified as myeloid cells. This review
will focus on microglia, macrophages, and neutrophils
because they are the main myeloid effector cells after SCI.
Within minutes of SCI, cells of the myeloid cell lineage

become activated, creating a heterogeneous network of
multifunctional cells capable of promoting injury and repair
of neural tissue. Microglia are among the first myeloid cells
to be set in motion, responding to changes in extracellular
ions and ATP within minutes to hours post-injury [6–8].
Within the next few hours, neural and humoral signaling
mechanisms elicit recruitment of cells from the circulation
to the site of injury. Neutrophils arrive first, sometime
between 3 to 24 h post-injury [9–11]. Monocytes arrive
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later, ~2 to 3 days post-injury (dpi) [11] with maximal
infiltration occurring 1 to 2 weeks post-injury [9]. The
dynamics and prevalence of intraspinal dendritic cells has
not been well-defined, although cells expressing the
dendritic cell antigen, integrin αE2 antigen, infiltrate the
injured rat spinal cord 3 to 7 days post-injury [12]. Similar
to dendritic cells, myeloid-derived suppressor cells
(MDSCs) have received little attention after spinal cord
injury (SCI); however, in mice with experimental auto-
immune encephalomyelitis (i.e., the animal model for
multiple sclerosis) MDSCs infiltrate the inflamed central
nervous system (CNS) [13].
Normally, inflammatory cascades are self-limiting and

typically resolve within a matter of days to weeks.

However, within the injured spinal cord, neuroinflamma-
tory cascades persist for extended periods of time.
Activated macrophages and microglia are found in the
injured spinal cord for at least 6 months in rats [9, 14],
guinea pigs [15], and cats [16]. Neutrophils, although found
in lesser numbers than monocytes, macrophages, and
microglia, still persist for ~6 weeks post-injury in mice
and ~6 months post-injury in rats [9, 17]. In injured human
spinal cords, defensin-positive neutrophil infiltrates persist
for ~10 days after injury, whereas activated intraspinal
macrophages and microglia can be found for at least
6 months post-injury [18]. Because the lifespan of
neutrophils and macrophages is ~5 days or 2 months,
respectively, it is likely that chemotactic gradients specific

FIG. 1. Updated schematic of myelopoiesis. Microglia are resident central nervous system macrophages derived from myeloid proge-
nitors originating in the yolk sac before embryonic day 8. Adult microglia is an ontogenetically distinct population of macrophages that
self renew. However, microglia may be repopulated from postnatal monocytes under certain circumstances (dashed line). Hematopoietic
stem cells (HSCs) are also originally derived from the yolk sac and produce multi-lymphocyte progenitors (MLP) and common myeloid
progenitors (CMP). MLPs give rise to lymphocytes (T and B) and NK cells, but also are capable of producing myeloid cells (e.g.,
monocytes or macrophages). CMPs, stimulated by a number of factors (see text), yield granulocyte-monocyte precursors (GMPs) and
megakaryocyte-erythrocyte precursors (MEP). GMPs can be further stimulated to produce myeloid cells (e.g., neutrophils or monocytes).
Monocytes differentiate into macrophages or monocyte-derived dendritic cells.
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for these myeloid cells persist indefinitely or recur periodi-
cally, allowing sustained recruitment of new cells to the
injury site [19, 20].
The functional significance of resident and infiltrating

myeloid cells in the injured spinal cord is controversial.
Neutrophils can exacerbate hemorrhage, leading to more
extensive pathology after SCI [21, 22]; however, these
same cells may also trigger the onset of wound healing
cascades in the injured spinal cord [23]. Similarly,
microglia and macrophages can promote CNS repair
(e.g., phagocytic removal of growth-inhibitory debris;
stimulate neurite outgrowth) or exacerbate cell death
and axonal degeneration at the site of injury [24–26].
The roles of dendritic cells and MDSCs are less well-
defined. Dendritic cells may be beneficial after SCI,
especially if they are prepared ex vivo and transplanted
into the injury site, or if their function is augmented
using exogenous growth factors/cytokines (e.g., gran-
ulocyte-macrophage colony stimulating factor [GM-
CSF]) [27, 28]. MDSCs, if they are activated by SCI,

could suppress deleterious autoimmune functions,
including the activation of T-cells [29]. A functional
role for MDSCs has not been characterized after SCI.
Damage caused by myeloid cells is not restricted to the

spinal cord. Recent data show that myeloid cells
activated as a result of SCI cause tissue damage in the
liver and lungs [30]. Thus, activation of the immune
system by SCI has long-lasting effects on the spinal cord
and peripheral tissues.

