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ABSTRACT

Introduction: People with type 2 diabetes are 
at heightened risk for severe outcomes related 
to COVID-19 infection, including hospitaliza-
tion, intensive care unit admission, and mor-
tality. This study was designed to examine the 
impact of premorbid use of glucagon-like pep-
tide-1 receptor agonist (GLP-1RA) monotherapy, 

sodium-glucose cotransporter-2 inhibitor (SGLT-
2i) monotherapy, and concomitant GLP1-RA/
SGLT-2i therapy on the severity of outcomes in 
individuals with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection.
Methods: Utilizing observational data from the 
National COVID Cohort Collaborative through 
September 2022, we compared outcomes in 
78,806 individuals with a prescription of GLP-
1RA and SGLT-2i versus a prescription of  dipep-
tidyl peptidase 4 inhibitors (DPP-4i) within 
24 months of a positive SARS-CoV-2 PCR test. 
We also compared concomitant GLP-1RA/SGLT-
2i therapy to GLP-1RA and SGLT-2i monother-
apy. The primary outcome was 60-day mortality, 
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measured from the positive test date. Secondary 
outcomes included emergency room (ER) vis-
its, hospitalization, and mechanical ventilation 
within 14 days. Using a super learner approach 
and accounting for baseline characteristics, asso-
ciations were quantified with odds ratios (OR) 
estimated with targeted maximum likelihood 
estimation (TMLE).
Results: Use of GLP-1RA (OR 0.64, 95% 
confidence interval [CI] 0.56–0.72) and 
SGLT-2i (OR 0.62, 95% CI 0.57–0.68) were 
associated with lower odds of 60-day mortality 
compared to DPP-4i use. Additionally, the  
OR of ER visits and hospitalizations were 
similarly reduced with GLP1-RA and SGLT-2i  
use. Concomitant GLP-1RA/SGLT-2i use  
showed similar odds of 60-day mortality when 
compared to GLP-1RA or SGLT-2i use alone  

(OR 0.92, 95% CI 0.81–1.05 and OR 0.88, 95%  
CI 0.76–1.01, respectively). However, lower  
OR of all secondary outcomes were associated  
with concomitant GLP-1RA/SGLT-2i use when 
compared to SGLT-2i use alone.
Conclusion: Among adults who tested posi- 
tive for SARS-CoV-2, premorbid use of either  
GLP-1RA or SGLT-2i is associated with lower  
odds of mortality compared to DPP-4i. Fur- 
thermore, concomitant use of GLP-1RA and  
SGLT-2i is linked to lower odds of other severe 
COVID-19 outcomes, including ER visits, hos- 
pitalizations, and mechanical ventilation, com- 
pared to SGLT-2i use alone.
Graphical abstract available for this article.
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Key Summary Points 

Why carry out this study?

We previously demonstrated that a pre-
morbid prescription of either glucagon-like 
peptide-1 receptor agonists (GLP-1RA) or 
sodium-glucose cotransporter-2 inhibitors 
(SGLT-2i), compared to dipeptidyl pepti-
dase 4 inhibitors (DPP-4i), is associated with 
reduced severity of COVID-19 through analy-
ses of observational data from the National 
COVID Cohort Collaborative (N3C).

With access to a sixfold larger N3C cohort 
gathered over approximately 3 years of the 
pandemic (1 January 2020–15 September 
2022), we reassessed the association of GLP-
1RA or SGLT-2i prescriptions alone and in 
combination with COVID-19 severity.

What was learned from this study?

Prescriptions for GLP-1RA and SGLT-2i 
continue to be associated with lower COVID-
19 mortality compared to prescriptions for  
DPP-4i.

When compared to the use of SGLT-2i alone, 
concomitant prescription of GLP-1RA/SGLT-
2i is associated with lower odds of secondary 
outcomes, including emergency room visits, 
hospitalizations, and mechanical ventilation, 
suggesting that there may be additive, protec-
tive effects from the concomitant use of GLP-
1RA/SGLT-2i in the context of COVID-19.

DIGITAL FEATURES

This article is published with digital features, 
including graphical abstract, to facilitate under-
standing of the article. To view digital features for 
this article, go to https:// doi. org/ 10. 6084/ m9. figsh 
are. 25257 022.

