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ABSTRACT

The aim of this narrative review is to update the
current knowledge on the differential choice of
circulating cardiac biomarkers in patients with
prediabetes and established type 2 diabetes
mellitus (T2DM). There are numerous circulat-
ing biomarkers with unconfirmed abilities to
predict clinical outcomes in pre-DM and DM
individuals; the prognostication ability of the
cardiac biomarkers reported here has been
established, and they are still being studied. The
conventional cardiac biomarkers, such as
natriuretic peptides (NPs), soluble suppressor
tumorigenisity-2, high-sensitivity circulating
cardiac troponins and galectin-3, were useful to
ascertain cardiovascular (CV) risk. Each cardiac
biomarker has its strengths and weaknesses that
affect the price of usage, specificity, sensitivity,

predictive value and superiority in face-to-face
comparisons. Additionally, there have been
confusing reports regarding their abilities to be
predictably relevant among patients without
known CV disease. The large spectrum of
promising cardiac biomarkers (growth/differ-
ential factor-15, heart-type fatty acid-binding
protein, cardiotrophin-1, carboxy-terminal
telopeptide of collagen type 1, apelin and non-
coding RNAs) is discussed in the context of
predicting CV diseases and events in patients
with known prediabetes and T2DM. Various
reasons have been critically discussed related to
the variable findings regarding biomarker-based
prediction of CV risk among patients with
metabolic disease. It was found that NPs and hs-
cTnT are still the most important tools that
have an affordable price as well as high sensi-
tivity and specificity to predict clinical out-
comes among patients with pre-DM and DM in
routine clinical practice, but other circulating
biomarkers need to be carefully investigated in
large trials in the future.
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Key Summary Points

The role of diabetes mellitus as a cause of
asymptomatic and symptomatic cardiac
disease is progressively increasing.

Conventional biomarkers of cardiac
biomechanical stress and myocardial
injury have demonstrated limited
predictive value for patients with
prediabetes and diabetes mellitus.

Circulating biomarkers of fibrosis (soluble
ST2) and inflammation (growth-
differentiation factor-15, galectin-3,
cardiotrophin-1) are promising predictors
of cardiac injury at an early stage.

Multiple biomarker predictive scores could
be useful in personalizing stratification
and care.

INTRODUCTION

Diabetes mellitus (DM) is a common metabolic
disorder worldwide and has reached epidemic
levels [1]. Type 2 DM (T2DM) comprises about
90% of the cases of the disease and affects 8.3%
of the entire adult population [2]. It has been
suggested that by 2035 about 592 million peo-
ple will die of DM, and it will be one of the
leading causes of mortality in the general pop-
ulation [3]. Although there are several well-
established methods for the prevention and
treatment of DM, the disease has been consid-
ered a powerful risk factor for cardiovascular
(CV) disease, but evidence for a close relation-
ship between various types of prediabetes, such
as metabolically healthy obesity and metabolic
syndrome, is still conflicting [4–6]. However,
T2DM is closely linked to a substantial increase
in all-cause mortality and CV mortality in the
general population [7]. Therefore, DM patients
with known CV diseases, including atheroscle-
rosis, stable coronary artery disease (CAD),
acute coronary syndrome/myocardial infarction

(MI), heart failure (HF), arrhythmia (atrial fib-
rillation and flutter) and cardiomyopathies,
have a higher risk of death than non-diabetics
with CV diseases [8–12].

In 2019, the European Society of Cardiology
(ESC) announced a new clinical guideline on
diabetes, pre-diabetes and CV diseases [13]. This
recommendation contains a section on circu-
lating cardiac biomarkers, which are promising
prognostic indicators for CAD, HF and major
adverse CV events (MACEs) in DM patients.
Notably, T2DM and diabetes-induced target
organ damage have been considered factors that
hinder clinical interpretations of circulating
biomarkers’ peak levels [14]. For instance,
abdominal obesity in diabetics was associated
with increased endogenous activity of neprily-
sin and thereby decreased the expected levels of
circulating natriuretic peptides (NPs), which
were previously proposed as powerful diagnos-
tic and accurate prognostic biomarkers in HF
[15]. Nowadays, there is an appropriate correc-
tion for the NP discriminative value in DM to
calculate CV risk [16]. On the other hand, at the
early stage of DM in elderly people without CV
disease, the circulating levels of soluble sup-
pressor tumorogenicity-2 were significantly
increased compared with healthy elderly vol-
unteers [17]. These data need to be evaluated
carefully to prevent both over- and underesti-
mation of CV disease risk and inadequate care
[18]. Finally, multiple cardiac biomarker mea-
suring strategies have been proposed as tools to
improve the sensitivity and specificity of con-
ventional diagnostic and predictive models, and
serial measurements of circulating cardiac
biomarkers have been used in clinical practice.
The current recommendations of the ESC and
American Heart Association seriously differen-
tiate in this setting [19]. The aim of the narra-
tive review is to update the current knowledge
on the differential choice of circulating cardiac
biomarkers in patients with prediabetes and
established T2DM. This article is based on pre-
viously conducted studies and does not involve
any studies with human participants or animals
performed by any of the authors.
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TYPE 2 DIABETES MELLITUS AND CV
RISK

CV risk in T2DM patients is caused by several
mechanisms that are associated with the
development of micro- and macrovascular dys-
function, accelerating atherosclerosis, an
impaired endogenous repair system, direct cell
metabolism impairment, oxidative stress, vas-
cular and systemic inflammation, inadequate
immune response, cardiac biomechanical stress,
fibrosis, necrosis and apoptosis as well as
thrombophilia and aggregation of circulating
blood cells [20–25]. In fact, from the early stages
of prediabetes, traditional CV risk factors (hy-
pertension, smoking, obesity and dyslipidemia)
are present in T2DM patients and have an
association with CV death in the diabetic pop-
ulation [24, 25]. Not all cases of HF resulting
from the progression of T2DM are associated
with primary diabetes-induced metabolic
impairments and ventricular hypertrophy
[26–28].