Myelopoiesis and sources of intraspinal myeloid cells
after injury
To fully appreciate the functional implications of

myeloid cell recruitment and activation within the injured
spinal cord, it is useful to know from where these cells
originate and how and why they become activated. In
embryos, hematopoiesis occurs in the yolk sac, then later,
as the organism develops, in the liver, bone marrow, and
spleen [31, 32] (FIG. 1). In classical models of
hematopoiesis, a hematopoietic stem cell (HSC) gives

FIG. 2. Mechanisms of myeloid cell recruitment after spinal cord injury. (1) Injury to the spinal cord displaces pial glia, creating gaps in the
glial limitans. Other astrocytes become reactive and hypertrophic. Neurons and oligodendrocytes are damaged, and microglia become
reactive. Microglia, astrocytes, neurons, and oligodendrocytes synthesize and release chemokines and cytokines. (2) Chemokines and
cytokines initiate chemokine synthesis in the liver. (3) Hepatic chemokines stimulate (4) myelopoiesis and the release of leukocytes from
bone marrow (and maybe the spleen). (5) As they circulate, leukocytes bind to endothelia near the injury site first via selectins then (6)
through stronger interactions with integrins. (7) Integrin binding allows firm attachment and margination with subsequent diapedesis
through the blood-brain barrier into the perivascular space. (8) Leukocyte-derived matrix metalloproteinases (MMPs) help degrade the
spinal basement membrane (9) allowing leukocytes to enter the spinal cord parenchyma.

254 HAWTHORNE AND POPOVICH

Neurotherapeutics, Vol. 8, No. 2, 2011



rise to lineage-restricted precursors for lymphocytes or
myeloid cells. This model has been called into question
for mice because lymphocyte precursors were also found
to give rise to myeloid cells [33–39]. Similarly, using
human cells, recent data indicate that myeloid cell
production is not limited to granulocyte-myeloid precur-
sor cells [39, 40]. Instead, HSCs give rise to common
myeloid progenitors and multi-lymphoid progenitors
(FIG. 1). Monocytes and macrophages can also be
derived from either granulocyte-myeloid precursor cells
or multi-lymphoid progenitors, although it is not clear yet
if cells derived from these distinct progenitor cell
populations differ in their tissue distribution or function.
Myelopoiesis is stimulated directly or indirectly by a

wide range of cytokines and growth factors, including
interleukin-1 (IL-1), IL-3, IL-6, IL-7, IL-11, granulocyte-
colony stimulating factor (G-CSF), granulocyte-monocyte-
colony stimulating factor (GM-CSF), monocyte-colony
stimulating factor (M-CSF), stem cell factor (SCF), Flt3
ligand (Flt3-L), interferon-gamma (IFN-γ), and tumor
necrosis factor (TNF-α) [41–45]. When injected systemi-
cally, IL-7 increases the number of myeloid cells in the
spleen and neutrophils and monocytes in the blood [41, 46,
47], presumably by increasing the mobilization of myeloid
cells from sites of myelopoiesis [47, 48]. It is not known if
circulating or cerebrospinal fluid levels of IL-7 increase
after SCI; however, other pro-inflammatory cytokines
(including IL-6 and TNF-α) do increase in SCI animals
and humans [49–55].
Microglia, the resident immune cells in the CNS, and

