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ABSTRACT

Application of continuous glucose monitoring
(CGM)hasmoveddiabetes care froma reactive toa
proactive process, in which a person with diabetes
can prevent episodes of hypoglycemia or hyper-
glycemia, rather than taking action only once low
and high glucose are detected. Consequently,

CGM devices are now seen as the standard of care
for people with type 1 diabetes mellitus (T1DM).
Evidence now supports the use of CGM in people
with type 2 diabetes mellitus (T2DM) on any
treatment regimen, not just for those on insulin
therapy. Expanding the application of CGM to
include all people with T1DM or T2DM can sup-
port effective intensification of therapies to reduce
glucose exposure and lower the risk of complica-
tions and hospital admissions, which are associ-
ated with high healthcare costs. All of this can be
achieved while minimizing the risk of hypo-
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glycemia and improving quality of life for people
with diabetes. Wider application of CGM can also
bring considerable benefits for women with dia-
betes during pregnancy and their children, as well
as providing support for acute care of hospital
inpatients who experience the adverse effects of
hyperglycemia following admission and surgical
procedures, as a consequence of treatment-related
insulin resistance or reduced insulin secretion. By
tailoring the application of CGM for daily or
intermittent use, depending on the patient profile
and their needs, one can ensure the cost-effective-
ness of CGM in each setting. In this article we dis-
cuss the evidence-based benefits of expanding the
use of CGM technology to include all people with
diabetes, alongwith a diverse populationof people
with non-diabetic glycemic dysregulation.

Keywords: Continuous glucose monitoring;
Hospital inpatients; Pregnancy; Type 2 diabetes

Key Summary Points

Continuous glucose monitoring (CGM)
devices are proven to improve glycemic
management for people with type 1
diabetes or type 2 diabetes, as well as
lowering the risk of acute diabetes
complications and hospital admissions.

CGM may be used on a day-to-day or
intermittent basis, depending on the
profile and needs of the person with
diabetes, such that the most cost-effective
use of CGM is achieved.

Wider use of CGM should include people
with cystic fibrosis-related diabetes and
womenwithgestational diabetesmellitus, as
well as in hospital settings where stress-
induced hyperglycemia has clinical
consequences for inpatients without
diabetes.

Use of CGM can be tailored to meet the
needs of people with diabetes and also
people with glycemic dysregulation for
other reasons, including inpatients in
acute care settings.

INTRODUCTION

The landscape of treating and managing dia-
betes has been transformed over the past decade
by the increased availability and application of
continuous glucose monitoring (CGM) tech-
nology, which provides people with diabetes
and their healthcare professionals (HCPs) with
on-demand glucose information. This includes
not only the current glucose reading for the
user, at any time of day, but also important
information on whether their glucose levels are
stable, rising, or falling. The glucose data col-
lected by CGM devices is also used to generate
important patterns and trends that can be ana-
lyzed retrospectively to understand the overall
glycemic balance of the user, and that can be
used to guide therapeutic decisions on diabetes
care. These capabilities go far beyond the limi-
tations of traditional fingerprick self-monitor-
ing of blood glucose (SMBG) testing, which is
often painful for the user and provides only a
one-time snapshot of glucose levels when a test
is conducted. The use of CGM also enables
parents and caregivers to monitor glucose levels
in school-age children or elderly people remo-
tely, using smartphone apps, which allows an
additional level of care for people with diabetes
as they participate in different activities.

Commercially available CGM devices provide
a measurement of glucose levels in the interstitial
fluid (ISF) in the subcutaneous space [1, 2], either
using a thin sensor filament that is inserted into
the subcutaneous space (transcutaneous) or by
insertion of the sensor itself into the subcuta-
neous tissue in the upper arm (implantable).
Glucose readings are transmitted wirelessly at
1–5-min intervals to a reader or a smartphone
app. Some CGM devices transmit glucose data
only when the user scans their sensor with a
reader or smartphone app. This is referred to as
intermittently scanned CGM (isCGM) or as
FLASH glucose monitoring, referring in both cases
to the FreeStyle Libre system.

The accuracy of CGM devices in comparison
with reference plasma glucose measurements is
well validated [3], such that several CGM devi-
ces are authorized by regulatory authorities to
replace fingerstick SMBG testing for making
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diabetes treatment decisions, including insulin
dosing (non-adjunctive use). In addition, a
specific category of Class II device type, identi-
fied as an integrated CGM (iCGM) device [4, 5],
has been created by the US Food and Drug
Administration (FDA) for CGM devices that are
suitable for use with certain digitally connected
medical devices, including automated insulin
delivery (AID) systems.

Currently available transcutaneous systems
have sensors that have wear times from 6 to
14 days [6], after which a new sensor is applied.
Implantable systems currently transmit glucose
data for up to 180 days before replacement [7].
CGM sensors may be factory calibrated [6] or
calibrated using a code provided with each sensor
[8]. Alternatively, CGM sensors can require users
to perform daily calibration using SMBG tests [9].

An important distinction is that CGM systems
can be configured to operate as personal CGM
devices, inwhichtheuser isable tosee theirglucose
values on demand and to take action based on
these values, or as professional CGM systems,
whichareblinded for theuser andtransmitglucose
data that can be reviewed only by their diabetes
HCP [10]. Here we review the evidence for wider
application of CGM devices in the care of people
with diabetes or glycemic dysregulation. In places
the evidence is limited and a statement of unmet
research needs is provided in Supplementary
Table 1. All interpretations and recommendations
meet ethics guidelines and conformwith the 1964
Declaration of Helsinki. This article is based on
previously conducted studies anddoesnot contain
any new studies with human participants or ani-
mals performed by any of the authors.

BENEFITS OF USING CGM IN DAILY
DIABETES CARE

A considerable body of evidence supports the
use of CGM to transform health outcomes and
quality of life for people with diabetes. In real-
ity, this is paradigm shift in the treatment of
people with diabetes, moving from reactive
responses to the proactive prevention of high
and low glucose levels.

