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ABSTRACT

Introduction: To identify predictors of hypo-
glycemia and five other clinical and economic
outcomes among treated patients with type 2
diabetes (T2D) using machine learning and
structured data from a large, geographically
diverse administrative claims database.
Methods: A retrospective cohort study design
was applied to Optum Clinformatics claims data
indexed on first antidiabetic prescription date.
A hypothesis-free, Bayesian machine learning
analytics platform (GNS Healthcare REFSTM:
Reverse Engineering and Forward Simulation)
was used to build ensembles of generalized lin-
ear models to predict six outcomes defined in
patients’ 1-year post-index claims history,
including hypoglycemia, antidiabetic class per-
sistence, glycated hemoglobin (HbA1c) target

attainment, HbA1c change, T2D-related inpa-
tient admissions, and T2D-related medical
costs. A unified set of 388 variables defined in
patients’ 1-year pre-index claims history con-
stituted the set of predictors for all REFS models.
Results: The derivation cohort comprised
453,487 patients with a T2D diagnosis between
2014 and 2017. Patients with comorbid condi-
tions had the highest risk of hypoglycemia,
including those with prior hypoglycemia (odds
ratio [OR] = 25.61) and anemia (OR = 1.29).
Other identified risk factors included insulin
(OR = 2.84) and sulfonylurea use (OR = 1.80).
Biguanide use (OR = 0.75), high blood glucose
([125 mg/dL vs.\100 mg/dL, OR = 0.47;
100–125 mg/dL vs.\100 mg/dL, OR = 0.53),
and missing blood glucose test (OR = 0.40) were
associated with reduced risk of hypoglycemia.
Area under the curve (AUC) of the hypo-
glycemia model in held-out testing data was
0.77. Patients in the top 15% of predicted
hypoglycemia risk constituted 50% of observed
hypoglycemic events, 26% of T2D-related
inpatient admissions, and 24% of all T2D-re-
lated medical costs.
Conclusions: Machine learning models built
within high-dimensional, real-world data can
predict patients at risk of clinical outcomes with
a high degree of accuracy, while uncovering
important factors associated with outcomes
that can guide clinical practice. Targeted inter-
ventions towards these patients may help
reduce hypoglycemia risk and thereby favorably
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impact associated economic outcomes relevant
to key stakeholders.

Keywords: Healthcare costs; Hypoglycemia;
Machine learning; Resource utilization; Type 2
diabetes; Value-based

Key Summary Points

Type 2 diabetes (T2D) is associated with
significant healthcare resource utilization,
especially among patients with sub-
optimal management, treatment-related
adverse events including hypoglycemia,
and comorbid health conditions. Value-
based initiatives offer a unique solution to
this problem, but additional evidence is
needed to design and support these
initiatives.

A Bayesian machine learning platform,
Reverse Engineering Forward Simulation
(REFSTM), was applied to administrative
claims data to identify predictors of key
clinical and economic outcomes in T2D.

Machine learning models such as REFS
have the potential to guide the provision
of data-driven, individualized care with
these results establishing the importance
of ensuring that patients with T2D are
appropriately treated with evidence-based
interventions to ensure more favorable
outcomes as well as control of healthcare
resource utilization and costs.

INTRODUCTION

Rising healthcare costs in the USA and around
the world are a growing concern to global
health economists. In 2016, the USA spent
17.8% of its gross domestic product on health-
care—nearly twice as much as other high-in-
come countries—while presenting consistently
lower clinical outcomes relative to these coun-
tries [1].

Diabetes is a growing health problem and
primary contributor to these costs, afflicting
24.7 million Americans—90–95% of which
have type 2 diabetes (T2D)—and accounting for
an estimated $327 billion in direct medical
costs and reduced productivity in 2017. In fact,
patients with diabetes incur medical expendi-
tures approximately 2.3 times that of patients
without diabetes [2].

To address uncontrolled spending and inad-
equate quality of care in the industry, health
systems are shifting their reimbursement mod-
els to focus on value, rewarding quality and cost
reduction. In the USA, the Affordable Care Act,
the most extensive healthcare reform seen in
years, stimulated massive changes in health
insurance coverage and care delivery, and rein-
forced the adaptation of novel concepts, such as
patient-centered medical homes, integrated
care delivery, and outcomes-based
reimbursements.