the first myeloid cells to respond to SCI, are widely
believed to be derived from circulating hematopoietic
precursors, mostly blood monocytes that colonize the
CNS during late stages of development [56–58]. How-
ever, recent data indicate that adult microglia arise
instead from extra-embryonic yolk sac myeloid precur-
sors during embryogenesis (about embryonic day 8) [31]
(FIG. 1). Accordingly, adult microglia self-replenish in
the brain and spinal cord throughout life, independent of
circulating monocyte precursors, presumably by a subset
of radio-resistant precursors derived from the yolk sac
[31, 59]. Despite the new data, the repopulation
dynamics of CNS microglia will undoubtedly remain a
controversial area of research. Indeed, circulating mono-
cytes do enter the pathological CNS where they can
differentiate into cells that are phenotypically and
morphologically indistinguishable from resident micro-
glia [60, 61]. Whether these former cells possess
molecular and functional characteristics that are distinct
from resident microglia is not known.
Neutrophils and monocytes originate from a common

precursor (in bone marrow), and then travel through the
blood to the site of the injury in response to CXC and CC
chemokines, respectively (FIG. 2). Chemokines are
produced within and outside the spinal cord. After injury

to the brain or spinal cord, resident tissue macrophages in
liver (Kuppfer cells [KCs]) are pivotal in regulating
mobilization of leukocytes to the site of injury. KCs
produce CXC ligand-10 (CXCL-10), IL-1β, CC ligand-2
(CCL-2), and macrophage inflammatory protein (MIP-
1α) [62]. When KCs are depleted via systemic injection
of clodronate liposomes, accumulation of neutrophils in
the injured brain or spinal cord is significantly reduced
[63]. This may partially explain why post-injury intra-
venous delivery of clodronate liposomes confers neuro-
protection and promotes recovery of function after SCI
[26, 64, 65].
For monocytes, emigration from the bone marrow is

chemokine receptor CC receptor 2 (CCR2)-dependent
[66, 67]. Recent data show that monocyte recruitment
and survival also are CX3C ligand-1 (CX3CL1)/CX3C
receptor-1 (CX3CR1)-dependent [68]. After infection
with the intracellular bacterium Listeria monocytogenes,
classical “inflammatory” Ly-6Chigh monocytes are
maintained in the bone marrow of CCR2-/- mice [67].
After SCI, genetic deletion of CCR2 impairs monocyte
infiltration and phagocytic uptake of degenerating myelin
but does not permanently abrogate intraspinal
macrophage accumulation [69]. It is likely that in the
absence of CCR2+ monocytes there is compensatory
proliferation of resident microglia and perhaps increased
recruitment of Ly6Clow/CCR2low/CX3CR1high monocyte
subsets; however, the relative contribution of different
monocyte subsets to neuroinflammatory processes after
SCI has not been determined (see as follows).
Although it is believed that most circulating leukocytes

are derived from bone marrow, recent data indicate that
the spleen may rapidly deploy a large population of
monocytes into the circulation in response to ischemic
injury [70] (FIG. 2). In a model of myocardial ischemia,
splenectomy markedly reduced intracardiac monocyte
accumulation [70]. Importantly, splenectomy did not
elicit a compensatory release of CCR2+ monocytes from
the bone marrow. The splenic reservoir also has been
shown to be important in regulating tissue injury in a
model of cerebral ischemia. Splenectomy 2 weeks prior
to a middle cerebral artery occlusion was associated with
a significant reduction in monocyte accumulation and
lesion size in the ischemic brain [71].
The mechanisms regulating leukocyte mobilization

from the spleen after injury may be numerous. After
middle cerebral artery occlusion, catecholamines are
released into the blood and may activate adrenergic
receptors in the spleen causing the release of monocytes
[72]. In the myocardial infarction model, splenic release
of monocytes was impaired in angiotensin II-/- mice [70].
Whether splenic monocytes contribute to the intraspinal
macrophage response elicited by traumatic SCI, in which
ischemia is only one component of the pathophysiology,
has not been studied.
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Mechanisms regulating intraspinal accumulation
of myeloid cells after SCI
After release from the bone marrow (or spleen),