When compared with SMBG, the use of
CGM devices has been associated with lowered

HbA1c in children and adults with type 1 dia-
betes mellitus (T1DM) [11–18], and in adults
with type 2 diabetes mellitus (T2DM) treated
either with insulin or a non-insulin therapy
[19–22]. Both in T1DM and T2DM, use of CGM
is associated with reduced risk of hypoglycemia
[23–25]. Prospective trials have typically docu-
mented these glycemic benefits over periods up
to 12 months; however, the COMISAIR
prospective study demonstrated a persistent
effect of the Dexcom G4 real-time CGM system
over 3 years in adults with T1DM [14]. A second
extended study of adults with T1DM started on
CGM within 12 months of their diagnosis
found that reductions in HbA1c were persistent
with CGM use over a 7-year period [26]. A meta-
analysis of 75 real-world studies involving the
FreeStyle Libre system indicates that the gly-
cemic benefits of using CGM persist for at least
2 years in adults with T2DM [27]. These evi-
dence-based benefits of using CGM devices have
confirmed their efficacy and place in the stan-
dard of care for people with T1DM or T2DM on
insulin [28–31].

Importantly, CGM-derived metrics are now
standardized for reporting [28–30]. Thus, using
CGM compared to SMBG alone is associated
with more time in range (TIR) with a glucose
level of 70–180 mg/dL, less time above range
(TAR) in hyperglycemia with a glucose level
greater than 180 mg/dL, and less time below
range (TBR) in hypoglycemia with a glucose
level lower than 70 mg/dL, including nocturnal
hypoglycemia, in people with T1DM or T2DM
[23–25, 32]. CGM users also have less glucose
variability, improved quality of life [33–35], and
have fewer hospital admissions for acute dia-
betes events such as diabetic ketoacidosis (DKA)
and severe hypoglycemia [36–40].

Along with the well-documented benefits for
users and HCPs, there are also benefits for par-
ents, carers, and partners of people with dia-
betes, the majority of whom feel positive about
CGM [41]. Parents of children and adolescents
with T1DM report improved quality of life and
emotional well-being after their children started
CGM [42, 43]. The reduced fear of hypo-
glycemia, especially at night, is a driver of
improved well-being [44, 45]. Equally, using
CGM is reported to reduce diabetes-specific
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conflict in families and facilitated parental
involvement in diabetes management [43].
Carers for frail, older people with T1DM or
T2DM also report greater ease of managing
diabetes in this vulnerable group, with reduced
concerns about hypoglycemia [46]. The ability
to share glucose data is also seen as a positive
aspect of using CGM by older adults and their
caregivers [47]. All of these benefits are also
reported by partners or spouses of people with
diabetes [48].

Challenges for Using CGM in Diabetes
Management

As with all medical technologies, using CGM
systems is accompanied by challenges.
Although current CGM devices are accurate
across all ISF glucose ranges within 30–60 min
after they are activated, they may be affected by
a small number of substances, such as parac-
etamol, hydroxyurea, or high doses of vita-
min C [49]. Because CGM sensors are on-body
devices, they may be subject to physical stresses
that can dislodge them or transiently affect
their performance, such as artifacts from the
user lying in a position that compresses the
sensor and the tissue around it [50]. CGM sen-
sors are also visible clues that the wearer has
diabetes, which can become a focus for con-
scious or unconscious judgement and stigmati-
zation, even from family and their HCPs [51].
Possibly the biggest challenge of using CGM is
the huge amount of data that it provides, both
during daily use and for review with HCPs. The
user may overreact to changes in visible glucose
levels or trends, with consequent microman-
agement. The task of reviewing ambulatory
glucose profile (AGP) reports can also be
daunting, requiring education for users and
HCPs (see below). However, research with CGM
users and HCPs indicates that these challenges
are not a major barrier to successful imple-
mentation, either for people with diabetes or
their HCPs [42].

CGM IN GUIDELINES FOR DIABETES
MANAGEMENT

Use of CGM has rapidly become an accepted
part of clinical guidelines for the treatment of
diabetes. In the UK, the National Institute for
Health and care Excellence (NICE) recom-
mended access to isCGM for subgroups of peo-
ple with T1DM on insulin therapy as early as
2017 [52] and current guidelines now recom-
mend either isCGM or real-time CGM for all
adults and children with T1DM and people with
T2DM on intensive insulin therapy [53–55].
Diabetes technology was included in the
American Diabetes Association (ADA) standards
of medical care in diabetes for the first time only
in 2019, at which point stand-alone CGM was
suggested for ‘‘consideration’’ in children and
adolescents with T1DM and indicated as a
‘‘useful tool’’ for adults with T1DM [56]. By
2022, the same guidelines simply state: ‘‘Use of
CGM devices should be considered from the outset of
the diagnosis of diabetes that requires insulin
management’’ [57]. This has been echoed in the
consensus guidelines for management of T1DM
from the European Association for the Study of
Diabetes (EASD) and the ADA [58], which indi-
cate that CGM is the preferred option for glu-
cose monitoring in newly diagnosed T1DM in
adults, and should be considered for adults with
established T1DM, even if they are meeting
glycemic targets.

While recognizing and supporting the value
of using CGM for children with T1DM [59, 60],
the International Society for Pediatric and
Adolescent Diabetes (ISPAD) does not make a
specific recommendation to initiate CGM at the
point of diagnosis for children with T1DM. We
propose that this step should be taken, even in
low-resource settings [61]. The long-term bene-
fits of proactive glucose control with CGM for
children with T1DM are compelling.

Similarly, CGM can be used as part of a tar-
geted screening and monitoring strategy in
individuals identified as at-risk for T1DM as a
consequence of family history or detectable islet
autoantibodies [62]. As they progress to stage 1,
stage 2, and pre-symptomatic stage 3 in T1DM,
use of CGM can detect abnormal glucose
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metabolism as individuals progress to stage 2.
Proactive screening in this way can reduce the
incidence of DKA and rates of hospitalization as
symptoms become overt [62].