INTRODUCTION

Chronic comorbid conditions such as diabetes 
are a risk factor for severe adverse coronavirus 

disease 2019 (COVID-19) outcomes, including 
hospitalization, invasive mechanical ventilation, 
and death [1–3]. Early efforts aimed to identify 
modifiable risk factors to minimize COVID-19 
severity in this population. Glycemic control 
is thought to be one high-risk factor associated 
with severity of COVID-19 infection in people 
living with diabetes [4, 5].

Using observational data from the National 
COVID Cohort Collaborative (N3C), we previ-
ously demonstrated that premorbid prescription 
of two antihyperglycemic medication classes, 
glucagon-like peptide-1 receptor agonists (GLP-
1RA) and sodium-glucose-cotransporter 2 inhibi-
tors (SGLT-2i), compared to dipeptidyl peptidase 
4 inhibitors (DPP-4i) prescription, associate with 
lower odds of multiple adverse outcomes among 
people with diabetes diagnosed with COVID-19 
prior to 25 February 2021 (n = 12,446) [6]. It is 
unknown whether this association remains 
robust to the development of new variants, 
natural immunity, and effective vaccines. We 
thus reevaluated the association of GLP-1RA and 
SGLT-2i prescriptions on severe COVID-19 out-
comes in an approximately sixfold larger cohort 
(n = 78,806) that covered a longer period of the 
pandemic. Additionally, given increasing pre-
scriptions of SGLT-2i and GLP-1RA in combina-
tion, two agents which operate through distinct 
mechanisms that may provide unique benefits 
in the setting of COVID-19, we examined the 
impact of concomitant GLP-1RA/SGLT-2i pre-
scription on COVID-19 severity.

METHODS

Study Design

In this study, we analyzed real-world 
observational data of 78,806 adults from the 
N3C cohort [7], which includes individuals with 
at least one positive PCR test result for severe 
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) after 1 January 2020 [6, 8, 9]. We gained 
permission to use the deidentified electronic 
medical health medical record data via the data-
use request process through the National Covid 
Cohort Collaborative (N3C) enclave. Our general 

https://doi.org/10.6084/m9.figshare.25257022
https://doi.org/10.6084/m9.figshare.25257022
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study design and methods, including statistical 
analyses, have been previously described [6].

Briefly, we analyzed data through 15 Septem-
ber 2022 and included adults aged ≥ 18 years 
who had any prescription of GLP-1RA, SGLT-2i 
or DPP-4i within 24 months prior to a COVID-
19 diagnosis. A diagnosis of type 2 diabetes was 
not required for inclusion in the study. Prescrip-
tion information reflects prescriptions written 
during ambulatory visits and does not reflect 
dispensing or adherence. In analyses where 
DPP4i were used as the comparator, we excluded 
those persons with concomitant prescription of 
DPP-4i and GLP-1RA/SGLT-2i (Electronic Sup-
plementary Material [ESM] Fig. S1). We did not 
exclude people who were included in our prior 
analysis (n = 12,446).

In this article, cohorts with a prescription for 
a particular drug will be referred to as arms (e.g., 
“GLP-1RA arm”). To ensure consistency with our 
prior analysis, individuals with prescriptions for 
both GLP-1RA and SGLT-2i (n = 11,594) contrib-
uted to both exposure arms in the comparison 
with individuals with prescriptions for DPP-4i. 
Additional analyses compared concomitant 
GLP-1RA/SGLT-2i prescription (“GLP-1RA/SGLT-
2i arm”) to prescription with GLP-1RA or SGLT-
2i alone.

We defined the first positive SARS-CoV-2 PCR 
as the index date and the primary outcome as 
60-day mortality following a positive PCR. Sec-
ondary outcomes included emergency room 
(ER) visits, hospitalization, and mechanical 
ventilation (intubation or ventilation) within 
14 days of a positive PCR test. We used data up 
to 24 months before the index date to identify 
drug exposure, continuous variables, medical 
history, and demographics.