leukocyte transmigration from blood to spinal cord is
dependent on a cadre of adhesion molecules and chemo-
kines [73–75]. Details of the cellular and molecular
characteristics of the multi-step paradigm for leukocyte–
endothelial interactions at the blood-brain barrier have been
published elsewhere [73–75]. A more comprehensive
review of how the complex interplay between neurons
and glia regulates the onset of neuroinflammatory cascades
after SCI, including the recruitment of neutrophils and
monocytes, can be found in recent reviews from our
laboratory [3, 5]. Here we highlight newer data generated
in rat and mouse models of SCI that reveal novel control
mechanisms for myeloid cell entry and activation after SCI.
Within minutes to hours post-injury, intraspinal neu-

rons and astrocytes produce IL-1β [76, 77]. Synthesis of
bioactive IL-1β in neurons is dependent on the NALP1
inflammasome [76]. A similar mechanism is likely in
astrocytes, microglia, and oligodendrocytes, although
this has not been proven after SCI [78]. In astrocytes,
the synthesis of IL-1β and chemokines (e.g., CCL2, CCL3/
MIP-1α, CXCL1/KC, and CXCL2/MIP-2) is triggered via
the IL-1 receptor and not by pattern recognition receptors
(TLR2, TLR4) [79]. In the absence of MyD88/IL-1-
receptor-dependent signaling, entry of neutrophils and to
a lesser extent monocytes are reduced after SCI [79].
Myeloid cell entry into the injured spinal cord and

associated changes in vascular permeability also require
the induction of matrix metalloproteinases (MMPs) (see
review in this issue [80] and also see Noble et al. [81]
and Wells et al. [82]). In rat and human myeloid cells,
CD95 ligand (CD95L)/CD95 interactions are pivotal for
induction of MMP-9 and subsequent infiltration into the
injured spinal cord [83]. When CD95L is deleted from
myeloid cells, intraspinal inflammation is reduced and
recovery of function is improved after experimental SCI
[83]. Thus, chemotactic gradients at the injury site are
established primarily by nonmyeloid cells, and then later,
as cells begin to enter the injury site, myeloid cells
amplify this response. In fact, the sequential recruitment
and activation of neutrophils and monocytes is essential
for amplifying and then resolving inflammatory cascades
[84]. However, after SCI, cellular and molecular indices
of neuroinflammation exist chronically throughout the
injured spinal cord, suggesting that the resolution of
inflammation is impaired. Currently, there is no explan-
ation for this effect, and further research is needed.

Characterizing myeloid cell heterogeneity
in the injured spinal cord
Spinal cord injury elicits and activates a heterogeneous

population of myeloid cells (e.g., neutrophils, microglia,

and monocytes) with the ability to exacerbate tissue
injury and promote repair. This phenotypic and func-
tional heterogeneity is maintained by diverse signaling
cues in injured and spared tissues. For example, neuro-
immune regulatory proteins present on neurons and glia
regulate the phenotype and function of microglia. Neuro-
immune regulatory proteins include CD47, CD22,
CD95L, CD200 and CX3CL1 [5]. Loss or downregula-
tion of these ligands causes microglia and monocyte-
derived macrophages to become hyperreactive and
potentially destructive [5, 85, 86]. CD200/CD200R
interactions are especially intriguing because CD200R
is expressed only on myeloid cells.
Intrinsic heterogeneity within the pool of resident and