T2DM patients have increased mortality and
CV complications with a [ 4-fold risk of death
and CV among patients without T2DM [29].
However, there are differences in the all-cause
mortality and CV death rates between T2DM
patients and non-T2DM patients, and preven-
tive and treatment approaches have been
implemented over the last decade [20]. Addi-
tionally, the all-cause mortality rate among
diabetics, as compared with that in the general
population, is influenced by older age, poor
glycemic control and renal complications, but
these factors are not independently related to
death due to CV disease and HF [29]. In this
context, biomarkers reflecting CV risk appear to
be promising for risk stratification and probably
improve point of care in diabetics with
unknown CV disease.

CARDIAC BIOMARKERS IN T2DM

Evidence shows that conventional CV risk fac-
tors have a negative influence on the mortality
rate and quality of life of T2DM patients, and it
is suggested that cardiac biomarkers reflecting
various pathophysiologic stages of cardiac

remodeling, such as biomechanical stress,
inflammation, necrosis/apoptosis, fibrosis,
hypertrophy and extracellular matrix remodel-
ing, would have an incremental add-on value
for the prediction of clinical outcomes (death,
MACEs, hospital admission, HF onset) in the
patient population. Moreover, measurement of
circulating levels of cardiac biomarkers can
demonstrate new individual predictive infor-
mation that could have great predictive power
beyond conventional CV risk factors. However,
each biomarker has strengths and weaknesses,
which affect the cost, specificity, sensitivity,
predictive value and superiority in a face-to-face
comparison. Because there are numerous circu-
lating biomarkers with unconfirmed abilities to
predict clinical outcomes in pre-DM and DM
individuals, we here report on cardiac
biomarkers whose prognostication value has
been established and are still being studied. The
utility of circulating cardiac biomarkers in
patients with T2DM is reported in Table 1.

Natriuretic Peptides

Natriuretic peptides have immense systemic
homeostatic effects, playing a pivotal role in the
regulation of natriuresis, electrolyte and water
retention, vascular permeability and vasodila-
tion, cardiac contractility and blood pressure
changes; consequently, NPs are physiologic
antagonists of the renin-angiotensin-aldos-
terone and sympatho-adrenal systems [30].
Several types of NPs are released predominantly
from the myocardium, atrial (ANP) and brain
(BNP) NPs, and vessels, bone and brain (C-type
NP) [31]. Physiologic effects of NPs cause bind-
ing to the extracellular domains of the appro-
priate receptors, NPR-A, NPR-B and NPR-C.
NPR-A and NPR-C are widely expressed on the
surfaces of target cells and involved in the reg-
ulation of NP bioavailability independently
from circulating neprilysin activity [32]. Syn-
thesis and secretion of NPs, predominantly ANP
and BNP, are carried out in response to
myocardial stretching and fluid overload, while
several stimuli have direct and indirect impacts
on NP production, accumulation and secretion,
such as ischemia/hypoxia, inflammation,
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Table 1 Utility of circulating cardiac biomarkers in patients with prediabetes and T2DM

Pathogenetic
condition

Biomarkers Relation to CV risk in patients with
prediabetes and T2DM

References

Cardiac

biomechanical

stress

NPs (atrial NP, NT-proANP,

brain NP, NT-proBNP)

Independent predictors of new-onset CAD,

and MACE

[46, 48, 53, 63]

Independent predictors of HF [49, 51, 54]

Independent predictors of AF and sudden

death

[52]

Micro- and macrovascular complications [53, 57, 58, 63]

Predictors of adverse cardiac remodeling [55]

Cardiac myocyte

necrosis

hs-Tn I/T Independent predictors of MACE [46, 74, 84, 87]

Predictors of CV death and HF [70, 73, 81]

Predictors of T2DM-induced CMP [81, 87]

Predictors of renal outcomes [85, 86]

H-FABR Predictors of long-term mortality and re-

infarction

[95]

Predictor of premature death [99]

Predictor of asymptomatic cardiac ischemia [101–103]

Inflammation sST2 Predictor of CV disease and CV mortality [111]

Predictor of HF and HF-related outcomes [110]

Predictor of CV risk and mortality [113–117]

GDF15 Prediction of CV risk and mortality [124, 138]

Prediction of new-onset T2DM [125, 127]

Prediction of MACEs in ACS/MI [131, 132]

Prediction of HF and HF-related outcomes [133, 134, 137]

Prediction of T2DM-induced CMP [139]

Fibrosis Galectin-3 Prediction of T2DM-induced CMP [155]

Prediction of MACEs and all-cause mortality [156, 157]

Myocardial

hypertrophy

Cardiotrophin-1 Prediction of T2DM-induced CMP [173, 174]

Extracellular

matrix

remodeling

Extracellular matrix biomarkers Prediction of HFpEF, HF-related outcomes,

MACEs

[175–180]

NPs natriuretic peptides, sST2 soluble suppressor tumorogenicity-2, CAD coronary artery disease, GDF15 growth/differ-
ential factor-15, ACS acute coronary syndrome, MI myocardial infarction, MACE major adverse cardiac events, CMP
cardiomyopathy

1274 Diabetes Ther (2020) 11:1271–1291



hormones (catecholamines, aldosterone, renin)
and growth factors (transforming growth factor-
beta, vascular endothelial growth factor) [33].
The C-type NP is a locally produced peptide,
which acts as an autocrine regulator of vascular
function, bone ossification and development of
the nervous system.