The 2022 ADA/EASD consensus guidelines
for management of hyperglycemia in T2DM
[63] also recommend the use of CGM for people
with T2DM treated with insulin. An expert
consensus group from the American Association
of Clinical Endocrinology (AACE) published
guidelines in 2021 that strongly recommended
CGM for all persons with diabetes treated with
intensive insulin therapy, defined as three or
more injections of insulin per day or the use of
an insulin pump [64]. In this context, real-time
CGM was recommended over isCGM for people
with diabetes and problematic hypoglycemia,
because of the value of low-glucose alarms.
However, second-generation isCGM systems
already provided low- and high-glucose alarms
at the point this recommendation was made
[65], underlining the rapid pace of change in
this aspect of diabetes care.

Most recently, Asia–Pacific (APAC) consensus
recommendations [66] for the application of
CGM in diabetes include initiating CGM as
soon as possible after a diagnosis of T1DM and
for people with T2DM on intensive insulin
therapy and suboptimal glycemic control or
high risk of problematic hypoglycemia. The
APAC guidance also makes clear statements
regarding daily or intermittent use of CGM for
people with T2DM during Ramadan, for frail,
older individuals with T2DM, pregnant women
with pregestational T2DM, and women with
gestational diabetes mellitus (GDM). Notably,
the APAC guidelines include a process for
interpreting AGP reports in APAC settings along
with targets for core CGMmetrics in adults with
T1DM, T2DM, and in pregnancy for women
with T1DM or T2DM [66].

CGM MAY BE USED ON A DAY-TO-
DAY OR INTERMITTENT BASIS

Children and adult users of CGM in the man-
agement of T1DM are recommended to wear a
glucose sensor on a daily basis, since clinical
evidence in support of CGM has been collected

in this way and reflects the need for people with
T1DM on intensive insulin therapy to maintain
control over fluctuating glucose levels and
avoid potentially harmful episodes of hypo-
glycemia [11, 13, 24, 67]. CGM systems provide
on-demand glucose readings alongside valuable
information on the direction and rate of change
(ROC) of glucose, indicated by trend arrows
[68]. For people with T2DM on insulin therapy,
the risks of hypoglycemia are also considerable
[69] and daily use is supported by evidence
[20, 25] and also recommended in guidelines
(see above).

Daily use of isCGM or real-time CGM is now
typically reimbursed by healthcare systems as
part of care for people with T1DM and increas-
ingly for people with T2DM on intensive insu-
lin therapy. The benefits of using CGM in
people with T2DM on basal-only regimens or
non-insulin therapies are also demonstrated
[21, 22, 40, 70, 71], but access to CGM is limited
for these and other groups of people with dia-
betes because of the need to control costs, such
that recommending daily use is impractical for
most health services. Therefore, the intermit-
tent use of CGM devices can be recommended
as a practical alternative that is more realistic
from a cost-impact perspective, in which the
CGM device is used only for pre-specified peri-
ods during diabetes care.

Benefits of Intermittent Use of CGM

Intermittent use of CGM for people with T2DM
has been proposed previously [72], to support
management of poorly controlled patients on
any therapeutic regimen, and is also recom-
mended in ADA guidance of the use of tech-
nology in diabetes [57]. Use of intermittent or
professional CGM should always be followed by
a review with the person with diabetes, includ-
ing any education required as part of changes to
medication and/or lifestyle [57]. There is an
unmet need for further supporting evidence on
this aspect of CGM use.

A systematic review of 11 studies involving
5542 patients, 90% not on intensive insulin
therapy, concluded that intermittent use of
CGM was associated with reductions in HbA1c
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and body weight, as well as improved adherence
to dietary plans and physical activity [73].
Periodic use of CGM in people with T2DM not
on insulin therapy has shown reduced HbA1c
and improved TIR [74, 75]. These changes are
most significant for people with T2DM using
CGM for 10 days at 3-month intervals, who also
had a mean SMBG use at a frequency of 1.5 tests
per day or more [75] over a 6-month prospective
study period. In this study the intervention
with CGM was non-blinded, allowing partici-
pants to see their glucose readings and trends.

The use of professional CGM, in which the
CGM data is only available to the HCP, has also
been tested in people with T2DM not on insulin
therapy. A 2008 randomized controlled trial
(RCT) demonstrated that a single 3-day appli-
cation of blinded CGM, with follow-up review
and education with a HCP, can lead to changes
in behavior and reduced HbA1c in people with
T2DM failing on non-insulin therapy [76]. Just
as importantly, studies using blinded CGM even
for 5 days have confirmed that approximately
50% of people with T2DM, including those on
non-insulin therapy, experience frequent mild
or clinically significant hypoglycemia [77] and
this is asymptomatic in most cases. Such
insights can allow for treatment adjustment
focused on reducing the risk of hypoglycemia
alongside overall glycemic control.

Intermittent application of CGM systems,
either as part of unblinded or blinded use, is
able to deliver glycemic information of value
both to the person with T2DM and to their
HCP, thereby facilitating improved glycemic
control. Of clinical importance, this can be
maintained through changes to lifestyle and
periodic medication review and adjustment. No
studies have examined the long-term applica-
tion of intermittent CGM in T2DM.