recruited myeloid cells results, in part, from differences
in cell maturation, differentiation, and activation. A
variety of antibodies are used to characterize these
diverse cell subsets; however, the expression profiles of
surface and cytoplasmic antigens often overlap, making
it difficult to assign a definitive phenotype or function to
a given cell type. For example, Ly6G/Gr-1 is widely used
as specific marker for neutrophils; however, it also labels
a subset of monocytes [87]. Therefore, when used as a
purported neutrophil-depleting antibody, the effects of
Ly6G/Gr-1-mediated cell depletion may also result from
loss of monocytes. Also, granulocytic MDSCs express
Ly6G and CD11b, but are distinct from monocytic
MDSCs, which express CD11b and Ly6C [29]. These
phenotypic distinctions are important to consider when
interpreting data in which antibodies are used for
depletion of circulating leukocyte subsets. For example,
the Ly6G/Gr-1 antibody was used to deplete neutrophils
in a mouse model of SCI [23]. The antibody was injected
systemically at 2 and 24 h post-SCI, and was found to
significantly reduce the number of circulating neutro-
phils (but not monocytes) and inflammatory cytokines,
but lesion pathology and locomotor recovery were
impaired in Gr-1-treated mice. From these data, one
can conclude that neutrophils are important for limiting
lesion pathology after SCI and should not be a target for
depletion. However, future studies should also explore
whether Gr-1 antibodies deplete granulocytic MDSCs.
These cells have not been evaluated after SCI, but may
play an important yet unappreciated role in regulating
acute post-traumatic inflammation.
Flow cytometry can be used to distinguish between

these closely related cell types, although one loses the
ability to co-localize cells to areas of injury or repair in
the spinal cord. Using flow cytometry myeloid cell
subsets can be defined, based on physical properties
(e.g., cell size, granularity) and expression of cell
membrane or cytoplasmic antigens. For example, blood
monocytes stain positive for CD11b and M-CSF recep-
tors (CSF-1R or CD115) [88]. Neutrophils also express
CD11b, but are distinguished from blood monocytes by
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their relative expression of CD45, Gr-1, and F4/80 [89].
Neutrophils are CD45+/Gr-1+/F4/80-, whereas monocytes
are CD45+/Gr-1-/F4/80+ [89]. Relative levels of Ly6C can
be used to differentiate between mature and immature
monocytes/macrophages; high Ly6C levels are associated
with immature or younger monocyte precursors
(“inflammatory” monocytes) and low levels with a more
mature cell type that has reduced migratory capacity (i.e.,
“resident or noninflammatory” monocytes) [88]. The
relative expression of CD45 can also be used to distinguish
between CNS macrophages that are derived from microglia
(CD45low) and blood monocytes (CD45high) [89].
The previously described parameters are useful for

broadly categorizing phenotypic and functional hetero-
geneity of myeloid cells at and nearby the site of injury.
However, it is likely that as the lesion evolves, signaling
moieties in the lesion microenvironment will also
change, causing functional adaptivity in myeloid cells,
especially CNS macrophages [5, 90]. Recent work from
our laboratory has shown that SCI elicits a diverse
macrophage response that changes as a function of time
post-injury in mice. Early after injury (for at least
3 days), the lesion site is comprised of macrophages
that can be defined as “classically activated” pro-

inflammatory M1 cells and “alternatively activated”
M2 cells. M1 cells express discrete phenotypic markers
including inducible nitric oxide synthase (iNOS), CD86,
and CD16/32, whereas M2 cells express CD206 and
arginase I [24]. After ~7 days, the ratio of M1:M2 cells
increases due to a concomitant increase in expression of
M1 cell markers and a decrease in cells with an M2
phenotype. The significance of this is not clear; how-
ever, M1 macrophages are neurotoxic and promote die-
back of injured CNS axons [24–26], whereas M2
macrophages seem to have no adverse effect on neurons
and can promote growth of axons across inhibitory
substrates that dominate sites of injury [24]. In an
independent study, a subset of IL-10+ monocyte-derived
macrophages was found to be anti-inflammatory and
essential for tissue repair [91]. Whether CNS macro-
phage heterogeneity can be controlled for therapeutic
gain after SCI, either through direct manipulation of
myeloid cell subsets and/or the lesion environment,
awaits further research.

Experimental therapies
Various pharmacological agents, toxins and antibodies

have been used to deplete or functionally inactivate

Table 1. Pre-Clinical Manipulation of Myeloid Cells after Experimental Spinal Cord Injury

Putative Target Approach Outcome [Reference No.]