Additionally, NPs suppress the lipolytic
activity of adipocytes through attenuation of
adipose tissue-expressed NPR-A and NPR-C [34].
Nevertheless, NPs increasing p38 MAP kinase in
brown adipose tissue cells cause overexpression
of ‘‘browning’’ genes ensuring upregulation of
energy expenditure and adaptive thermogenesis
[35]. NPs are involved in transcriptional regu-
lation of genes, which are responsible for
mitochondrial biogenesis, uncoupled respira-
tion (PPARc coactivator-1a and uncoupling
protein 1), lipid oxidation, GLUT-4 synthesis
and insulin sensitivity in various human cells,
including adipocytes, skeletal muscle cell,
myocardium, vasculature smooth muscle cells,
endothelial cells and hepatocytes [36, 37]. In
fact, the NPR-A signaling pathway in skeletal
muscle cells and hepatocytes is crucial for the
metabolic memory phenomenon and the
change of pre-diabetes to T2DM [38, 39].

Previous observational and clinical studies
have yielded evidence of altered clearance of
NPs and impaired activity of neprilysin in
patients with abdominal obesity, metabolic
syndrome and T2DM in connection with fast-
ing glucose impairment and insulin resistance
[40, 41]. However, there are controversial find-
ings related to the ability of circulating insulin
to reciprocally regulate NPR-C expression on
the surface of adipose tissue cells in obese
individuals [42–44]. Therefore, patients with
diabetes-induced nephropathy had increased
circulating levels of BNP and NT-pro-BNP com-
pared with those who did not have diabetes
renal disease [45]. Overall, the primary cause of
the fluctuation of circulating NP levels among
patents with metabolic disease is not clear.

Current clinical guidelines recommend
measuring NP levels to diagnose HF, stratify
patients at higher CV risk including HF onset
risk and predict short-term re-admission to the
hospital because of HF decompensation
[46, 47]. Asymptomatic and symptomatic HF

patients can be stratified as at risk of death from
any cause and CV disease if they have high
circulating levels of NT-proBNP[125 pg/ml
or[300 pg/ml, respectively [47]. In fact,
increased age was associated with diagnostic
cutoff points for the above-mentioned NT-
proBNP upper values [45, 48]. Surprisingly, HF
patients without T2DM with higher levels of
NPs have shown much more predictive accu-
racy for MACEs, CV mortality and HF manifes-
tation than those who have T2DM [46, 49].

Interestingly, women with HF with a pre-
served ejection fraction (HFpEF) had higher
levels of NT-proBNP and consequently CV
mortality risk than males with HFpEF [50].
HFpEF patients with T2DM had more ventricu-
lar hypertrophy and adverse cardiac remodeling
compared with non-T2DM patients, while sys-
tolic and diastolic myocardial function and
serum levels of NT-proBNP did not differ [51].
There is evidence of NPs in HF in reduced ejec-
tion fraction (HFrEF) patients with prediabetes/
T2DM independently predicting atherosclero-
sis, atrial fibrillation, pulmonary hypertension
and sudden death [52–54]. Overall, the NT-
proBNP level predicted cardiac abnormalities
and CV events regardless of glucose status, and
multiple biomarker models are required to
improve the predictive accuracy for HF [53–57].

Controversies Related to the Predictive
Value of NP in Pre-Diabetics and Diabetics

There are some controversies related to the
variability of predictive values of NPs in patients
with abdominal obesity, metabolic syndrome
and T2DM. NPs are similar to cardiac troponins
in the prediction of micro- and macrovascular
complications in pre-diabetics without known
CV disease [58]. Among dysmetabolic patients
with HF, adipocytokines (adiponectin, resistin,
chemerin, leptin, visfatin) have exhibited addi-
tive discriminative power to NT-proBNP for
MACEs regardless of glucose status [59–61].

There is a close inverse association between
the number of metabolic syndrome compo-
nents and circulating levels of NPs in middle-
aged and elderly individuals, but not among
young people without CV disease [62]. Overall,
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NPs better predict CV outcomes in patients with
known HF than among individuals without HF
independently of prediabetes and T2DM [63].

NPs in HFrEF Patients with Prediabetes
and DM

It had been noted that HFrEF patients with
prediabetes and T2DM treated with glucagon-
like peptide-1 [GLP-1] analog (liraglutide) [64]
and sodium-glucose co-transporter-2 [SGLT2]
inhibitor (empagliflozine, dapaglyflozine)
[65, 66] with benefits in CV outcomes have
demonstrated a decrease in serum levels of NT-
proBNP. In contrast, among non-HF patients
with prediabetes/T2DM, serum levels of NT-
proBNP remain unaltered despite improved
glucose homeostasis and decreased CV risk [67].
Interestingly, the change in NT-proBNP serum
levels correlated negatively with baseline levels
of NT-proBNP in T2DM patients [68]. Addi-
tionally, in the DEFINE-HF Trial, the SGLT2
inhibitor dapagliflozin did not affect the mean
NT-proBNP serum levels, but increased the
proportion of patients (diabetics and non-dia-
betics) experiencing clinically meaningful
improvements in HFrEF-related clinical status
[69]. These facts require elucidation in large
clinical studies in the future.

Overall, NPs continue to be the most
important tool for identifying pre-diabetics and
diabetics at CV risk that are affordable. The
highest sensitivity and specificity were estab-
lished for patients with HF symptoms, but for
asymptomatic individuals the predictive accu-
racy of NP levels is superior to traditional CV
risk factors. Probably the use of serial measure-
ments of circulating levels of NPs in DM
patients with HF treated with SGLT2 inhibitors
can be disputed as surrogate markers with pos-
sible predictive value.

Cardiac Troponins

Cardiac troponins are established biomarkers of
myocardial injury and necrosis, and, even
below the 99th percentile, they strongly predict
adverse outcomes in prediabetes and T2DM
patients. There is evidence showing that

patients with prediabetes and T2DM may
develop asymptomatic myocardial damage
beyond obvious ischemic causes [70, 71]. The
primary causes that lead to increased perme-
ability of cell membranes, leakage of a cyto-
plasmic pool of cardiac troponins and onset of
small-sized myocardial necrosis in prediabetes
and diabetes patients are lipotoxicity and
myocardial steatosis, which influence the
biomechanical myocardial stress, low-grade
inflammation, oxidative stress, endoplasmic
reticulum stress and mitochondrial stress,
altered reparation due to the metabolic memory
phenomenon and impaired intracellular meta-
bolism [71, 72].