Statistical Analysis

Standardized mean differences (SMD) were used 
to compare baseline characteristics before and 
after propensity score weighting (PSW) [10, 11]. 
In the primary analysis, we used targeted maxi-
mum likelihood estimation (TMLE) to estimate 
odds ratios (ORs) and 95% confidence interval 
(CI) [10, 11]. For sensitivity analyses, we used 
inverse probability treatment-weighted (IPTW) 

logistic regression. We performed post-hoc anal-
yses on two restricted cohorts (individuals aged 
45–80 years and individuals with an estimated 
glomerular filtration rate (eGFR) ≥ 45 mL/min) 
and a sensitivity analysis using only sex and age 
as covariates to evaluate the impact of imputing 
missing data in covariates. Analyses were per-
formed using Palantir Foundry hosted within 
the N3C enclave, a cloud-based FedRAMP mod-
erate secure enclave [7], and statistical programs 
Python and R.

Ethics Compliance

The protocol of this study was registered with 
the European Network of Centres for Phar-
macoepidemiology and Pharmacovigilance 
(ENCePP) on 5 October 2020 (Number 37860). 
The University of North Carolina at Chapel Hill 
Office of Human Research Ethics determined 
that the study protocol did not constitute 
research on human subjects.

The analyses described in this publication 
were conducted with data or tools accessed 
through the NCATS N3C Data Enclave (https:// 
covid. cd2h. org) and N3C Attribution & Publi-
cation Policy v 1.2-2020-08-25b supported by 
NCATS U24 TR002306 and Axle Informatics Sub-
contract NCATS-P00438-B. The N3C data trans-
fer to NCATS is performed under a Johns Hop-
kins University Reliance Protocol IRB00249128 
or individual site agreements with NIH.

This study research was possible because of 
the patients whose information is included 
within the data and the organizations (https:// 
ncats. nih. gov/ n3c/ resou rces/ data- contr ibuti 
on/ data- trans fer- agree ment- signa tories), and 
scientists who have contributed to the ongoing 
development of this community resource [7]. 
The study was performed in accordance with 
the Declaration of Helsinki (1964) and its later 
amendments [12].

RESULTS

By 15 September 2022, 75 sites across the USA 
had contributed data on 15,540,911 individu-
als to the N3C database, of whom 4,671,046 

https://covid.cd2h.org
https://covid.cd2h.org
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
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had a positive SARS-CoV-2 PCR test. The pre-
sent study included 78,806 individuals across 
63 sites. While the first analysis evaluated 
13 months (January 2020 to February 2021), 
this subsequent analysis extends to 33 months 
during the evolving pandemic (January 2020 
to September 2022). Table  1 presents crude 
and weighted characteristics of the study sam-
ple. The total study population had a mean (± 
standard deviation [SD]) age of 58.7 (± 13.3) 
years. Those individuals in the DPP-4i arm 
were older and had a lower mean body mass 
index (BMI) than those in the GLP-1RA and 
SGLT-2i arms, respectively. The prevalence of 
most comorbid conditions was higher in the 
DPP-4i arm, but the prevalence of comorbid 
cardiovascular-related diseases was highest 
in the SGLT-2i arm. The subpopulations of 
interest were similar following PSW (Table 1). 
Where PSW exposure arms remained imbal-
anced, TMLE analysis improved the chance of 
correct model specification.

Crude primary and secondary outcomes 
are summarized in ESM Table  S1. The GLP-
1RA and SGLT-2i arms associated with a lower 
60-day mortality, with proportions of 2.68% 
and 2.97%, respectively, compared to 7.00% 
in the DPP-4i arm. Figure 1 provides ORs (95% 
CI) for all outcomes estimated by TMLE com-
paring the GLP-1RA or SGLT-2i arms to the 
DPP-4i arm. ORs for the primary outcome 
60-day mortality were lower for the GLP-1RA 
(OR 0.64, 95% CI 0.56–0.72) and SGLT-2i (OR 
0.62, 95% CI 0.57–0.68) arms compared to the 
DPP-4i arm. ORs were also significantly lower 
for all secondary outcomes with GLP-1RA and 
SGLT-2i prescription, with the exception of 
mechanical ventilation. IPTW analyses are 
presented in ESM Fig. S2. ORs for 60-day mor-
tality were lower for the GLP1-RA (OR 0.64, 
95% CI 0.56–0.72) and SGLT2i (OR 0.62, 95% 
CI 0.57–0.68) arms compared to the DPP4i 
arm. GLP1-RA and SGLT2i use was also asso-
ciated with lower ORs for all secondary out-
comes, including ER visits, hospitalization, 
and mechanical ventilation. Two post-hoc 
cohort analyses (age restricted: 45–80 years 
and eGFR restricted: ≥ 45 mL/min/1.73  m2; 
ESM Tables S2, S3) and a sensitivity analysis 
for age and sex adjustment (ESM Table  S4) 