Although in theory value-based contracting
and reimbursement seem to be a desirable mit-
igation to excessive healthcare spending, in
reality such solutions are difficult to implement
largely because of high implementation costs,
measurement challenges, and absence of a
suitable data infrastructure [3].

To date, there is no gold standard for value-
based arrangements [4], and the status and
performance of established arrangements are
relatively unknown as many exist outside the
public domain [3, 5]. Indeed, global trends
suggest payers are increasingly requiring phar-
maceuticals demonstrate greater certainty and
value of their products in the real world, as costs
of new therapies continue to rise.

Continued exponential growth and integra-
tion of ‘‘big data’’ sources and maturity of ana-
lytic tools offer new opportunities to overcome
these practical barriers, through precise estima-
tion of both clinical and economic value, and
insights driven by real-world data. In particular,
legislative action to increase transparency and
accessibility of data, increased adoption of
electronic health records (EHR) by health sys-
tems, and new technologies capable of storing
and processing these data provide researchers
rich sources of real-world patient populations
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without the expense and time required by tra-
ditional observational cohort studies [6, 7].

This study sought to contribute to the
development of value-based contracts between
pharmaceuticals and payers by applying
machine learning models to a nationally repre-
sentative claims database. In particular, a pre-
dictive Bayesian network model was trained on
six diabetes-related clinical and economic out-
comes: hypoglycemic events, antidiabetic
medication persistence, T2D-related inpatient
admissions, glycated hemoglobin (HbA1c) tar-
get attainment, change from baseline HbA1c,
and T2D-related medical costs, using a consis-
tent set of variables within a derived T2D pop-
ulation. Variables most predictive of outcomes
were extracted for inference. Finally, a link
between outcomes was established by evaluat-
ing the concentration of observed outcomes
within the highest risk groups of the hypo-
glycemia model, providing an estimate of the
potential value offered by a model-driven value-
based strategy.

METHODS

Data Source

The data source for this study was Optum
Clinformatics Data Mart (CDM) (Eden Prairie,
MN, USA). Optum’s CDM is a closed system of
de-identified health claims data that includes
over 13 million lives annually, and contains
patients’ medical, prescription drug, laboratory,
and eligibility information beginning in year
2000. The data comes from a large, national US
health insurer and is certified as de-identified.
For this study, a data extract between 1 January
2014 and 30 September 2017 was received from
Optum.

Sample Selection

This extract was used to construct a population
of patients with T2D following a retrospective
cohort study design. Patients were eligible for
inclusion if they met the following criteria: at
least one medical claim with a diagnosis of T2D

(International Classification of Diseases, 9th
revision (ICD-9) codes 250.x0, 250.x2; Interna-
tional Classification of Diseases, 10th revision
(ICD-10) code E11) anytime during patients’
available claims history, at least one prescrip-
tion claim for a qualifying antidiabetic medi-
cation (Generic Product Identifier (GPI) 27)
anytime during patients’ available claims his-
tory, at least 18 years old as of the index date,
and continuously enrolled with a medical and
pharmacy benefit during the 12-month pre-in-
dex and 12-month post-index periods. The
index date was the date of first prescription
claim for an antidiabetic medication.

Outcomes

Six unique outcomes were chosen for modeling,
all captured in a 12-month post-index period;
these included hypoglycemic events, antidia-
betic medication class persistence, HbA1c target
attainment, HbA1c change from baseline, T2D-
related inpatient admissions, and T2D-related
medical costs.

Hypoglycemia was defined by a combination
of relevant ICD-9 and ICD-10 codes for hypo-
glycemia (Table A1 in the supplementary
material) and available blood glucose measure-
ments as follows: if a patient had at least one
medical claim with any of the ICD-9 or ICD-10
codes associated with hypoglycemia as listed in
Table A1 during the post-index period or if a
patient had a least one blood glucose measure-
ment of 70 mg/dL or below, we inferred that the
patient experienced a hypoglycemic event. The
outcome was coded as a binary variable (i.e., 1 if
at least one hypoglycemic event in the post-
index period; 0 otherwise). Definitions for
remaining study outcomes are detailed in the
supplementary material.