Micro- and macro-vasculopathies in predia-
betes and diabetes are associated with acceler-
ating atherosclerosis, plaque shaping,
development of endothelial dysfunction and
microvascular obstruction, which induce dia-
betes-related cardiomyopathy [72, 73]. How-
ever, a T2DM-induced significant decrease in
sirtuin-1 and hypoxia-inducible factor (HIF)-1a
expression in the myocardium as well as
declining circulating levels of orexin B may
contribute to ischemia-reperfusion injury and
exacerbate the cardiac and vascular dysfunc-
tions [74].

Therefore, there are extra-cardiac causes that
increase high-sensitivity circulating troponin
(hs-cTn) T/I levels. For instance, the lowered
estimated glomerular filtration rate (per each
15 ml/min/1.73 m2 lower) showed an indepen-
dent association with a steeper hs-cTnT increase
[75]. All of these conditions yield an increased
risk of CV death and CV events including
MACEs and HF [46, 76, 77].

Patients with metabolic syndrome have
demonstrated higher hs-cTnI levels than those
who do not have the condition, but there were
no significant differences in BNP serum levels
[78]. Additionally, the levels of hs-cTnI signifi-
cantly correspond to the presence and compo-
nents of metabolic syndrome [78]. No
significant difference was found in changes in
hs-cTnT/I between non-ST elevation myocardial
infarction patients with and without T2DM
[79, 80]. However, elevated hs-Tnl levels were
found to be independent predictors of MACE in
individuals with known CAD regardless of
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glucose metabolism status [46, 79, 81, 82] as
well as among patients with prediabetes and
T2DM without known CAD [83, 84]. Interest-
ingly, in several large clinical trials, such as
SAVOR-TIMI 53 and TECOS, elevated levels of
hs-cTnT in patients with T2DM during treat-
ment with antidiabetic drugs (inhibitors of
dipeptidyl peptidase 4 saxagliptin and sitaglip-
tin) were significantly associated with renal
outcomes rather than CV events and MACEs
[85, 86], but in diabetics with CV disease, i.e.,
myocardial infarction, the hs-cTnT levels cor-
responded positively to CV death, MACEs and
HF [87].

Considering the high availability of troponin
measurements, affordability of the test and rel-
atively high sensitivity and specificity for pre-
diction of CV events, hs-cTnT/Is are promising
for risk stratification of patients with pre-DM
and DM with known CV diseases.

Heart-Type Fatty Acid-Binding Protein

Heart-type fatty acid-binding protein (H-FABR)
is a novel serum biomarker of early myocardial
ischemia and injury that has been recently
reported to be related to CV diseases [88], acute
myocardial infarction (MI) [89, 90] and long-
term post-MI prognosis [91]. H-FABR is rapidly
released into the circulation from cardiac myo-
cytes after non-selective increased cell mem-
brane permeability and myocardial injury [89].
H-FABR is more sensitive than conventional
biomarkers (myoglobin and hs-cTnT/I) to diag-
nose acute MI [90]. Circulating levels of H-FABP
were also found to be higher in prediabetes
[92–94] and T2DM patients [95, 96] than in
those who did not have DM. Although H-FABP
levels predicted subclinical myocardial injury or
subclinical atherosclerosis in patients with pre-
diabetes and T2DM [97, 98], its predictive value
for CV risk in patients with impaired glucose
metabolism without established CAD is unclear.
It has been suggested that higher H-FABP levels
in asymptomatic patients at the early stages of
metabolic disorders may reflect silent myocar-
dial damage and susceptibility to HF develop-
ment and the risk of premature cardiac death
[99]. This evidence reflects the fact that

overexpressed H-FABP in the sub-intima can
induce multiple pathways of inflammation,
growth and migration of vascular smooth
muscle cells and thereby influence in-stent
restenosis in the culprit coronary artery after
percutaneous coronary intervention (PCI) [100].
Unfortunately, circulating H-FABP levels were
found to be similar in T2DM patients without
CAD and non-T2DM individuals [101]. More-
over, H-FABP was not a better independent
powerful diagnostic biomarker when used alone
than traditional CV risk factors [101, 102]. In
fact, the strength of the biomarker is its ability
to diagnose the early period of asymptomatic
cardiac ischemia in T2DM patients with dia-
betic ketoacidosis and diabetic ketosis, and it is
also inexpensive [103]. Large clinical trials are
required to identify the predictive ability of the
biomarker in a face-to-face comparison with
other biomarkers in prediabetes and DM
patients.

Soluble Suppressor Tumorogenisity-2

The soluble form of suppressor tumorogenisity-
2 (sST2) acts as a decoy receptor of interleukin
(IL)-33, inhibiting the effects of IL-33/ST2
ligand signaling, and it is produced by
endothelial and epithelial cells, fibroblasts and
certain immune cells in response to biome-
chanical stress, ischemia/necrosis, hypoxia and
inflammatory cytokines [104]. In fact, the IL-33/
ST2/sST2 axis is a core component of the auto-
crine/paracrine mechanism acting to prevent
tissue injury [105, 106].

Elevated levels of sST2 were not found to be a
specific diagnostic biomarker for a single disor-
der in humans, but increased serum concen-
trations of sST2 were linked to the progression
of atherosclerosis [107], myocardial dysfunction
[108], fibrosis and adverse cardiac remodeling
[109], poor clinical outcomes in CV diseases
including HF and atrial fibrillation [110] and
metabolic disorders including diabetes mellitus
and metabolic syndrome [111]. In fact, serum
sST2 was measured in higher concentrations in
T2DM patients, and the presence of left ven-
tricular hypertrophy and diastolic and systolic
cardiac dysfunction was associated with even

Diabetes Ther (2020) 11:1271–1291 1277



higher sST2 levels [108]. sST2 has been validated
as a predictive biomarker for CV disease and CV
events, including HF [48]. Therefore, sST2
independently predicted the no-reflow phe-
nomenon in STEMI patients undergoing pri-
mary PCI [112].