yielded results similar to the primary analysis 
with lower odds for all outcomes, except for 
mechanical ventilation.

Crude and weighted baseline information for 
individuals prescribed GLP-1RA and SGLT-2i 
alone and in combination are presented in 
Table 2. The percentage of individuals with 
comorbid conditions, including renal, hepatic 
and cardiovascular-related disease, was slightly 
lower in the concomitant GLP-1RA/SGLT-2i 
arm compared to the monotherapy arms. 
Conversely, use of other antihyperglycemic 
agents was higher in the GLP-1RA/SGLT-2i arm. 
Exposure arms were similar following PSW.

Comparison of crude primary and secondary 
outcomes for the GLP-1RA/SGLT-2i arm and 
the GLP-1RA and SGLT-2i arms (ESM Table S5) 
indicated that concomitant GLP-1RA/SGLT-2i 
prescription was associated with lower 60-day 
mortality (2.58%) compared to monotherapy 
(2.83% for GLP-1RA and 3.24% for SGLT-2i). 
The concomitant GLP-1RA/SGLT-2i prescrip-
tion arm showed lower rates for secondary out-
comes than the SGLT-2i arm, but similar rates 
when compared to the GLP-1RA arm.

TMLE-estimated ORs comparing the GLP-
1RA and SGLT-2i arms, respectively, with the 
concomitant GLP-1RA/SGLT-2i arm (Fig.  2) 
resulted in similar odds for 60-day mortal-
ity for the GLP-1RA/SGLT-2i co-prescription 
arm compared to the GLP-1RA (OR 0.92, 95% 
CI 0.81–1.05) and SGLT-2i (OR 0.88, 95% CI 
0.76–1.01) monotherapy arms. Lower odds 
were observed for all secondary outcomes, 
including ER visits, hospitalization, and 
mechanical ventilation in the concomitant 
GLP-1RA/SGLT-2i arm compared to the SGLT-2i 
monotherapy arm, whereas similar odds were 
observed when concomitant GLP-1RA/SGLT-2i 
use was compared to GLP-1RA use alone. IPTW-
estimated ORs comparing the GLP-1RA and 
SGLT-2i arms with the concomitant GLP-1RA/
SGLT-2i arm (ESM Fig. S3) demonstrated lower 
rates for 60-day mortality for both compari-
sons. Concomitant GLP-1RA/SGLT-2i prescrip-
tion was also associated with lower odds for 
all secondary outcomes, although mechanical 
ventilation only trended toward lower odds in 
the comparison to GLP-1RA alone.
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DISCUSSION

Since the COVID-19 pandemic began, diabetes 
has emerged as a risk factor for severe COVID-
19, with results from meta-analyses suggesting a 
nearly twofold increased mortality risk [1]. Given 
that COVID-19 was the fourth leading cause 
of death in the USA in 2022 [6, 13], effective 
strategies to improve COVID-19 outcomes 
among people with diabetes are needed. To 
this end, antihyperglycemic medication use 
presents an attractive target with plausible 
biological mechanisms. GLP-1RA and SGLT2i 
inhibitors have garnered particular attention 
due to their anti-inflammatory effects and well-
established cardiovascular risk reduction in 
high-risk individuals [14, 15]. We and others 
have demonstrated an association between the 
use of GLP-1RA and SGLT-2i and reduced adverse 
outcomes of COVID-19 [6, 16–22]. Whether 
this association remained as the pandemic 
progressed, with novel variants and increasing 
natural and vaccine-induced immunity, has not 
been established. Using a sixfold larger cohort 
than our original analysis [6] and data from a 
timepoint (15 September 2022) further into the 
pandemic, the present study provides further 
evidence supporting the association of GLP-1RA 

and SGLT-2i with improved COVID-19 outcomes 
compared to premorbid DPP-4i prescription.