Adapting Diabetes Care to the Cost
of CGM Technology

Evidence on the cost-effectiveness of using
CGM devices in diabetes care is limited. The
per-unit costs of CGM sensors are higher than
SMBG test strips and meters, which has created
a perceived barrier to wider adoption. However,

the long-term costs for daily CGM use, when
factoring in savings against strip usage and costs
for medical consultation and care of diabetes
complications, are modelled as being cost-ef-
fective for people with T1DM [78–81]. In these
analyses, much of the value assigned to CGM
use was in the saved costs for reduced cumula-
tive rates of diabetes complications and deaths
in cardiovascular disease, ulcers and amputa-
tions, and renal disease. Although these com-
plications are all part of long-term health
outcomes in T2DM, a formal assessment for the
cost impact of T2DM over the lifetime horizon
is an unmet need. However, at least two studies
have demonstrated that intermittent use of
CGM in people with T2DM not on prandial
insulin is a cost-effective intervention [82, 83],
again based on lifetime reductions in treatment
costs for diabetes complications. The periodic
use of CGM in each of these studies was not
similar, one at a high frequency [82], the other
at a low frequency [83], suggesting that the
optimal period between applications and gly-
cemic assessment requires further study.

In order to minimize costs to healthcare
providers we would argue that the most cost-
effective use of intermittent CGM would favor
the use of the FreeStyle Libre 2 or FreeStyle
Libre 3 system. Glycemic outcomes data for the
FreeStyle Libre system are comparable with
those of real-time CGM systems, including
reductions in HbA1c, improvements in TIR, and
reductions in hypoglycemia [16, 25, 84]. The
FreeStyle Libre sensors are factory calibrated and
need no daily fingerstick calibration, which
makes them suited to periodic application and
adherence with use. They also may be more
suited to intermittent use as they are easy to
apply and do not require a transmitter, such
that users have less to self-manage during
occasional use. Critically, they have the lowest
acquisition cost among currently available
CGM devices and the longest on-body wear
time, with each sensor lasting 14 days. The
FreeStyle Libre 2 and FreeStyle Libre 3 systems
are also enabled with optional alarms that may
reinforce the educational value for the user
during 14-day intermittent use. Freestyle Libre
sensors can also be used as part of professional
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CGM, although different healthcare territories
have selective availability of this option.

OPTIMIZING THE VALUE OF CGM
IN MODERN DIABETES CARE

Diabetes care using CGM has typically focused
on addressing the unmet needs for day-to-day
glycemic control. This has meant focusing on
reducing HbA1c for people with poorly con-
trolled diabetes, as well as reducing the risks of
symptomatic and severe hypoglycemia for
people on insulin or insulinotropic therapies.
There is sufficient data to support the use of
CGM in a much wider group of people with
diabetes such that it meets a range of needs at
different times throughout their lives with dia-
betes. These are all separate from the manage-
ment of T1DM or T2DM on insulin therapy, in
which daily use of CGM is indicated and sup-
ported by guidelines.

At the Point of Diagnosis of T2DM

There are many pathophysiological changes to
glucose homeostasis that result in persistent
hyperglycemia and a diagnosis of T2DM. Ulti-
mately, this also means that T2DM is a very
heterogeneous disease [85]. Over the last few
years, analysis of glucose profiles for people
with T2DM has suggested that some of this
heterogeneity can be mapped to glucotypes,
based on patient characteristics and CGM-de-
fined glycemic metrics [85, 86]. It has been
proposed that some of these glucotypes may be
predictive of future complications [85]. At the
time of diagnosis, it therefore makes sense to
establish as much as possible about the baseline
glycemic profile for any person with T2DM,
such that a diabetes management plan can be
put in place as early as possible that meets their
individual treatment needs. Intermittent use of
CGM should be used as soon possible after
diagnosis to establish these baseline glucose
parameters for each person with T2DM, against
which subsequent treatment decisions may be
compared and disease progression monitored.

Monitoring Proactive Treatment
Intensification

Clinical inertia is a term that defines the reti-
cence of HCPs to initiate or intensify therapy for
people with T2DM in a timely manner, as rec-
ommended by evidence-based clinical guideli-
nes [87–89]. Although a change of therapy in
T2DM is indicated if HbA1c goals are not
achieved after 3 months on the current regimen
[90], reported times to treatment intensification
are considerably higher, with the median time
to treatment intensification after an above-tar-
get HbA1c test reading being measured in years
rather than months [91], and this inertia may be
considerably prolonged as the number of
antidiabetic drugs in the treatment plan rises
[91]. Such clinical inertia is linked to the
increased incidence of microvascular and
macrovascular disease in T2DM [92, 93], as well
as significantly increased costs related to dia-
betes complications [94, 95].

It does not make sense to ignore the value of
CGM as part of treatment intensification for
people with T2D, particularly as fear of hypo-
glycemia is known to be a significant factor in
clinical inertia for patients and clinicians alike
[96]. Use of CGM in people with T2DM on
basal-only insulin is associated with improve-
ments in HbA1c while reducing hypoglycemia
[19].

A retrospective analysis of large healthcare
claims datasets indicate that use of a CGM
device by people with T2DM is associated with
more-timely treatment intensification com-
pared to those using fingerprick SMBG testing
alone [97]. All treatment choices were facilitated
in this analysis, including starting and intensi-
fying insulin therapy. Although this analysis
applied to people with T2DM on daily CGM
use, it can be argued that intermittent use at the
point of treatment intensification can support
the same outcomes. A prospective study using
professional CGM in 68 people with T2D on any
treatment regimen [98] showed that 14-days use
of professional CGM in a primary care setting,
followed by a review with the HCP and any
treatment recommendations, is effective at
lowering HbA1c, increasing TIR, and facilitating
treatment intensification. The improvement in
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glycemic management was accomplished by a
combination of lifestyle counseling and medi-
cation intensification, rather than an increase
in the number of medications. Use of a second
application of professional CGM after 3–-
6 months in a subset of participants was asso-
ciated with more intensive treatment
modification [99]. Together with the data on
cost-efficacy for intermittent CGM in T2DM
[82, 83], these data clearly indicate that inter-
mittent CGM can be used to support treatment
intensification in T2DM and this can be man-
aged in a primary care or clinical pharmacy
setting.