Previous clinical studies have shown that
sST2 levels are strongly associated with several
markers of T2DM including glycosylated
hemoglobin, triglyceride levels, fasting glucose,
HOMA-IR, ectopic fat accumulation and the
glomerular filtration rate, and the levels in
women are lower than in men, but the sST2
concentration increases with age [113, 114].
Elevated levels of sST2 are not an independent
predictor of mortality and MACE in diabetics
with acute coronary syndrome (ACS) and MI
[115], whereas in ACS/MI patients without
T2DM elevated levels of sST2 are independently
associated with a risk of early in-hospital death,
30-day death and HF onset [116, 117].

Thus, most investigations have shown that
sST2 levels are higher in patients with CV dis-
ease who also have either prediabetes or T2DM
and that this association has independent pre-
dictive value for prognosis. The weakness of this
biomarker is that that associations between
serum levels of sST2 and other CV biomarkers
(including NPs) and CV-related events in dys-
metabolic individuals without CV disease have
not been carefully studied, and the predictive
power of sST2 beyond conventional CV risk
factors requires confirmation in the future.

Growth Differentiation Factor 15

Growth differentiation factor 15 (GDF15), also
known as macrophage-inhibiting cytokine 1,
belongs to the transforming growth factor-ß
(TGF-ß) superfamily [118]. GDF15 is released
from a wide range of cells, such as mononuclear
cells, macrophages, cardiac myocytes and adi-
pocytes, under inflammatory conditions and
oxidative stress [119, 120]. The main biologic
role of the GDF15 is to regulate the inflamma-
tory response, growth, cell differentiation,
energy homoeostasis and weight loss. In fact,
GDF-15 protects target tissues (myocardium,
kidney, adipose tissue and vasculature) by

several intracellular molecular pathways, such
as inhibiting c-Jun N-terminal kinase, Bcl-2-as-
sociated death promoter, epidermal growth
factor receptor and activating SMAD, endothe-
lial NO synthase and phosphoinositide 3-ki-
nase/AKT signaling pathways [121]. There is
evidence of a role of GDF15 in oxidative stress,
protein glycation, inflammation, cellular
senescence and hormonal deregulation in aging
and age-depending diseases [122, 123].

Serum levels of GDF15 were found to be
higher in prediabetes/T2DM patients than in
healthy volunteers and independently associ-
ated with CV risk scores [124], body mass index,
waist-to-hip ratio [125], insulin resistance [126],
hs-CRP [127] and parameters of glucose meta-
bolism (C-peptide, fasting pre-hepatic beta cell
function, impaired fasting glucose) [128, 129],
while successful glycemic control did not cause
a decrease in GDF15 levels [130].

Previous clinical studies have shown elevated
levels of GDF15 are independently related to
adverse cardiac remodeling and poor prognosis
in ACS/MI [131, 132], HF [133], atrial fibrilla-
tion [134], renal dysfunction [135] and cachexia
[135, 136]. Moreover, serial measurements of
GDF15 have shown that an increase in GDF-15
over 1 year was independently associated with
higher risks of future CV mortality beyond the
NYHA functional class, left ventricular (LV)
ejection fraction (EF) and circulating levels of
NT-proBNP [137]. Additionally, elevated levels
of GDF15 were strongly associated with an
increase of the all-cause mortality rate in
patients with atherosclerosis, such as angio-
graphically proven CAD and peripheral artery
disease, regardless of T2DM presentation [138].

Interestingly, elevated levels of the GDF15
over the cutoff point of 3812 pg/ml predicted
T2DM-induced cardiomyopathy in the absence
of other CV risk factors, such as age, smoking,
hypertension and known CV disease [139].
Moreover, some antidiabetic drugs, such as
metformin, promote their cardioprotective
effects through GDF15 expression in target tis-
sue [140]. Having strong evidence that GDF15
expression in multiple tissues is higher in pre-
diabetes and T2DM patients than in individuals
without metabolic disorders [141, 142], it has
been suggested that GDF-15 may be a promising
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biomarker for identification of people at risk of
metabolic-induced events (T2DM-induced car-
diomyopathy) and CV disease/events. It can be
of great clinical importance because a highly
anticipated new class of GFRAL (receptor for
GDF15)/RET (receptor tyrosine kinase)-based
drugs for the treatment of abdominal obesity
and metabolic syndrome may mediate the
endogenous effects of GDF15 and thereby
improve CV risk in individuals with metabolic
diseases [143, 144].

Galectin-3

Galectin-3 (Gal-3) is a versatile protein that
belongs to the lectin family and has been
implicated predominantly in cardiac, liver and
kidney fibrosis and inflammation [145, 146].
Overexpression of Gal-3 is associated with
accumulation of advanced glycation end prod-
ucts (AGE), oxidative stress products (3-ni-
trotyrosine protein, superoxide radicals) and
activation of the pro-apoptotic c-Jun-N-termi-
nal kinase 1/2 stress signaling pathway, which
directly influences the development of
endothelial dysfunction and altered vascular
reparation [147, 148].

Mediating profibrotic pathways, Gal-3 pre-
dicts cardiac remodeling and CV events that are
independently related to it, such as HF and
atrial fibrillation [149, 150]. Among asymp-
tomatic adults from the general population, the
highest quartile of Gal-3 levels was closely
associated with two-fold increased odds of
myocardial dysfunction compared with the
lowest quartile of the biomarker [151]. Addi-
tionally, elevated levels of GDF15 were related
to methylated arginine and hs-CRP in patients
with prediabetes and T2DM without known
CAD [152].

Based on previous clinical studies, Gal-3 has
served as a prognostic clinical biomarker in HF
[48], but its role in the prediction of T2DM was
uncertain until the end of the Dallas Heart
Study [153]. Gal-3 levels in the trial were asso-
ciated with the incidence of T2DM even after
adjustment for conventional metabolic and CV
risk factors (age, gender, race, body mass index
and hypertension) and renal function.