In contrast, the DARE-19 study examined 
acute prescription of SGLT-2i in the setting 
of COVID-19. This double-blind randomized 
controlled trial investigated whether the SGLT-2i 
dapagliflozin provided organ protection in non-
critically ill hospitalized people with COVID-
19 and at least one cardiometabolic risk factor 
when initiated within 4 days of SARS-CoV-2 
infection. A trend toward benefit was observed 
in the composite outcome of organ dysfunction 
or death but was not statistically significant [23]. 
It is plausible that premorbid SGLT-2i use, as 
examined in our study, provides more protection 
than initiation after SARS-CoV-2 infection. 
Consistently, results from other studies suggest 
that SGLT2i and GLP-1RA monotherapy 
confer lower risk of outcomes compared to 
DPP4i monotherapy when prescribed prior to 
hospitalization for COVID-19 [19].

Additionally, we found that concomitant 
GLP-1RA/SGLT-2i prescription trended toward 
improved 60-day mortality when compared 
to GLP-1RA or SGLT2i monotherapy but did 
not reach statistical significance. Dual therapy 
was associated with similar odds of secondary 
outcomes as GLP-1RA monotherapy but was 

Fig. 1  Forest plot depicting TMLE-estimated ORs 
for primary and secondary outcomes for people with a 
COVID-19 diagnosis and prescription for GLP-1RA (A) 
and SGLT-2i (B) use compared with DPP-4i use, respec-
tively. Single asterisk (*) indicates within 60  days after 
positive SARS-CoV-2 PCR test; double dagger sign (‡) 
indicates within 14  days after positive SARS-CoV-2 test; 

hash sign (#) indicates mechanical ventilation (intubation 
or ventilation). CI Confidence interval, DPP-4i dipeptidyl 
peptidase-4 inhibitor, GLP-1RA glucagon-like peptide 1 
receptor agonist, SARS-CoV-2 severe acute respiratory syn-
drome coronavirus 2, OR odds ratio, SGLT-2i sodium glu-
cose co-transporter 2 inhibitor, TMLE targeted maximum 
likelihood estimation
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Table 2  Demographics and clinical characteristics before 
and after propensity score weighting, according to premor-
bid prescription for total, glucagon-like peptide-1 recep-

tor agonist (GLP-1RA) monotherapy, sodium-glucose 
cotransporter-2 inhibitor (SGLT-2i) monotherapy, and 
concomitant GLP-1RA/SGLT-2i arms

Characteristics, 
mean ± standard 
deviation or 
n (%)

Crude characteristics Weighted  characteristicsa

GLP-1RA mono
(N = 36,942)

SGLT-2i 
mono
(N = 20,656)

GLP-1RA/
SGLT-2i
(N = 11,594)

GLP-1RA 
mono users
(N = 36,885)

GLP-1RA/
SGLT-2i
(N = 10,644)

SMD SGLT-2i mono
(N = 20,427)

GLP-1RA/
SGLT-2i
(N = 11,161)

SMD

Ageb, years
(N = 69,192)

55.6 ± 13.2 59.9 ± 12.2 57.0 ± 11.3 55.99 (13.08) 56.79 (11.51) 0.07 58.96 (12.27) 58.29 ± 11.22 0.06

Sexb, female
(N = 38,664)

23,857 (64.58) 8874 (42.96) 5933 (51.17) 22,659 (61.43) 6075 (57.07) 0.09 9326 (45.66) 5283 (47.34) 0.03

Raceb, White
(N = 46,336)

24,351 (65.92) 13,968 (67.62) 8017 (69.15) 28,431 (77.08) 8267 (77.67) 0.01 16,209 (79.35) 8877 (79.54) 0,00

Ethnicityb, 
Hispanic or 
Latino

(N = 8242)