Statistical Analyses

A unified set of covariates was built for all out-
comes using patients’ available pre-index med-
ical, pharmacy, and laboratory claims
information. Covariates were not necessarily
diabetes-related; rather, patients’ complete
claims history was extracted leaving variable
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selection to the models. Furthermore, in order
to extract a meaningful signal from each vari-
able, and to ensure variables were defined con-
sistently across varying time periods, claims
codes were aggregated together using a variety
of widely used code sets. Covariate structures
are briefly described below:

• Demographics age, gender, race, insurance
type, product type, region, and low-income
subsidy status.

• Diagnoses ICD-9 and ICD-10 diagnosis codes
from medical claims aggregated via Clinical
Classification Software (CCS) codes [8, 9].

• Pharmaceutical utilization National Drug
Code (NDC) product codes from pharmacy
claims aggregated via Generic Product Iden-
tifier (GPI) codes [10].

• Procedures ICD-9, ICD-10, CPT, and Health-
care Common Procedure Coding System
(HCPCS) codes from procedures in medical
claims aggregated via Berenson-Eggers Type
of Service (BETOS) codes [11].

• Laboratory Logical Observation Identifiers
Names and Codes (LOINC) codes from lab-
oratory data aggregated via the LOINC
hierarchies.

• Healthcare resource utilization Acute inpatient
admissions, inpatient length of stay, outpa-
tient visits, office visits, visits with an
endocrinologist, and emergency department
visits, total medical costs, total pharmacy
costs (including copay of the index prescrip-
tion and total out-of-pocket costs), outpa-
tient costs, and emergency department (ED)
costs. Visit counts were categorized into 0, 1,
2, 3 or more visits, while costs were dis-
cretized into quartiles to account for heavily
skewed distributions.

A machine learning analytic platform, Rev-
erse Engineering and Forward Simulation
(REFSTM) (GNS Healthcare, Cambridge, MA,
USA), was used for all modeling. Briefly, each
REFS model was an ensemble consisting of 128
generalized linear models, constructed using
Markov chain Monte Carlo sampling of the full
Bayesian posterior distribution of models, given
the available data—i.e., P(model|data) [12–16].
In high-dimensional data sets, attempts to
identify a single best model will inevitably lead

to overfitting; thus, our approach identifies an
ensemble of models, each scored by both its
goodness-of-fit to the observed data and its
complexity. This approach allows incorporation
of previous knowledge regarding the different
types of data (e.g., medical claims, pharmacy
claims, laboratory data, etc.), including the
expected relative contribution of each type,
into the final models. Therefore, examination of
large numbers of variables with low signal (i.e.,
medications and diagnoses) is possible without
overwhelming the signal of the fewer—
although potentially more directly informa-
tive—variables (i.e., demographics, indexing
antidiabetic class, etc.).

The 128 constituent models within the
ensemble looked at combinations of the avail-
able parameters, including linear additive and
quadratic terms, and up to second-order inter-
actions to accommodate non-linear effects
against outcomes. To prevent overfitting, the
complexity (i.e., the number of terms) of each
model in the ensemble was penalized by speci-
fying a maximum entropy prior over the num-
ber of unique predictors selected per given
variable class.

From the ensemble for each study outcome,
predictors can be ranked and evaluated by their
relative selection frequency (proportion of
models in the ensemble in which the variable
was selected) and distributions of effect esti-
mates. A high selection frequency for a given
predictor represents an increased probability of
a true predictive association with the outcome
[14].

REFS models were trained on 80% of the final
study cohorts sampled at random, while the
remaining 20% were reserved for model vali-
dation and performance assessment. Out-of-
sample validation provides a more realistic
estimate of true model performance and sup-
ports generalized use of models in new patient
samples.

Model prediction performance was measured
via the area under the receiver operating char-
acteristic curve (AUC) metric for all outcomes
except T2D-related total medical costs. The
AUC metric illustrates the performance of a
binary classifier system and is used to examine
the overall specificity and sensitivity of the
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classification approach, i.e., the trade-off
between false positive and negative predictions
of a model. AUC values range between 0 and 1
where greater AUC values indicate better model
performance (an AUC of 0.5 is associated with a
random predictor). For the T2D-related total
medical costs outcome, which is continuous,
Pearson R2 (predicted vs. observed costs) was
used to assess performance.

In addition, credible intervals (CIs) for per-
formance metrics were calculated for each REFS
ensemble by generating a distribution of per-
formance metrics across all 128 models in each
ensemble. This is a unique characteristic of
ensemble modeling—granting insight into
model consensus across the ensemble—as well
as suggesting best- and worst-case scenarios for
potential deployment of these models in new
patient samples.