Therefore, there were correlations between Gal-
3 levels and circulating levels of inflammatory
biomarkers (hs-CRP, IL-18, monocyte
chemoattractant protein 1, soluble tumor
necrosis factor receptor 1-alpha and myeloper-
oxidase), insulin secretion biomarkers (C-pep-
tide), the homeostatic model assessment for
insulin resistance and subcutaneous adiposity.
Interestingly, in patients with abdominal obe-
sity and prediabetes without established CAD,
increased levels of the GDF15 were correlated
with LV diastolic dysfunction and elevated
pulmonary artery systolic pressure, but not with
LV mass [154]. Elevated Gal-3 levels were asso-
ciated with diminished global longitudinal
strain in diabetics [155]. There is confirmation
of a close association between elevated levels of
GDF15 in prediabetic individuals and patients
with T2DM and a risk of vascular calcification,
plaque formation and endothelial dysfunction,
corresponding to a risk of MACEs and all-cause
mortality [156–158].

There are data elucidating the possible
interrelation between dynamic changes in cir-
culating levels of GDF15 and CV risk in T2DM
patients treated with antidiabetic drugs
[159, 160]. Serum Gal-3 levels in T2DM patients
showed a modest increase from the baseline
with the SGLT2 inhibitor canagliflozin versus
placebo, whereas the concentrations of both
NT-proBNP and hs-cTnI for [ 2 years have
demonstrated a tendency to decrease [161].
Large clinical trials are required to elucidate a
strategy for GDF15-guided therapy of T2DM
without CV disease and with established CV
disease including HF. Finally, Gal-3 is a
promising biomarker with high sensitivity and
specificity that identifies preclinical metabolic
heart disease and stratifies patients at risk of CV
death and CV events including HF. The eco-
nomic aspect of using this biomarker requires
further elucidated.

Cardiotrophin-1

Cardiotrophin-1 (CT-1) is an adipocytokine that
belongs to the IL-6 family and realizes its bio-
logic effect by binding to the gp130 receptor
[162]. CT-1 and its receptors are expressed in
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many tissues including the myocardium, brain,
kidney, skeletal muscles, adipose tissue, liver,
lung and testes and acts as an endocrine and
paracrine regulator of physiologic and patho-
physiologic functions [163]. The main source of
CT synthesis is adipocytes, and down- and
upregulated CT-1 gene expressions were found
in white and subcutaneous adipose tissue,
respectively [164, 165]. CT-1 decreases fasting
glucose in an insulin-independent manner,
mediates increased insulin sensitivity through
the AKT-dependent pathway in skeletal mus-
cles, reduces food intake, stimulates lipolysis
and enhances energy expenditure [166].

It has been suggested that in patients with
abdominal obesity, metabolic syndrome and
T2DM adipose-derived CT-1 ensure metabolic
circadian rhythms and adipose core clock genes
[167] and promote tissue-protective effects
including increased resistance of cardiac myo-
cytes to hypoxia/ischemia, growth and differ-
entiation of progenitor cells of different origin,
reducing [163, 168]. Indeed, lowered circulating
levels of CT-1 were associated with decreased
risk of metabolic syndrome and T2DM in over-
weight patients [169]. Moreover, the CT-1 level
was inversely correlated with the severity of
obesity in non-T2DM patients [170].

A large body of evidence shows that the
changes in LV geometry and development of LV
hypertrophy and systolic and diastolic HF are
related to lowered expression of CT-1 receptors
in the heart and increased circulating levels of
CT-1 in the peripheral blood [171, 172]. Addi-
tionally, the circulating level of CT-1 predicts
the risk of T2DM manifestation, T2DM-induced
target organ damage and CV complications
regardless of classic CV risk factors [173, 174].
Although CT-1 has possible predictive ability
for LV hypertrophy, T2DM-induced cardiomy-
opathy and HF appear to be promising; large
clinical trials are required to ascertain whether
this biomarker has independent discriminative
power and is affordable to use in a face-to-face
comparison with other outcome indicators.

Future Biomarkers

Collagen Turnover Biomarkers
There is a wide spectrum of biomarkers, which
reflects several stages of TDM pathogenesis and
could predict CV risk. For instance, carboxy-
terminal telopeptide of collagen type 1 was
measured in elevated concentrations in
peripheral blood among diabetics compared
with healthy volunteers and individuals with
metabolically healthy obesity [51]. This is a
profibrotic biomarker with predictive value for
CV events that also is found in elevated levels in
patients with HFpEF [175].

Other collagen biomarkers, such as procol-
lagen type III N-terminal propeptide and colla-
gen type I carboxy-terminal telopeptide, also
appeared to be related to incident HFpEF, but
not HFrEF [176]. Whether these pro-peptides,
which reflect collagen synthesis and degrada-
tion, can be used to prognosticate CV risk in
patients with metabolic disease is not fully
understood, but a growing body of evidence
suggests that they may play a pivotal role in
point of care in patients with HFpEF and pos-
sibly HFrEF regardless of glucose impairment
[177].

Biomarkers of Extracellular Matrix
Remodeling
Extracellular matrix remodeling biomarkers,
such as matrix metalloproteinase (MMP)-1,
MMP-6 and MMP-9, and their tissue inhibitors,
osteoprotegerin and osteopontin, are promising
indicators of adverse cardiac remodeling and
MACEs in the post-MI period, but they are not
specific to T2DM-induced cardiac damage and
correspond well to conventional CV risk factors
including chronic kidney disease, aging and
hypertension [178–180].

Apelin
Another promising biomarker for LV hypertro-
phy and HF is apelin, which has demonstrated
vasodilator, inotropic and aquaretic properties
and is a physiologic antagonist of RAAS
[181, 182]. It has been shown that the devel-
opment of DM-induced cardiomyopathy is
attenuated by preventing mitochondrial
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dysfunction through the Apelin/Sirt3 pathway
[183]. The predictive role of apelin in the Ape-
lin/Sirt3 pathway for HF in DM patients is under
investigation.