4163 (11.27) 2718 (13.16) 1361 (11.74) 4206 (11.40) 1241 (11.66) 0.01 2601 (12.73) 1399 (12.53) 0.01

Current  smokerb

(N = 13,420)
6968 (18.86) 4228 (20.47) 2224 (19.18) 6984 (18.94) 2035 (19.12) 0.00 4121 (20.18) 2242 (20.09) 0.00

BMIb, kg/m2

(N = 42,681)
36.8 ± 8.7 33.1 ± 7.8 35.7 ± 8.2 36.54 ± 6.96 36.13 ± 6.79 0.06 33.96 ± 6.79 34.58 ± 6.33 0.09

Body weight, kg
(N = 44.037)

109.3 ± 37.7 99.8 ± 33.4 107.5 ± 35.8 109.10 ±30.52 107.89 ±29.30 0.04 101.62 ± 28.09 105.32 ± 29.17 0.13

Glycated 
 hemoglobinb, 
%

(N = 54,300)

7.7 ± 2.1 8.0 ± 1.8 8.3 ± 1.8 7.86 ± 1.89 8.12 ± 1.60 0.15 8.09 ± 1.68 8.16 ± 1.60 0.04

Heart  rateb, bpm
(N = 24,393)

85.9 ± 15.2 83.4 ± 15.8 86.2 ± 15.0 85.91 ± 9.46 86.03 ± 9.24 0.01 84.55 ± 9.99 85.17 ± 9.20 0.06

Systolic blood 
 pressureb, 
mmHg 
(N = 39,179)

131.5 ± 18.8 129.6 ± 19.5 130.1 ± 18.7 131.28 ± 13.97 130.99 ± 14.67 0.02 129.71 ± 14.91 129.87 ± 14.33 0.01

Diastolic blood 
 pressureb, 
mmHg 
(N = 38,721)

77.1 ± 11.5 75.3 ± 11.6 76.0 ± 11.2 76.80 ± 8.70 76.44 ± 8.75 0.04 75.63 ± 9.08 75.77 ± 8.63 0.02

eGFRb, mL/
min/1.73  m2

(N = 54,712)

80.4 ± 28.9 77.8 ± 26.4 82.0 ± 25.7 81.19 ± 26.51 81.23 ± 24.61 0.00 79.55 ± 24.37 80.42 ± 23.58 0.04

Creatinine, mg/
dL

(N = 61,411)

1.1 ± 1.1 1.1 ± 0.8 1.0 ± 0.8 1.12 ± 1.04 1.05 ± 0.79 0.08 1.08 ± 0.78 1.06 ± 0.78) 0.02

Alanine 
aminotrans-
ferase, U/L 
(N = 56,871)

30.2 ± 41.1 32.2 ± 62.1 30.8 ± 27.5 30.56 ± 37.16 30.35 ± 24.65 0.01 32.37 ± 55.79 30.84 ± 26.54 0.04

Aspartate 
aminotrans-
ferase, U/L 
(N = 56,465)

29.4 ± 60.3 31.7 ± 87.4 28.3 ± 28.7 29.66 ± 55.05 28.20 ± 27.26 0.03 31.56 ± 77.54 28.40 ± 27.67 0.05

Medication

  Metforminb 21,148 (57.25) 14,058 (68.06) 8676 (74.83) 22,676 (61.48) 7247 (68.08) 0.14 14,373 (70.36) 8057 (72.19) 0.04
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Values are presented in table as the number of subjects with the percentage in parentheses (categorical parameters) or as the 
mean ± standard deviation (continuous parameters)
ACEi ACE inhibitors, ARB angiotensin receptor blockers, bpm beats per minute, BMI body mass index, eGFR estimated 
glomerular filtration rate, GLP-1RA glucagon-like peptide 1 receptor agonist, mono monotherapy, SGLT-2i sodium glucose 
co-transporter 2 inhibitor, SMD standard mean deviation
a For weighted characteristics, data are shown after imputation of missing values
b Characteristics included in model
c Comorbidities were defined based on the individual categories of diseases or diagnoses used to generate the updated Charl-
son Comorbidity Index [33]

Table 2  continued
Characteristics, 
mean ± standard 
deviation or 
n (%)

