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Abstract Forest conservation plays a central role in

meeting national and international biodiversity and

climate targets. Biodiversity and carbon values within

forests are often estimated with models, introducing

uncertainty to decision making on which forest stands to

protect. Here, we explore how uncertainties in forest

variable estimates affect modelled biodiversity and carbon

patterns, and how this in turn introduces variability in the

selection of new protected areas. We find that both

biodiversity and carbon patterns were sensitive to

alterations in forest attributes. Uncertainty in features that

were rare and/or had dissimilar distributions with other

features introduced most variation to conservation plans.

The most critical data uncertainty also depended on what

fraction of the landscape was being protected. Forests of

highest conservation value were more robust to data

uncertainties than forests of lesser conservation value.

Identifying critical sources of model uncertainty helps to

effectively reduce errors in conservation decisions.
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INTRODUCTION

Forests play a central role in the global efforts of halting

biodiversity loss and mitigating climate change. In the

boreal region, forests account for[ 30% of global forest

carbon stock and 20% of the annual global forest carbon

sink (Pan et al. 2011; Gauthier et al. 2015). Boreal forests

comprise one-third of global forest cover, providing habitat

for a large number of species (IPBES 2019), yet nearly

two-thirds of these forests are under economic use (Gau-

thier et al. 2015). Intensive forestry and clear-cut logging

reduces habitat available for several forest-dwelling spe-

cies (IPBES 2019; Mönkkönen et al. 2022), and although

some early succession species may benefit from harvesting,

regenerated stands hold less biological and structural

diversity than those originating from natural disturbances

(Gauthier et al. 2015). Forest management can increase

their carbon sequestration but the benefits of this depend on

whether the harvested wood is used for products that pre-

vent the carbon being re-released back to atmosphere in

long (e.g. hardwood) or short (e.g. pulp, paper) term

(Soimakallio et al. 2016). Clear cutting also decreases the

carbon stocks of forests and increases emissions from

decomposing harvest residues (Kolari et al. 2004; Goulden

et al. 2011).

In Finland, situated in the boreal region, high and low

productive forests combined cover about 22.7 million

hectares (75%) of the land area (Vaahtera et al. 2021).

Around 90% of these are under even-aged rotation forestry,

predominantly coniferous managed forests, while the rest

are protected. The average size of clear-cut, where no or

only a small number of trees are left as seed or retention

trees, is 1.76 ha, and afterwards stands are re-planted or

allowed to regenerate naturally, and the rotation between

final fellings is on average 80–100 years (Kniivilä et al.

2020). The long history of logging and active management

has significantly altered the age structure and functional

heterogeneity of the Finnish forests (Gauthier et al. 2015;

Korhonen 2021), decreasing the area of old-growth forests,

number of large trees and the volume of dead wood
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(Mönkkönen et al. 2022). These large-scale alterations

have led to declines in forest biodiversity: 11% of forest

species and 76% of the forest habitat types are threatened

(Hyvärinen et al. 2019; Kontula and Raunio 2019). Cur-

rently, forest heterogeneity is predominantly driven by

forestry treatments, forest site type (describing site fertility

and aridity) and climate.

The synergistic benefits of forest conservation for both

biodiversity and climate change mitigation are increasingly

recognised in international and national policies, such as

the EU 2030 Biodiversity Strategy, although how much

carbon sinks should be emphasised over carbon storages in

these policies is still debated (Soimakallio et al. 2016;

Pukkala 2018). Nevertheless, through the identification of

forests important for both biodiversity and carbon, forest

conservation can be strategically targeted to areas that

support meeting both policy targets cost-efficiently. In

recent years, studies have demonstrated the use of spatial

prioritisation (optimisation) tools (Moilanen et al. 2009) for

identifying co-benefits and trade-offs between biodiversity

and carbon services at various spatial scales (e.g. Forsius

et al. 2021; Jung et al. 2021).