Finally, the utility of the hypoglycemia
ensemble was estimated by evaluating the con-
centration of costs and visits, as well as other
study outcomes within 20 equally distributed
bins of predicted hypoglycemic event risk
(henceforth referred to as ‘‘ventiles’’), as applied
in similar contexts [17]. More specifically, each
ventile contained 5% of patients in the study
cohort (N = 22,672) and patients were assigned
to a ventile according to his or her predicted
probability of hypoglycemia. Patients with the
lowest probability of hypoglycemia—in the
bottom 5th percentile—were assigned to the
first ventile, whereas patients with the highest
probability of hypoglycemia were assigned to
the 20th ventile. The proportions of visits, costs,
or other study outcomes within each ventile out
of the total number of visits, costs, or other
study outcomes were calculated as a measure of
concentration of risk.

Compliance with Ethics Guidelines

The Optum CDM data used in this study was
compliant with the Health Insurance Portability
and Accountability Act. Fully anonymized ret-
rospective data were obtained from Optum via
license agreement, and no other data were used
in this study. As such, this study was deemed
exempt from ethical approval.

RESULTS

Population Characteristics

Population characteristics are presented in
Table 1. The full sample included 453,487
patients with T2D after applying inclusion and
exclusion criteria listed above; population
counts for each layer of the inclusion and
exclusion criteria are presented in Fig. 1. Within
the full sample, 221,473 (48.8%) patients had at
least one post-index HbA1c laboratory value for
the HbA1c target attainment outcome, and
36,263 (8.0%) additionally had uncontrolled
baseline HbA1c for the assessment of the
change from baseline HbA1c outcome. Demo-
graphic characteristics were comparable across
the samples for most variables, though regional
distributions shifted after additionally requiring
HbA1c testing in the pre- and post-index peri-
ods. For example, 42.3% of patients were from
the South in the full sample, whereas 49.9% of
patients were from the South in the sample
requiring pre- and post-index HbA1c tests.

Outcome Distributions

In the full sample, 3.6% of patients had at least
one hypoglycemic event in the post-index per-
iod, 18.2% of patients were persistent with their
respective indexing antidiabetic medication
class throughout the post-index period, and
8.4% of patients had at least one T2D-related
inpatient admission in the post-index period.
Mean T2D-related total medical costs per
patient in the post-index period were $4274
(standard deviation (SD) = $12,196). In the
sample requiring at least one post-index HbA1c
value, 72.8% of patients met their HbA1c target
in the post-index period (29.5% of which were
uncontrolled or missing HbA1c laboratory data
in the pre-index period). In the sample addi-
tionally requiring uncontrolled baseline HbA1c,
28.4% of patients had a change in HbA1c
between the pre- and post-index period greater
than the required threshold. Nearly all charac-
teristics presented in Table 1 were significantly
associated with all outcomes at a level 0.05—
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though some associations may not be clinically
relevant because of the high sample size.

Covariate Set

In total, 6907 potential predictors were extrac-
ted from the study cohort. After preprocessing
(i.e., removal of variables with high missing-
ness, multicollinearity, etc.), 388 predictors
remained, including 13 demographic variables,
89 diagnosis variables, 180 pharmacy variables,
68 procedure variables, 30 laboratory variables
(4 categorical values, 26 indicators for presence
of test), and 8 utilization variables. In addition,
REFS models explored the space of all pairwise
interactions between these 388 predictors.

Model Performance

Performance was moderately strong to very
strong across outcomes in out-of-sample testing
data. In order of accuracy, out-of-sample per-
formance tested as follows: HbA1c target
attainment (AUC 0.867, 95% CI 0.867–0.867),
hypoglycemia (AUC 0.773, 95% CI
0.772–0.774), T2D-related inpatient admission
(AUC 0.735, 95% CI 0.734–0.736), change from
baseline HbA1c (AUC 0.709, 95% CI
0.706–0.711), and antidiabetic class persistence
(AUC 0.675, 95% CI 0.674–0.675). Performance
of the T2D-related medical costs model was also
strong in out-of-sample tests (R2 0.235, 95% CI
0.234–0.235).

Fig. 1 Sample selection
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Figure 2 summarizes the distribution of out-
of-sample AUC values across networks in the
hypoglycemia model ensemble, with the AUC
averaged over the full ensemble indicated by
the dotted line.