Crude characteristics Weighted  characteristicsa

GLP-1RA mono
(N = 36,942)

SGLT-2i 
mono
(N = 20,656)

GLP-1RA/
SGLT-2i
(N = 11,594)

GLP-1RA 
mono users
(N = 36,885)

GLP-1RA/
SGLT-2i
(N = 10,644)

SMD SGLT-2i mono
(N = 20,427)

GLP-1RA/
SGLT-2i
(N = 11,161)

SMD

  Sulfonylureab 7921 (21.44) 6587 (31.89) 3744 (32.29) 8873 (24.06) 2997 (28.16) 0.09 6566 (32.14) 3661 (32.80) 0.01

  Insulinb 18,063 (48.90) 8823 (42.71) 6981 (60.21) 19,084 (51.74) 6117 (57.47) 0.12 9918 (48.55) 5747 (51.49) 0.06

  Statinb 22,629 (61.26) 15,193 (73.55) 9131 (78.76) 24,142 (65.45) 7682 (72.18) 0.15 15,371 (75.25) 8514 (76.29) 0.02

 ACEi/ARBb 21,287 (57.62) 14,231 (68.90) 8382 (72.30) 22,538 (61.10) 7086 (66.58) 0.11 14,280 (69.91) 7859 (70.41) 0.01

 Remdesivir 161 (0.44) 135 (0.65) 43 (0.37) 169 (0.46) 38 (0.36) 0.02 137 (0.67) 42 (0.37) 0.04

Medical history

 Myocardial 
 infarctionb,c

2494 (6.75) 2575 (12.47) 1125 (9.70) 2729 (7.40) 895 (8.41) 0.04 2364 (11.57) 1205 (10.80) 0.02

 Conges-
tive heart 
 failureb,c

4997 (13.53) 4596 (22.25) 1870 (16.13) 5198 (14.09) 1615 (15.18) 0.03 4118 (20.16) 2054 (18.40) 0.04

 Cancer or 
metastatic 
 cancerb,c

3353 (9.08) 2168 (10.50) 975 (8.41) 3301 (8.95) 957 (8.99) 0.00 2006 (9.82) 1044 (9.35) 0.02

 Dementia or 
 strokeb,c

4222 (11.43) 2943 (14.25) 1442 (12.44) 4306 (11.67) 1305 (12.26) 0.02 2785 (13.63) 1471 (13.18) 0.01

 Chronic kidney 
disease or 
end-stage 
renal  diseaseb

7232 (19.58) 4122 (19.96) 2179 (18.79) 7162 (19.42) 2099 (19.72) 0.01 4009 (19.63) 2151 (19.27) 0.01

 Peripheral 
vascular 
 diseasec

7763 (21.01) 4641 (22.47) 2543 (21.93) 7832 (21.23) 2310 (21.70) 0.01 4496 (22.01) 2546 (22.81) 0.02

 Mild liver 
 diseasec

5621 (15.22) 2905 (14.06) 1962 (16.92) 5635 (15.28) 1827 (17.16) 0.05 2971 (14.54) 1825 (16.35) 0.05

 Severe liver 
 diseasec

578 (1.56) 436 (2.11) 194 (1.67) 580 (1.57) 180 (1.69) 0.01 422 (2.07) 193 (1.73) 0.02

 Pulmonary 
 diseasec

10,480 (28.37) 5139 (24.88) 3132 (27.01) 10,420 (28.25) 2946 (27.68) 0.01 5195 (25.43) 2937 (26.32) 0.02

 Coronary 
artery disease

6074 (16.44) 5309 (25.70) 2599 (22.42) 6405 (17.37) 2207 (20.74) 0.09 4964 (24.30) 2691 (24.11) 0.00

 Heart failure 4698 (12.72) 4392 (21.26) 1747 (15.07) 4877 (13.22) 1,524 (14.31) 0.03 3,952 (19.35) 1,903 (17.05) 0.06

 Hypertension 25,942 (70.22) 15,440 (74.75) 9105 (78.53) 26,475 (71.78) 8196 (77.00) 0.12 15,345 (75.12) 8709 (78.03) 0.07