CGM Coaching and Motivational Support
for Behavioral Change in People
with Diabetes

The glycemic benefits of intermittent CGM are
connected to its impact on the overall behavior
of people with T1DM or T2DM. Once they can
see how the daily activities associated with diet,
physical activity, and adherence to treatment
affect glucose levels, it makes sense to adapt
these activities even after the CGM has been
withdrawn. Demonstrating this holistic effect
in a study setting is not easy and there are only a
small number that address this. Using isCGM
has been linked to improved self-awareness of
food consumption for people with T1DM,
including increased confidence in food choices
in relation to their expectations for diabetes
management [100].

Lifestyle counseling following application of
professional CGM was credited with the gly-
cemic changes in people with T2DM, as much
as medication intensification [98], and inter-
mittent use of CGM has been associated with
improved adherence to dietary plans, improved
healthy eating, and physical activity [73, 101].
When used as an adjunct to diabetes and life-
style education for people with T2DM, inter-
mittent CGM has resulted in greater
improvements than education alone [102], and
the use of motivational text messaging has been
successful in promoting lifestyle changes and
reduction of glycemia in people recently diag-
nosed with T2DM who used personal CGM for a

limited time [103]. We suggest therefore that
such ‘‘CGM coaching’’ is a valid tool as part of
the diabetes self-management education and
support (DSMES) intervention that is identified
as being as equally critical as pharmacological
treatment for people with T2DM [63]. Further
objective research in this context is warranted.

CGM IS EFFECTIVE IN DAILY
MANAGEMENT OF T2DM
ON INSULIN REGIMENS

It is accepted that people with T2DM on
intensive insulin therapy benefit from using
CGM devices in the same way that has been
shown for people with T1DM. This includes
reduced HbA1c [20, 84], reduced hypoglycemia
[25, 84], and fewer acute diabetes events leading
to hospital admission [38, 104]. Consequently,
the benefits of using CGM in T2DM on inten-
sive insulin therapy are increasingly reflected in
guidelines for management of T2DM
[54, 63, 105] as part of a holistic care plan. Use
of premixed insulins may still be recommended
to improve adherence with intensive treatment
in T2DM. Although no prospective studies have
examined the use of CGM in people using pre-
mixed insulins, the overall benefits and risks of
therapy with premixed insulins are comparable
with adding a bolus insulin to basal therapy
[106].

Less-intensive basal-only insulin therapy is
recommended for people with T2DM who are
failing on oral therapies [63]. Initiation of basal
insulin is associated with episodes of problem-
atic hypoglycemia and is the second most
common reason given by people with T2DM for
interruption or discontinuation of basal insulin
therapy [107, 108]. For people with T2DM on
basal insulin therapy, the MOBILE RCT has
shown that using CGM can lower HbA1c and
reduce both time in hyperglycemia with glucose
level greater than 250 mg/dL (13.9 mmol/L) and
hypoglycemia event rates over an 8-month
period, compared to a control group using
SMBG testing alone [19]. Notably, discontinu-
ing CGM use in this group resulted in the loss of
half of the gains in TIR within 6 months of
ceasing use [109]. These data confirm the results
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of retrospective studies showing a significant
reduction in HbA1c for people with T2DM on
basal insulin therapy [70, 110]. Together, these
outcomes support the proposition that people
with T2DM on basal insulin regimens should be
provided with access to CGM devices for daily
use as is accepted for those on intensive insulin
regimens.

USING CGM IN CYSTIC FIBROSIS-
RELATED DIABETES

Cystic fibrosis-related diabetes (CFRD) is one of
the most common extrapulmonary comorbidi-
ties among people with CF, occurring in up to
50% of adults [111]. CFRD is a form of diabetes
caused by relative insulin insufficiency sec-
ondary to destruction of pancreatic islets
[112, 113]. CFRD is associated with worse clin-
ical outcomes, decreased pulmonary function,
and higher mortality rates [114]. The reference
standard screening for CFRD is annual oral
glucose tolerance testing (OGTT), but when
CGM has been applied contemporaneously
with OGTT testing, CGM has detected CFRD at
a higher frequency [115] and identified glucose
abnormalities [116]. Notably, CGM metrics of
hyperglycemia and glycemic variability are
superior to HbA1c in differentiating between
people with CF who have CFRD and those
without [117]. Furthermore, when compared
with SMBG, use of CGM in people with CFRD is
associated with improved glycemic control and
significantly reduced HbA1c [118].

Given that insulin therapy is an accepted
intervention in CFRD, the use of CGM to con-
firm diagnosis and establish the need for insulin
treatment has been proposed [119]. Since up to
96% of school-age children and 85% of adults
with CFRD are treated with insulin [120], the
application of daily CGM for people with CFRD
should be considered in this group. No longi-
tudinal studies have been undertaken to estab-
lish whether using CGM in CFRD is associated
with improved pulmonary or non-pulmonary
outcomes in CF. The role of CGM for women
with CFRD during pregnancy is discussed later
in this article.

USE OF CGM IN PEOPLE
WITH T2DM NOT ON INSULIN
THERAPY

Evidence shows that people with T2DM not on
insulin therapy can significantly reduce their
HbA1c using CGM devices [21, 22, 121]. This
reduction is greater for those with a higher
HbA1c level at the point of initiation [21].
Glycemic variability is also reduced in people
with T2DM on non-insulin therapy using CGM
compared to SMBG [22]. Similarly, use of CGM
amongst people can be associated with reduced
acute diabetes events requiring hospital atten-
dance or admission [71].

In real-world healthcare economies, people
with T2DM not on insulin comprise the
majority of the diabetes treatment population,
and recommending daily access to CGM sys-
tems for this group is impractical because of the
cost impact. Therefore, the intermittent use of
CGM devices can be recommended at regular
intervals or during treatment change, as dis-
cussed previously. Therefore, for people with
stable T2DM on non-insulin therapies unblin-
ded CGM sensors should be used every
3 months as standard of care. In this way it will
be possible to (1) evaluate treatment responses
and achievement of goals; (2) adjust therapy as
necessary; (3) evaluate risks for microvascular
and cardiometabolic complications; and (4)
reinforce patient education and diabetes self-
management skills (CGM coaching). This is
summarized in Fig. 1.