Top Predictors

Figure 3 summarizes the ensemble for the
hypoglycemia model through its top predictors
(i.e., those with at least 90% selection frequency
across the ensemble). Outputs for other out-
comes are included in the supplementary

material. The figure is split into two parts to
account for large effect sizes on prior hypo-
glycemia and its interactions. As each model in
the ensemble potentially consists of different
sets of variables, the effect of a particular vari-
able may vary across the ensemble. For exam-
ple, ‘‘CCI score (1)’’ had an odds ratio for
hypoglycemia of 1.28 in one model, but 0.67 in
another model after controlling for different
sets of covariates. The median odds ratio is
reported alongside its interquartile range (IQR)
across the ensemble to account for this
variation.

Fig. 2 Hypoglycemia model performance across REFS
ensemble. Hypoglycemia model ensemble performance:
AUC was calculated within each of the 128 models
comprising the full ensemble, and separately across the full
ensemble (indicated by the dotted line). The full ensemble

AUC generally performs better than most individual
models in the ensemble as it combines information across
diverse models. Several single models performed slightly
better but are more prone to overfitting

Diabetes Ther (2020) 11:681–699 691



Interaction Effects

For all model ensembles, REFS additionally
explored all pairwise interactions between vari-
ables as potential covariates. Several such
interactions were present in the hypoglycemia
model. For example, an interaction was dis-
covered between ‘‘indexing antidiabetic: insu-
lin’’ and ‘‘glipizide’’ (OR 0.48, IQR 0.48–0.50). In
isolation, the main effects of both ‘‘indexing
antidiabetic: insulin’’ (2.84, 2.79–3.03) and
‘‘glipizide’’ (1.93, 1.91–1.93) were positively
associated with hypoglycemia. However, the
negative direction of the interaction coefficient
implies an antagonistic rather than synergistic
interaction, i.e., the joint effect was less than
the sum of their individual effects. This suggests
that while patients taking insulins and/or glip-
izide (a sulfonylurea) had higher odds of hypo-
glycemia compared to patients taking neither of

these prescriptions, their concomitant use was
not purely additive.

Concentration of Risk and Outcome
Interactions

Figure 4 and Table 2 demonstrate a link
between outcomes by assessing the relative
proportion of observed events across risk ven-
tiles within the hypoglycemia ensemble. Nota-
bly, patients in the top 15th percentile of
hypoglycemia risk (i.e., top three ventiles)
constituted 50% of all observed hypoglycemic
events, 26% of T2D-related inpatient admis-
sions, and 24% of T2D-related medical costs in
the full sample of patients with T2D. Hypo-
glycemia-related visits were even more densely
concentrated within the high-risk ventiles, with
patients in the top 5th percentile of hypo-
glycemia risk (i.e., 20th ventile) constituting

Fig. 3 Hypoglycemia ensemble summary of predictors.
CCI Charlson comorbidity index score, PPO preferred
provider organization, IQR interquartile range. Categorical
variable reference levels: CCI score, 0; region, Midwest;
indexing antidiabetic, any other antidiabetic; outpatient

visits with an endocrinologist, 0 visits; glucose level,
\ 100 mg/dL. Interaction terms are indicated by asterisks.
Not shown: prior hypoglycemia (odds ratio = 25.61,
IQR = 23.55–25.61). aMedian p value for variable[ 0.05
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26.7% of hypoglycemia-related inpatient
admissions, 24.7% of hypoglycemia-related ER
visits, and 27.4% of hypoglycemia-related out-
patient visits. Average healthcare costs (medi-
cal ? pharmacy) per patient per year were
$36,567 in this group, compared to $12,038 for
patients in the bottom 5th percentile of hypo-
glycemia risk.

Conversely, patients in the bottom 15th
percentile of hypoglycemia risk constituted
19% of patients persistent to their respective
antidiabetic classes, 9% of HbA1c target attain-
ers, and 11% patients who had the met the
appropriate threshold for change from baseline
HbA1c; these results suggested a positive corre-
lation between HbA1c reduction and hypo-
glycemia risk.