Monocytes/
macrophages

Post-injury (intravenous)
injections of clodronate liposomes

Reduced macrophages/microglia in the spinal cord;
improved axon and myelin sparing; increased segmental
axonal sprouting; improved gross locomotor function [65]

Clodronate liposomes + rolipram Additive neuroprotection and improvements in spontaneous
neurological recovery [64]

Colchicine + chloroquine Attenuated intraspinal inflammation; neuroprotection with
improved motor and bladder function [98, 99]

Intraperitoneal silica dust Delayed secondary loss of function (guinea pig SCI model);
reduced demyelination and hypervascularity [97, 98]

Microglia
(+ macrophages)

Minocycline Reduced lesion size; axonal sparing; functional
improvement [96]

Neutrophils Activated protein C (APC) Inhibited neutrophil activation in model of ischemic SCI;
attenuated petechial hemorrhage and neurological deficits [49]

Inject nitrogen mustard Decreased intraspinal neutrophils; improved recovery of
motor function [100, 101]

Macrophages/microglia
and neutrophils

Anti-CD11d antibodies Improved recovery of motor, sensory and autonomic functions;
neuroprotection; reduced oxidative stress, intraspinal leukocyte
accumulation and proinflammatory cytokine expression
[92–95, 105]

Lesion environment;
cytokine milieu

Anti-IL-6 receptor antibodies Reduced monocyte-derived macrophages in spinal cord;
enhanced microglial response to SCI; improved recovery
of function [44, 52]

Inhibit leukotriene B4 (LTB4) Reduced intraspinal leukocytes and inflammatory cytokines;
neuroprotection; improved functional recovery [44, 52]

Infusion of GM-CSF Increased intraspinal BDNF; enhanced neural progenitor
cell turnover; improved acute recovery of locomotor function
[28, 110]

IL-10 Reduced intraspinal inflammation; neuroprotection;
improved recovery of locomotor function [106–108]

BDNF = brain-derived neurotrophic factor; GM-CSF = granulocyte-macrophage colony stimulating factor; IL = interleukin; SCI = spinal cord
injury.
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neutrophils, microglia, and/or monocyte-derived macro-
phages in pre-clinical models of SCI. A partial list of
these pre-clinical therapies is summarized in Table 1.
These various experiments, including the use of clodro-
nate liposomes [64, 65], anti-CD11d antibodies [92–95],
minocycline [96], silica dust [1, 97, 98], colchicine and
chloroquine [98, 99], activated protein C [49], and
nitrogen mustard [100, 101] have been reviewed pre-
viously [1, 5, 98] and will not be discussed further.
Additionally, because 2 other review articles in this issue
provide an overview of the use of MMP inhibitors for
SCI [80] and provide new strategies to manipulate
microglia (and macrophage) metabotropic glutamate
receptors [102], we will not discuss these topics any
further. Instead, we will focus on newer approaches in
which blockade or infusion of select cytokines has been
shown to modify the composition and phenotype of the
responding myeloid cells. Additionally, the implications
of recent Gr1-mediated neutrophil depletion data are
described in the context of myeloid cell heterogeneity
and downstream wound healing cascades.
IL-6 is a pro-inflammatory cytokine that promotes the

differentiation of monocytes into macrophages [92–95]
and can also elicit monocyte recruitment [103]. When
over-expressed in the injured spinal cord using genet-
ically modified cellular vectors, excess IL-6 enhanced the
endogenous neutrophil and monocyte response to SCI
and exacerbated lesion pathology [104]. In mice, post-
injury intraperitoneal injection of MR16-1, an antibody
specific for the IL-6 receptor, profoundly affected intra-
spinal inflammation, lesion pathology, and functional
recovery [44, 52]. Indeed, a single injection of MR16-1
reduced intraspinal inflammation and pro-inflammatory
chemokine/cytokine signaling. Interestingly, MR16-1
also changed the composition of the responding myeloid
cells. A single injection shifted the normal cell dynamics,
resulting in a microglial-dominant reaction. At chronic
times post-injury, microglial-dominant inflammation was
associated with increased axonal sparing distal to and at
the site of injury, and improved functional recovery.
These data show that rather than deplete cells, the
destructive potential of myeloid cells can be reduced
(or abolished) by interfering with select acute inflamma-
tory signaling cascades early after injury.
A similar result was achieved in SCI by blocking