IMPORTANCE OF CGM IN T2DM
IN THE ELDERLY AND VULNERABLE

The incidence of T2DM amongst the elderly
population is significant, particularly in high-
and middle-income countries [122]. Despite
this, there are relatively few studies on the use
of CGM in elderly populations and this is an
important gap. The REPLACE RCT in people
with T2DM on intensive insulin therapy found
that study participants aged 65 years or older
had a 56% reduction in TBR 70 mg/dL, which
was comparable to subjects younger than
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65 years old [25]. A subgroup analysis of the
DIAMOND study showed that, in adults aged
60 years or older with T2DM on intensive
insulin therapy [20], improvements in HbA1c
and reduced glycemic variability obtained using
daily CGM were not different from those in
younger adults. Bao and colleagues reported
that people with T2DM aged 65 years or older
on basal insulin therapy were able to improve
TIR and reduce hypoglycemia after starting
traditional CGM, at least as significantly as
younger adults [123]. The outcomes of the
RELIEF study on use of isCGM in adults with
T2DM aged 65 years or older on intensive
insulin therapy have shown that hospital
admissions for acute diabetes events were
reduced by 34% and 40% in the 12 and
24 months following initiation of isCGM,
respectively [124].

Use of blinded CGM [125] and retrospective
insurance claims analysis [126] have confirmed
that hypoglycemia is frequent amongst older
populations with T2DM, including those on
non-insulin therapy, and those with elevated
HbA1c. It is also evident that the risk of severe
or fatal hypoglycemia increases considerably in
elderly individuals with diabetes who are trea-
ted with insulinotropic medications [127–129],

and the risk of falls and fractures amongst
elderly people with T2DM treated with insulin
is increased compared to those only on oral
medication [130, 131]. Hypoglycemia in elderly
people with T2DM is also associated with
increased incidence of cardiovascular events,
dementia, and death [131]. The avoidance of
hypoglycemia has therefore been suggested as a
greater priority than minimizing HbA1c
amongst elderly people with T2DM [132].

The Imperative for De-intensifying
Treatment in Elderly People with Diabetes

The goal of symptom control and maintaining
quality of life as people reach advanced age
creates a need for treatment de-intensification
in a safe manner [133]. Deprescribing sulfony-
lurea drugs is a clear target [133, 134], particu-
larly in elderly people with T2DM with more
complications and comorbidities. Clinical
management of diabetes in elderly and frail
people with diabetes is hampered by the paucity
of studies that include this population. It is clear
that de-prescribing of medication in elderly
people with diabetes required judicious clinical
judgement, which can be facilitated with the
use of CGM to maintain awareness of glycemic
changes. Since the feasibility and acceptability
of CGM in very elderly adults up to 91 years old
has also been demonstrated [135], the case for
wider access and application of CGM in older
and elderly people with T2DM is clear (Fig. 1).

Cognitive and Mental Health Concerns
in Elderly People with Diabetes

The phenomenon of cognitive decline is asso-
ciated with aging in the general population
[136], and risk of developing dementia is
increased in T2DM [137]. The features of cog-
nitive decline can reduce the ability and
engagement of elderly people with T2DM to
manage their basic self-care tasks [138], with the
burden of care then transferring to carers and
HCPs. Cognitive deficits also contribute to an
increased frequency of depression-related
symptoms, poorer adherence to treatment,
increased risk of hypoglycemia, and ultimately

Fig. 1 Intermittent use of CGM in the management of
stable disease in T2DM. CGM continuous glucose mon-
itoring, T2DM type 2 diabetes
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to poorer prognosis [139]. In this context, the
needs of older adults with T2DM and their
caregivers can benefit from the use of CGM in
this population. Daily use of CGM can help
elderly people with T2DM and their carers to
manage medication and glycemic risks, with as
little extra burden as possible. In this way,
application of CGM can maintain quality of life
for this patient group and limit the risks of
functional dependency [140].

CONTROLLING HYPERGLYCEMIA
IN ACUTE CARE SETTINGS

The benefits of using CGM in acute and critical
care settings has not been well explored to date,
although the impact of glycemic dysregulation
for people without diabetes in hospital is
becoming better documented. Hyperglycemia
in this context is stress induced as a conse-
quence of an inflammatory and adrenergic
response, when counterregulatory hormones
are released that lead to insulin resistance and
reduced insulin secretion. Glucagon release and
glycogenolysis can also occur [141, 142].

Stress-induced hyperglycemia is associated
with risk of death or poor outcomes after acute
myocardial infarction (AMI) [143] and intensive
control of hyperglycemia in people with dia-
betes is associated with reduced mortality in the
12 months following an AMI [144]. This effect is
most pronounced in people with T2DM naı̈ve
to insulin prior to admission to hospital [144],
and can persist up to 8 years following inter-
vention [145]. However, the risks of hypo-
glycemia following intensive control of
hyperglycemia following AMI have also been
proposed to confound these beneficial effects of
reducing hyperglycemia for people with T2DM
following AMI [146, 147].

The association between hyperglycemia and
risk of stroke is well established in people with
T2DM [148]. Poorer outcomes for people suf-
fering acute stroke are even more linked to
hyperglycemia [149], such that ‘‘stress hyper-
glycemia’’ in patients with stroke and without a
diagnosis of diabetes is predictive of a worse
prognosis [150]. The link between hyper-
glycemia and stroke is proposed to involve the

pro-inflammatory consequences of persistent
high glucose [151] and American Stroke Asso-
ciation guidelines recommend establishing
blood glucose levels in the range of
140–180 mg/dL (7.8–10.0 mmol/L) as soon as
possible following a stroke and to avoid hypo-
glycemia [152].