DISCUSSION

In this study, six predictive model ensembles,
including hypoglycemic events, antidiabetic
medication class persistence, HbA1c target
attainment, HbA1c change from baseline, T2D-
related inpatient admissions, and T2D-related
medical costs, were trained on a T2D popula-
tion derived from administrative claims data. A
retrospective cohort study design and hypoth-
esis-free Bayesian network models were used to
explore associations between thousands of
unique variables, their interactions, and out-
comes to identify those variables most predic-
tive of each outcome. Model performance was
moderately strong to very strong across model
ensembles in held-out testing data. Notably, the

Fig. 4 Relative proportions of study outcomes by hypo-
glycemia risk ventile. The probability of hypoglycemia, as
estimated by the model, was split into 20 groups (every 5th
percentile). Then, for each outcome, the number of
observed events within each risk group was summed and
divided by the total number of observed events across the
study population. For example, 2965 (9.8%) T2D-related

inpatient admissions occurred in the top 5th percentile of
predicted hypoglycemia risk out of 30,265 T2D-related
inpatient admissions in the study population. For T2D-
related medical costs, the sum of costs within ventiles was
divided by the total sum of costs across the study
population
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hypoglycemia model performed comparably to
other machine learning models applied in a
similar, but more homogeneous cohort [18]. In
addition, we determined that significant
healthcare resource utilization was densely
concentrated among patients with the highest
risk of hypoglycemia, providing an estimate for
the utility of our models if deployed in real-
world patient populations.

Previous Value-Based Analyses

Historically, clinical trials and cost-effectiveness
research have been the primary sources of evi-
dence supporting value-based contracts. How-
ever, the former often fails to capture real-world
scenarios involving patients outside strict con-
trol of the trial, as well as information on
healthcare resource utilization and cost; while
the latter (in the form of quality-adjusted life
years (QALYs), incremental cost-effectiveness
ratios (ICERs), etc.) often fails to capture
important details of the individual patient
experience [19]. This study offers an alternative
solution, by leveraging predictive models
applied to real-world data to (1) target inter-
ventions or risk-sharing strategies towards
patients on the basis of identified adverse and/
or protective factors of outcomes; or (2) target
interventions or risk-sharing strategies towards
patients on the basis of model predictions
directly.

Utility of ‘‘Top Predictors’’ Selected
by Model

Among variables most frequently selected by
models across the ensemble, several are well
established in previous literature. Notably,
patients who indexed on insulin prescriptions
(2.84, 2.79–3.03) and sulfonylurea prescriptions
(1.80, 1.75–1.81) had increased risk of hypo-
glycemia, whereas patients who indexed on
biguanide prescriptions (0.75, 0.74–0.75) had
reduced risk. This is consistent with use of
insulin being the prime cause of hypoglycemia,
and sulfonylureas being a known cause, most
frequently in combination with other medica-
tions. Likewise, pre-index hypoglycemia was an
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expected risk factor for hypoglycemia (25.61,
23.55–25.61), given that patients in this study
were prevalent diabetics taking antidiabetic
medications where recurrent hypoglycemia is
common.

Apart from antidiabetic medications, fur-
osemide prescriptions (1.29, 1.29–1.30) were
highly predictive and positively associated with
hypoglycemic events and may merit further
study. In particular, the association of fur-
osemide with other conditions which are
indicative of more serious diabetes could sug-
gest an epiphenomenon, or the potential
impact of kidney disease on drug metabolism.

Other risk factors frequently selected by the
hypoglycemia models were more specific to
healthcare administration data, including
Medicare plan type (vs. Commercial 1.32,
1.32–1.35), and Southern (vs. Midwest 1.39,
1.38–1.40) and Western (vs. Midwest 1.12,
1.12–1.12) regions. In addition to having the
highest prevalence of diabetes in the USA,
health in the South is generally worse and
associated with critical risk factors including
obesity and sedentary lifestyle [20]. In these
models, region may proxy for these risk factors,
which are not captured in claims data. Alter-
natively, these variables may also reflect differ-
ences in healthcare administration, or access to
care across the USA and may be particularly
important for rollout of a value-based contract
on a national scale.

Model Accuracy and Ensembling

An important aspect of predictive models is
their ability to perform accurately in diverse
patient populations. Model ensembling is an
attractive solution to the problem of overfitting
on a single data set, and in some cases can be
invaluable for practitioners seeking to deploy
models across multiple healthcare entities—a
likely case in the US marketplace. For example,
an interaction between ‘‘low-income subsidy
status’’ and ‘‘product type: health maintenance
organization (HMO)’’ was in 7 of 128 models in
the full T2D-related inpatient admissions
ensemble, implying this relationship was cap-
tured by a different set of variables in the

remaining 121 models. Therefore, if the model
was applied to data sets where this variable did
not exist, its performance would not be signifi-
cantly altered.