Non-Coding RNAs
Non-coding RNAs, including microRNAs (miR-
NAs), as well-established powerful regulators of
posttranscriptional gene expression, could be
potential biomarkers for CV risk in patients
with prediabetes and DM [184]. Although there
are organ-specific miRNAs, expression of which
are highly up- or downregulated in HF, there are
no clear advantages to the signature of circu-
lating cell-free miRNAs and microvesicle-
derived miRNAs compared with traditional CV
risk biomarkers and HF biomarkers [185].

CONCLUSIONS

Although conventional cardiac biomarkers,
such as NPs, sST2, cardiac troponins and galec-
tin-3, can be useful for ascertaining CV risk in
patients with prediabetes and T2DM, there are
confusing reports regarding their ability to be
prognostically relevant among patients without
known CV disease. There have been many
cohort clinical studies with small sample sizes
in which the higher predictive power of these
biomarkers for CV death and MACEs in patients
with metabolic diseases was determined, but
large clinical trials have not demonstrated sig-
nificant results in this context. This is perhaps
related to mixed patient cohorts (having and
not having CV diseases) enrolled in the studies
for which positive predictive values of
biomarkers were sufficiently distinguished.
Another cause is the significant difference in the
quality of the studies. Therefore, numerous
results were obtained from post hoc data anal-
yses, and they were not given during prospec-
tive observation even when a large sample size
was presented. Most positive findings regarding
independent prediction of CV death, MACEs
and HF in prediabetes and T2DM populations
were obtained for NPs and hs-cTn I/T, whereas
other cardiac biomarkers did not frequently
show independent power in individuals with-
out known CV disease. These discrepancies

urged investigations of new biomarkers, such as
GDF15, H-FABR, CT-1, carboxy-terminal
telopeptide of collagen type 1, apelin and miR-
NAs as well as multiple biomarker predictive
scores. Finally, NPs and hs-cTnT continue to be
the most important tools with an affordable
price as well as high sensitivity and specificity to
predict clinical outcomes among patients with
pre-DM and DM in routine clinical practice, but
other circulating biomarkers need to be care-
fully investigated in large trials in the future.
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14. Åkerblom A, Wojdyla D, Steg PG, Wallentin L,
James SK, Budaj A, PLATO Investigators, et al.
Prevalence and relevance of abnormal glucose
metabolism in acute coronary syndromes: insights
from the PLATelet inhibition and patient Outcomes
(PLATO) trial. J Thromb Thrombolysis. 2019;48(4):

1282 Diabetes Ther (2020) 11:1271–1291

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1161/CIR.0000000000000558
https://doi.org/10.1161/CIR.0000000000000558
https://doi.org/10.1007/s12013-015-0598-4
https://doi.org/10.7326/M13-2411
https://doi.org/10.7326/M13-2411
https://doi.org/10.1161/circulationaha.114.014796
https://doi.org/10.1161/circulationaha.114.014796
https://doi.org/10.1177/2047487313500541
https://doi.org/10.1177/2047487313500541
https://doi.org/10.1016/j.jacc.2003.08.050
https://doi.org/10.1016/j.jacc.2003.08.050
https://doi.org/10.1136/bmjopen-2018-022990
https://doi.org/10.1136/bmjopen-2018-022990
https://doi.org/10.1111/1753-0407.12248
https://doi.org/10.1177/2047487313500541
https://doi.org/10.1177/2047487313500541
https://doi.org/10.2337/dc08-1871
https://doi.org/10.2337/dc08-1871
https://doi.org/10.1136/heartjnl-2016-310197
https://doi.org/10.1136/heartjnl-2016-310197
https://doi.org/10.1093/eurheartj/ehz486
https://doi.org/10.1093/eurheartj/ehz486


563–9. https://doi.org/10.1007/s11239-019-01938-
2.

15. Palau P, Bertomeu-González V, Sanchis J, Soler M,
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50. Palau P, Bertomeu-González V, Sanchis J, Soler M,
de la Espriella R, Domı́nguez E, et al. Differential
prognostic impact of type 2 diabetes mellitus in
women and men with heart failure with preserved
ejection fraction. Rev Esp Cardiol (Engl Ed). 2019.
https://doi.org/10.1016/j.rec.2019.09.002.

51. Lindman BR, Dávila-Román VG, Mann DL,
McNulty S, Semigran MJ, Lewis GD, et al. Cardio-
vascular phenotype in HFpEF patients with or
without diabetes: a RELAX trial ancillary study.
J Am Coll Cardiol. 2014;64(6):541–9. https://doi.
org/10.1016/j.jacc.2014.05.030.

52. Georgakopoulos C, Vlachopoulos C, Lazaros G,
Tousoulis D. Biomarkers of atrial fibrillation in
metabolic syndrome. Curr Med Chem. 2019;26(5):
898–908. https://doi.org/10.2174/
0929867324666171012105528.

53. Obaid N, Hadidy SE, Badry ME, Khaled H. The
outcome of diabetic patients with cardiomyopathy
in critical care unit: hospital and short-term out-
come in a period of six months to one year. Open
Access Maced J Med Sci. 2019;7(17):2796–801.
https://doi.org/10.3889/oamjms.2019.655.

54. Horwich TB, Hamilton MA, Fonarow GC. B-type
natriuretic peptide levels in obese patients with
advanced heart failure. J Am Coll Cardiol. 2006;47:
85–90.
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MA, Recio-Rodriguez JI, Agudo-Conde C, Fernán-
dez-Martı́n JL, et al. Plasma cardiotrophin-1 as a
marker of hypertension and diabetes-induced target
organ damage and cardiovascular risk. Medicine
(Baltimore). 2015;94(30):e1218. https://doi.org/10.
1097/MD.0000000000001218.