Hyperglycemia is a common and significant
adverse consequence of several established
cancer therapeutic classes, including immune
checkpoint inhibitors (ICIs), phosphatidylinos-
itol 3-kinase (PI3K) inhibitors, mammalian tar-
get of rapamycin (mTOR) inhibitors,
5-fluorouracil (5-FU) analogues, and glucocor-
ticoids [153]. The mechanism can be related to
drug-mediated insulin resistance but not always
[153]. This hyperglycemia has been associated
with reduced efficacy of cancer therapy [154].
Use of CGM data has also shown that hyper-
glycemia associated with in-hospital treatment
is also associated with longer hospital stays and
worsened prognosis [155, 156]. From a clinical
perspective, hyperglycemia is established as an
independent risk factor for earlier cancer recur-
rences and higher mortality rates [157].

As well as the specific conditions discussed
above, management of a much wider group of
acute surgical patients with comorbid T2DM is
also subject to guidance on minimizing hyper-
glycemia in the hospital setting because of the
increased risks for surgical-site infections
[158, 159] and increased costs [160].

Given the proven role CGM in reducing
hyperglycemia with reduced risk of severe
hypoglycemia for people with T2DM on inten-
sive therapies [25, 161], the use of CGM as part
of acute management for cardiometabolic,
neurological, and oncological conditions must
be strongly considered.

Post-Transplant Hyperglycemia
and Diabetes

Recipients of organ transplants can develop
post-transplantation diabetes (PTDM) in the
first year after transplantation as a consequence
of immunosuppressive therapy and b-cell dys-
function. PTDM is common, affecting up to
30% of kidney [162], heart [163], liver [164],
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and lung transplant [164] patients who were
non-diabetic pre-transplant. Although PTDM is
not thought to be associated with microvascular
and macrovascular complications, it is associ-
ated with increased risk of cardiovascular mor-
bidity and mortality and graft loss, and lower
rates of survival in patients with PTDM [165].

The adverse consequences of PTDM mean
that intensive glucose monitoring and man-
agement is necessary in the immediate period
after transplantation surgery. This can be
achieved using CGM, which is straightforward
for postsurgical teams to apply and for graft
recipients to self-manage during the weeks and
months as outpatients.

Use of CGM in Chronic Kidney Disease
(CKD)

There is only limited evidence that progression
of diabetes-related kidney disease may be slo-
wed using CGM to optimize TIR [166, 167].
However, several studies using CGM have
shown that patients with T2DM and stage 3–5
CKD have lower average glucose levels during
and immediately after hemodialysis as com-
pared to days not on dialysis [168, 169]. Con-
sequently, it is important to match their basal
insulin doses to their glycemic needs during this
period, to avoid an increased frequency of
hypoglycemia. In this context, CGM devices
can reveal the important daily glycemic pat-
terns for people with T2DM and CKD on
hemodialysis and help them manage daily diet
and physical activity. Another aspect of CKD
and other metabolic diseases is that HbA1c can
be compromised as a marker of overall glyce-
mia, because it is sensitive to non-glycemic
changes in red blood cell volume and turnover,
or protein glycation rates. Therefore, it has been
proposed that the glucose management indica-
tor (GMI) [170], a CGM-derived marker, can be
used to evaluate overall glucose exposure for
people in whom HbA1c may be an unreliable
[171, 172].

THE IMPORTANT ROLE OF CGM
IN PREGNANCY

Despite advances in antenatal diabetes care,
60% of babies born to women with T1DM are
large for gestational age (LGA), which is associ-
ated with increased rates of obstetric and
neonatal complications [173, 174]. Pregnant
women with T2DM have higher than expected
rates of perinatal death and increased rates of
LGA deliveries [173]. For women without dia-
betes prior to conceiving, GDM [175] is the
dominant condition among pregnancies com-
plicated by diabetes, affecting 3–10% of all
pregnancies and is associated with risk of fetal
macrosomia, shoulder dystocia, birth trauma,
and caesarean section [175]. It is important to
note that GDM is a metabolic disorder distinct
from pregestational diabetes. It is less severe and
typically resolves after giving birth. The benefits
of using CGM in GDM need to be better
researched. However, data obtained using CGM
in women with GDM show that significant
daytime glucose variability and elevated mean
glucose levels overnight are associated with
increased risk of fetal complications, including
LGA, in GDM [176–178]. The high rate of fetal
growth after the 30th week of gestation forces
the rapid implementation of effective therapy
for GDM, which is usually diagnosed around
the 26th to 28th week of gestation.

Meta-analyses of studies investigating the
impact of CGM on GDM pregnancies have
concluded that women with GDM better
implemented dietary recommendations and
achieved better glycemic control when using
CGM, compared to women using SMBG alone
[179, 180]. The incidence of LGA births was also
reduced for women with GDM who used CGM,
compared to those using SMBG [179, 180].

Amongst all pregnancies affected by dia-
betes, LGA infants are predisposed to develop-
ing obesity, T2DM, and cardiovascular disease,
persisting into adulthood [181, 182]. As thera-
pies for CF are offering greater health and
longevity, women with CF are increasingly
pursuing pregnancy [183]. The prevalence of
GDM or CFRD in this group is high, with up to
66% of pregnancies affected [184] and with
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associated risks for LGA and perinatal compli-
cations [183].

Application of CGM during pregnancy has
shown that during the critical stages of early
pregnancy women with pregestational T1DM or
T2DM spend only 50% of each day (12 h) with
glucose levels in the target glucose range
70–140 mg/dL (3.9–7.8 mmol/L) [185]. The
CONCEPTT trial [186] in 215 pregnant women
with T1DM, using a target glucose range of
63–140 mg/dL (3.5–7.8 mmol/L), showed that
TIR increased by approximately 10% (2 h
24 min/day) from the first to the third trimester.
The CONCEPTT trial also showed that use of
CGM helps women with T1DM improve their
%TIR during pregnancy compared to controls
using SMBG (68% vs 61%; 16 h 19 min vs 14 h
38 min/day) [186]. This improvement in glyce-
mia was achieved without increased maternal
hypoglycemia.