Diverse Outcomes for Value-Based
Contracting

A diverse set of outcomes were explored in this
study in order to capture both the clinical and
economic impact of T2D. Each model, repre-
senting a distinct outcome measure, contains a
set of variables that REFS determined were most
predictive of the associated outcome. Impor-
tantly, many of these predictors co-occur across
different outcome models. Patients with high
baseline HbA1c levels, for example, were less
likely to hit their HbA1c target thresholds, but
more likely to experience significant changes in
their HbA1c and be persistent to their antidia-
betic prescriptions.

Similar conclusions can be drawn from the
concentration of observed outcomes within
predicted risk categories of different models. In
particular, patients in the top percentiles of
hypoglycemia risk also constitute large propor-
tions of other adverse clinical and economic
outcomes. This may be a particularly useful
result to health policymakers requiring simpler
risk-adjustment schema; that is, targeting
patients for preventive interventions in T2D can
be done effectively through a single outcome
measure (e.g., hypoglycemia) rather than
attempting to solve a complex optimization
problem across multiple outcomes. Further-
more, as value-based contracts must ultimately
be adopted by patients and physicians to be
successful, they should necessarily present clear
clinical advantages and objective outcome
measures, respectively [5].

Limitations

One limitation of this study related to sample
selection. The HbA1c target attainment out-
come required at least one post-index labora-
tory measurement for HbA1c in addition to
inclusion/exclusion criteria listed above. The
change from baseline HbA1c outcome similarly
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required both pre- and post-index laboratory
measurements for HbA1c, and additionally that
patients’ pre-index HbA1c level was at least 8%.
As such, models built for these outcomes have
slightly different study populations and should
be interpreted accordingly.

A second limitation of this study relates a
fundamental aspect of predictive modeling;
specifically, it cannot answer questions of a
causal nature. This is especially true for admin-
istrative claims data, where medications, diag-
noses, procedures, laboratory tests, etc. are
heavily confounded by a variety of factors,
notably:

• Access to healthcare—proximity to medical
facilities, cultural obstacles related to treat-
ment, educational and socioeconomic status

• Bias on the part of the physician—past
experiences with a particular treatment, his-
tory with a particular patient

• Patients’ underlying disease severity (i.e.,
confounding by indication)

• Non-random treatment assignment for
novel therapies (i.e., channeling bias) [21]

• Healthy adherer bias [22].

In the context of this study, antidiabetic
prescriptions (such as insulin) can be stronger
predictors of patients’ underlying T2D severity
than T2D diagnosis codes extracted from med-
ical claims, as they represent a decision made on
behalf of the provider to intensify treatment of
the patient’s T2D. Likewise, missing laboratory
values can often be proxies for healthy patients,
as they potentially represent a decision by the
provider not to order the laboratory test given
the patient’s current disease status. For exam-
ple, ‘‘glucose (missing test)’’ was negatively
associated with hypoglycemia (0.40, 0.40–0.40).
Indeed, in some cases these proxies may be
effective controls for unmeasured confounding
[23]. Nevertheless, these variables serve to build
highly predictive models whose output can be
valuable despite confounding.

CONCLUSIONS

Machine learning models built with real-world
data can be informative tools for the

development of value-based contracts. The
models developed in this study accurately
identified patients at risk of critical clinical
outcomes, including hypoglycemia, while
uncovering the primary risk factors of those
outcomes in a real-world setting. The ability of
Bayesian network models to extract and per-
form inference in high-dimensional data is
essential for guiding clinical practice, where
‘‘black box’’ technology is untrustworthy and
holistic approaches are merited. This study also
demonstrated the potential economic impact of
deploying machine learning models in practice
by quantifying resource use and costs in
patients with the highest predicted risk of
hypoglycemia.

Indeed, targeted interventions towards high-
risk patients may additionally benefit economic
outcomes relevant to key stakeholders in com-
petitive therapeutic areas like diabetes. As the
healthcare industry moves toward value-based
care reimbursement models, it becomes critical
for pharmaceutical companies to work effec-
tively with health plans by providing key
insights into optimal treatment intervention
strategies for members at risk of poor clinical
and economic outcomes.
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