 Liver disease 2060 (5.58) 1286 (6.23) 713 (6.15) 2061 (5.59) 678 (6.37) 0.03 1273 (6.23) 687 (6.16) 0.00
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associated with statistically significantly lower 
odds of all secondary outcomes when compared 
with SGLT-2i monotherapy. These findings are 
consistent with those from randomized trials 
suggesting that the cardiorenal benefits of GLP-
1RA and SGLT-2i are independent of each other 
[24]. The impact of dual therapy is encouraging 
given that users of GLP-1RA/SGLT-2i combina-
tion therapy were more likely to be treated with 
additional antihyperglycemic agents, particu-
larly insulin, as many studies have suggested 
that insulin use is associated with a higher risk 
of adverse outcomes and may indicate more 
advanced diabetes [19–21].

DPP-4i, which was chosen as a comparator, 
also has hypothesized immunomodulatory 
qualities that solicited attention as a potential 
COVID-19 therapeutic [25]. Yet, the results of 
observational studies of DPP-4i-related impact 
on COVID-19 have been inconclusive. The 
findings of a recent small randomized-controlled 
trial suggest improvement in COVID-19 severity 
in hospitalized people with hyperglycemia 
treated with DPP-4i compared to those receiving 
insulin alone [26]. The results of meta-analyses 
also suggest improved outcomes with DPP-4i 
compared to non-users [27]. Our data suggest 

that GLP-1RA and SGLT-2i outperform DPP-4i, 
although prospective data are limited.

The mechanism by which GLP-1RA and 
SGLT-2i protect against severe COVID-
19  outcomes  i s  unknown but  may 
relate to established anti-inflammatory, 
immunomodulatory,  cardiorenal ,  and 
metabolic effects [28, 29]. While their effects 
are likely multifactorial, future studies should 
examine whether these agents modulate 
innate or vaccine-induced immunity in people 
living with diabetes. The results from several 
studies indicate an association between lower 
effectiveness of COVID-19 vaccines for severe 
COVID-19-related outcomes in people with 
diabetes [30, 31]. Consistently, low anti-SARS-
CoV-2 antibody levels on hospital admission 
associate with severe COVID-19-related 
outcomes in people with type 2 diabetes [32]. 
Whether the use of GLP-1RA, SGLT2i, or GLP-
1RA/SGLT2i in combination modulate innate 
or vaccine-induced antibody response should 
be explored as a potential mechanism for their 
benefit in the setting of COVID-19.

Our observational study is limited by the 
potential of residual confounding, with 
particular attention to the socioeconomic 
demographic  receiving these agents. 

Fig. 2  Forest plot depicting TMLE-estimated ORs 
for primary and secondary outcomes for people with a 
COVID-19 diagnosis and prescription for GLP-1RA and 
SGLT-2i combined use compared with GLP-1RA mono-
therapy (A) and SGLT-2i (B) monotherapy, respectively. 
Single asterisk (*) indicates within 60  days after positive 
SARS-CoV-2 PCR test; double dagger sign (‡) indicates 
within 14  days after positive SARS-CoV-2 test; hash sign 

(#) indicates mechanical ventilation (intubation or venti-
lation).  CI confidence interval, DPP-4i dipeptidyl pepti-
dase-4 inhibitor, GLP-1RA glucagon-like peptide 1 recep-
tor agonist, OR odds ratio,  SARS-CoV-2 severe acute 
respiratory syndrome coronavirus 2, SGLT-2i sodium glu-
cose co-transporter 2 inhibitor, TMLE targeted maximum 
likelihood estimation
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Nevertheless, our findings are consistent 
with randomized-controlled trials that have 
repeatedly demonstrated the cardiorenal 
and mortality benefits of these two classes of 
medications.

CONCLUSION

Our study supports earlier findings that premor-
bid GLP-1RA or SGLT-2i prescribing was associ-
ated with lower mortality and other secondary 
outcomes in the setting of COVID-19 compared 
to DPP-4i prescribing. Furthermore, we provide 
the first evidence of potential synergistic effects 
from concomitant GLP-1RA/SGLT-2i use on 
COVID-19 severity.
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