A retrospective analysis [187] of CGM data
from both the CONCEPTT trial [186] and a
Swedish retrospective study [188] on a total of
386 pregnancies found that women with T1DM
who went on to have LGA deliveries had sig-
nificantly lower time in the pregnancy target
glucose range from around 6 to 8 weeks of ges-
tation, compared to women with T1DM who
delivered normal sized infants. Ultimately,
normal birth weight for women with T1DM is
associated with achieving significantly lower
mean daily glucose concentration and higher
time in target glucose range from before the end
of the first trimester [187]. The relevance of
CGM in this context is further underscored by
data indicating increased glucose variability is
an independent risk factor for delivering LGA
infants for women with pregestational diabetes
[189, 190], and that use of isCGM is associated
with a lower rate of spontaneous abortion in
pregnant women with T1DM, when compared
to SMBG [191].

The outcome of these studies in T1DM has
led to international consensus guidelines which
propose that pregnant women with pregesta-
tional diabetes or gestational diabetes spend
greater than 70% of time with glucose between
63 and 140 mg/dL (3.5–7.8 mmol/L) [30].

Specific studies on using CGM or isCGM in
pregnancy in T2DM and in GDM are planned to

complete this picture [192]. Overall, the need to
meet CGM-derived glucose targets for maternal
glycemia from early pregnancy [187] empha-
sizes the need to use CGM devices in women
either with pregestational diabetes or GDM,
including in women with CFRD, from the ear-
liest possible moment in pregnancy.

MODERN MANAGEMENT
OF DIABETES WITH CGM:
A CHALLENGE FOR HEALTHCARE
PROFESSIONALS AND HEALTHCARE
SERVICES

Expanding the application of CGM systems for
management of people with T2DM and beyond
will require a considerable adjustment in diabetes
service delivery. Key among these is education for
HCPs, particularly in understanding the hetero-
geneity of T2DM and the diverse patient profiles
thatmust bemanaged [85, 86]. Similarly, the high
value of CGM in amuch larger population of users
is due to its utility for remotemonitoring, reducing
the need for in-clinic consultations and for
streamlining workflows [193]. A concern in this
context is a 2018 survey of primary care physicians
across the EU, which found that 89% did not
engage with telemedicine solutions with their
patients, that 81% did not use it with other HCPs,
and that 51% were either unaware that tele-
medicine educationwas available or did not access
it [194]. This landscape is likely to have changed as
a consequence of theCOVID-19 pandemic, during
which telemedicine became the predominant
mode of diabetes consultations [195]. Although
limited, the available evidence suggests that tele-
medicine is not inferior to face-to-face visits in
diabetes care [195, 196], and that primary care
teams and patients have embraced it [197, 198].

THE EXPANDING FRONTIER
OF MODERN DIABETES CARE:
A MAP OF UNEXPLORED
OPPORTUNITY

We have reviewed the evidence base for use of
CGM in people with diabetes and also non-
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diabetic individuals who are challenged by
hyperglycemia in acute circumstances. This has
allowed us to propose the map of applications
outlined in Fig. 2. The number of potential
applications for using CGM for managing glu-
cose dysregulation is far greater than those
agreed in consensus guidelines and for which
reimbursement is typically provided by national
health services. Seizing this opportunity will
require the concerted efforts of HCPs and pro-
fessional societies, to create and agree the nec-
essary guidelines for the indications and
frequency of use of CGM in the diverse condi-
tions described. Equally, there is a significant
unmet need for evidence that the proposed use
of CGM can be associated with improved out-
comes in each case. This evidence will be the
foundation on which budget stakeholders will
assess the cost–benefit for expanding use of
CGM and recommend access.

CONCLUSIONS

The evidence on which to recommend inclu-
sion of CGM technology as the standard of care
for all people with T1DM and T2DM is avail-
able, including for people with T2DM on non-
insulin therapies. Many other clinical scenarios
are also deserving of the application of CGM in
order to manage acute episodes of glycemic
dysregulation in people without established
diabetes. The value of CGM as an intermittent
intervention at predefined points in the patient
journey is key to its widespread and cost-effec-
tive use. Extracting the untapped value of CGM
technologies in diabetes care is a significant
challenge for healthcare teams and healthcare
economies, and will require a paradigm shift in
attitudes, education, and service design.

Fig. 2 Intermittent use of CGM in the management of
heterogeneous aspects of T2DM and hyperglycemia. CGM
continuous glucose monitoring, CKD chronic kidney

disease, PTDM post-transplant diabetes, T1DM type 2
diabetes, T2DM type 2 diabetes
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188. Kristensen K, Ögge LE, Sengpiel V, et al. Continuous
glucose monitoring in pregnant women with type 1
diabetes: an observational cohort study of 186
pregnancies. Diabetologia. 2019;62:1143–53.
https://doi.org/10.1007/s00125-019-4850-0.

189. Bartal MF, Cornthwaite JA, Ghafir D, et al. Time in
range and pregnancy outcomes in people with dia-
betes using continuous glucose monitoring. Am J
Perinat. 2022. https://doi.org/10.1055/a-1904-9279.

190. Dori-Dayan N, Cukierman-Yaffe T, Kedar N, et al.
Maternal glucose variability during pregnancy &
birthweight percentile in women with pre-gesta-
tional diabetes. Gynecol Endocrinol. 2021;37:
1116–20. https://doi.org/10.1080/09513590.2021.
1993814.

191. Lemaitre M, Faiz K, Baudoux F, Subtil D, Vambergue
A. Intermittently scanned continuous glucose
monitoring is associated with lower spontaneous
abortion rate compared with conventional blood
glucose monitoring in pregnant women with type 1
diabetes: an observational study. Diabetes Vasc Dis
Res. 2022;19:14791641221136836. https://doi.org/
10.1177/14791641221136837.

192. Majewska A, Stanirowski P, Wielgoś M, Bomba-
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