leukotriene B4 (LTB4) signaling. LTB4 is a lipid
chemoattractant produced from membrane phospholipids
as part of the arachidonic acid cascade. LTB4 binds to
LTB4 receptor 1 (BLT1) on neutrophils and monocytes,
enhancing their recruitment and activation at sites of
inflammation [103]. After SCI, inflammatory cascades
are significantly reduced in BLT1-/- mice and in SCI
wild-type mice treated with the LTB4 receptor
antagonist, ONO-4057 [105]. Indeed, infiltration of
neutrophils and monocytes/macrophages was reduced in

parallel with various myeloid-specific cytokines and
chemokines, including IL-6, IL-1β, TNF-α, CXCL1,
CXL2, and CCL2. These changes were associated with
decreased neuronal apoptosis, enhanced conduction in
axons traversing the site of injury, and improved locomotor
recovery at chronic post-injury survival periods.
In contrast to blocking pro-inflammatory signaling, it

may be possible to boost local concentrations of anti-
inflammatory cytokines. For example, local infusions of IL-
10 are neuroprotective after SCI, in part because the
cytokine can antagonize pro-inflammatory signaling
(e.g., NF-κB) at the site of injury [106–108]. IL-4 is
another anti-inflammatory cytokine that may be important
for regulating intraspinal inflammation. After SCI, neutro-
phils transiently produce IL-4 [109]; however, the eventual
polarization of the CNS macrophage response toward a
neurotoxic M1 phenotype suggests that endogenous IL-4-
dependent immune regulation is inefficient. Clearly, some
intrinsic immune regulation is mediated by IL-4 because
injection of anti-IL-4 antibodies after SCI exacerbates pro-
inflammatory signaling [109]. Blockade of endogenous IL-
4 leads to an increase in CCL2 synthesis and myeloid cell
influx to the injury site with a concomitant increase in lesion
pathology [109]. Whether focal and sustained infusion of
IL-4 could alleviate acute macrophage-mediated toxicity is
under investigation. Still, caution must be exercised with
cytokine therapies, especially because cytokines are pleio-
tropic and can have broad “off-target” effects. For example,
granulocyte-macrophage colony stimulating factor is bene-
ficial after SCI; however, its mechanism of action is difficult
to pinpoint. GM-CSF exerts anti-apoptotic effects on
neurons [51, 110, 111]; however, recent data indicate that
GM-CSF infusion increases intraspinal brain-derived neu-
rotrophic factor and improves locomotor recovery via
mechanisms involving the activation of dendritic cells and
neural stem/progenitor cells [28]. Mice treated with GM-
CSF also had more brain-derived neurotrophic factor
production and better locomotor recovery.

CONCLUSIONS

Spinal cord injury elicits an inflammatory response
comprised of both resident and newly recruited periph-
eral myeloid cells. These cells can positively and
negatively affect the spinal cord and tissues in the
periphery. Although the bone marrow is widely believed
to be the primary source of circulating myeloid cells after
SCI, recent data implicate the spleen as an emergency
reservoir for monocytes. Whether the spleen contributes
to intraspinal inflammation has not been determined. As
myeloid cells accumulate at the site of injury, their
impact on spinal cord structure and function will be
determined by their phenotype and the immune-modu-
latory signals that exist within the lesion environment.
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The precise nature of these signals and how they regulate
macrophage phenotype and function are unknown and
more research is needed to develop therapies that
effectively target select myeloid cell subsets and/or
factors that regulate myeloid cell differentiation and
function. New studies show that it may be possible to
infuse select cytokines or cytokine receptor antagonists
to alter the composition and dynamics of myeloid cells.
Given the early and sustained presence of myeloid cells
at and nearby sites of SCI, these cells represent ideal
therapeutic targets for minimizing secondary tissue injury
and/or promoting repair of the injured spinal cord.
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