175. Kitahara T, Takeishi Y, Arimoto T, Niizeki T,
Koyama Y, Sasaki T, et al. Serum carboxy-terminal
telopeptide of type I collagen (ICTP) predicts car-
diac events in chronic heart failure patients with
preserved left ventricular systolic function. Circ J.
2007;71(6):929–35.

176. Duprez DA, Gross MD, Kizer JR, Ix JH, Hundley WG,
Jacobs DR Jr. Predictive Value of Collagen

biomarkers for heart failure with and without pre-
served ejection fraction: MESA (Multi-Ethnic Study
of Atherosclerosis). J Am Heart Assoc. 2018. https://
doi.org/10.1161/jaha.117.007885.

177. Ferreira JM, Ferreira SM, Ferreira MJ, Falcão-Pires I.
Circulating biomarkers of collagen metabolism and
prognosis of heart failure with reduced or mid-range
ejection fraction. Curr Pharm Des. 2017;23(22):
3217–23. https://doi.org/10.2174/
1381612823666170317124125.

178. Sundström J, Vasan RS. Circulating biomarkers of
extracellular matrix remodeling and risk of
atherosclerotic events. Curr Opin Lipidol.
2006;17(1):45–53.

179. Lieb W, Song RJ, Xanthakis V, Vasan RS. Association
of circulating tissue inhibitor of metalloproteinases-
1 and procollagen type III aminoterminal peptide
levels with incident heart failure and chronic kid-
ney disease. J Am Heart Assoc. 2019;8(7):e011426.
https://doi.org/10.1161/JAHA.118.011426.

180. Eschalier R, Fertin M, Fay R, Bauters C, Zannad F,
Pinet F, et al. Extracellular matrix turnover
biomarkers predict long-term left ventricular
remodeling after myocardial infarction: insights
from the REVE-2 study. Circ Heart Fail. 2013;6(6):
1199–205. https://doi.org/10.1161/
CIRCHEARTFAILURE.113.000403.

181. Parikh VN, Liu J, Shang C, Woods C, Chang AC,
Zhao M, et al. Apelin and APJ orchestrate complex
tissue-specific control of cardiomyocyte hypertro-
phy and contractility in the hypertrophy-heart
failure transition. Am J Physiol Heart Circ Physiol.
2018;315(2):H348–56. https://doi.org/10.1152/
ajpheart.00693.2017.

182. Dalzell JR, Rocchiccioli JP, Weir RA, Jackson CE,
Padmanabhan N, Gardner RS, et al. The emerging
potential of the apelin-APJ system in heart failure.
J Card Fail. 2015;21(6):489–98. https://doi.org/10.
1016/j.cardfail.2015.03.007.

183. Ni T, Lin N, Huang X, Lu W, Sun Z, Zhang J, et al.
Icariin ameliorates diabetic cardiomyopathy
through Apelin/Sirt3 signalling to improve mito-
chondrial dysfunction. Front Pharmacol. 2020;11:
256. https://doi.org/10.3389/fphar.2020.00256.

184. Schulte C, Karakas M, Zeller T. microRNAs in car-
diovascular disease—clinical application. Clin
Chem Lab Med. 2017;55(5):687–704. https://doi.
org/10.1515/cclm-2016-0576.

185. Soler-Botija C, Gálvez-Montón C, Bayés-Genı́s A.
Epigenetic biomarkers in cardiovascular diseases.
Front Genet. 2019;10:950. https://doi.org/10.3389/
fgene.2019.00950.

Diabetes Ther (2020) 11:1271–1291 1291

https://doi.org/10.1096/fj.201600396RR
https://doi.org/10.1096/fj.201600396RR
https://doi.org/10.1016/j.cytogfr.2015.07.009
https://doi.org/10.1016/j.cytogfr.2015.07.009
https://doi.org/10.1016/j.metabol.2013.05.011
https://doi.org/10.1016/j.metabol.2013.05.011
https://doi.org/10.1038/srep17438
https://doi.org/10.1161/HYPERTENSIONAHA.107.105346
https://doi.org/10.1161/HYPERTENSIONAHA.107.105346
https://doi.org/10.1080/14767058.2017.1300651
https://doi.org/10.1080/14767058.2017.1300651
https://doi.org/10.1097/MD.0000000000001218
https://doi.org/10.1097/MD.0000000000001218
https://doi.org/10.1161/jaha.117.007885
https://doi.org/10.1161/jaha.117.007885
https://doi.org/10.2174/1381612823666170317124125
https://doi.org/10.2174/1381612823666170317124125
https://doi.org/10.1161/JAHA.118.011426
https://doi.org/10.1161/CIRCHEARTFAILURE.113.000403
https://doi.org/10.1161/CIRCHEARTFAILURE.113.000403
https://doi.org/10.1152/ajpheart.00693.2017
https://doi.org/10.1152/ajpheart.00693.2017
https://doi.org/10.1016/j.cardfail.2015.03.007
https://doi.org/10.1016/j.cardfail.2015.03.007
https://doi.org/10.3389/fphar.2020.00256
https://doi.org/10.1515/cclm-2016-0576
https://doi.org/10.1515/cclm-2016-0576
https://doi.org/10.3389/fgene.2019.00950
https://doi.org/10.3389/fgene.2019.00950

	Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification---A Narrative Review
	Abstract
	Introduction
	Type 2 Diabetes Mellitus and CV Risk
	Cardiac Biomarkers in T2DM
	Natriuretic Peptides
	Controversies Related to the Predictive Value of NP in Pre-Diabetics and Diabetics
	NPs in HFrEF Patients with Prediabetes and DM
	Cardiac Troponins
	Heart-Type Fatty Acid-Binding Protein
	Soluble Suppressor Tumorogenisity-2
	Growth Differentiation Factor 15
	Galectin-3
	Cardiotrophin-1
	Future Biomarkers
	Collagen Turnover Biomarkers
	Biomarkers of Extracellular Matrix Remodeling
	Apelin
	Non-Coding RNAs


	Conclusions
	Acknowledgements
	References