Such optimisation exercises require large-scale spatial

data. Both biodiversity and carbon data are commonly

created using models that estimate the habitat suitability of

forest stands for different species and the amount of carbon

stored in or sequestered by them (Forsius et al. 2021;

Miettinen et al. 2021). As all model estimates contain

uncertainty, the goodness of any spatial prioritisation result

is inherently dependent on the accuracy of the input data

that underpins it. The effects of model uncertainty on the

estimated values have been extensively studied (e.g. Barry

and Elith 2006; Mäkelä et al. 2020), but how these

uncertainties impact spatial optimisation results is less well

understood. Recent research has quantified how the impact

of data uncertainties on prioritisation results depends on the

alteration made, characteristics of the input data and the

total data pool that is used to produce the priority result

(Kujala et al. 2018a, b). The first-line improvements of

modelled input data should focus on uncertainties that,

when resolved, change the prioritisation result the most.

Here, we explore the impact of different data uncer-

tainties on conservation prioritisation within a real-world

forest conservation context. We look at how the uncertainty

in forest variable estimates affects modelled distributions

of biodiversity and carbon patterns, and how this in turn

introduces variability in a hypothetical conservation plan.

We use several features of carbon (size of carbon sinks,

amount of carbon stored in trees, ground vegetation and

soil) and biodiversity to explore their co-occurrences and

role in multi-objective conservation planning, and three

time periods from present to 2050 to understand their

dynamics through time. We purposefully investigate the

data uncertainties in the absence of other major drivers,

such as forest harvesting and climate change, so as to

exclude their impact. Our purpose is not to identify what

areas to protect, but to understand how this decision is

impacted by data uncertainties. In particular, we explore

whether forest conservation strategies are more sensitive to

uncertainties associated with biodiversity vs carbon esti-

mates, and which of the individual sources of uncertainty

are most important to solve so to effectively reduce

potential errors in spatial conservation decisions.

MATERIALS AND METHODS

Overview of the analysis design

We used the following approach in this study. First, using

measurements from forest stands and a mechanistic forest

growth model, we created spatial data for several forest

attributes (structural variables, site type and mean age,

hereafter called baseline forest variables, see ‘‘Forest and

carbon data’’ section). These baseline estimates were then

used to model the presence of carbon and biodiversity

values across the study area (baseline carbon values,

‘‘Forest and carbon data’’ section and baseline biodiversity

values, ‘‘Biodiversity data’’ section), and to identify most

important forest areas for conservation at each time period

(baseline priorities, ‘‘Spatial prioritisation’’ section)

(Fig. 1). Next, we iteratively re-simulated 50 realisations of

the forest variables (called sample forest variables,

‘‘Sample iterations’’ section). From each sample, we re-

created the maps of carbon and biodiversity data and the

respective conservation plan, keeping all other environ-

mental variables constant. This resulted in 50 conservation

plans (sample priorities). We measured the variability in

the sample model outputs and used a canonical correlation

analysis to understand how uncertainty in each forest

variable and biodiversity and carbon value affects the final

conservation plan (‘‘Quantification of uncertainty’’ sec-

tion). In next sections, we describe each analysis step and

the data and methods used in more detail.

Study area

The study area is located in Central Finland, Europe

(Fig. 2). The area covers 41 503 km2, of which * 6 500

km2 (15.7%) are freshwater bodies (lakes, ponds, rivers).

Based on the CORINE Land Cover 2018 data, approxi-

mately 60% and 10% of the land area are forests and mires,

respectively, 4% is urban and other built-up environments

and 9% is in agricultural use (Fig. 2). The majority (71%)

of the forests are coniferous ([ 75% of trees conifers),

while 4% and 24% are deciduous ([ 75% deciduous trees)
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Fig. 1 Analysis design showing the different modelling steps and main methodological tools used. Data on the original state of forests came

from the multi-source national forest inventories (MS-NFI). The carbon-balance-based stand growth and gas exchange model PREBAS were

used to first simulate forest growth and stand characteristics (forest variables) and then to estimate the size of carbon storage and sinks in forest

stands (carbon values). The machine learning tool Maxent was used to model habitat suitability of forests for six bird species (biodiversity

values), while also accounting for other non-forest variables (climate, land-use types). Finally, Zonation was used to identify potential priority

areas for forest conservation. The baseline forest variables were simulated using existing forest data (MS-NFI). For the samples (s1, s2, …, sn),

the PREBAS simulation was iteratively repeated while introducing different sources of uncertainty
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and mixed, respectively. The dominant tree species are

Norway spruce (Picea abies), Scots pine (Pinus sylvestris),

silver birch (Betula pendula) and downy birch (Betula

pubescens). Of the forests, 12% are grown on drained

peatlands. Approximately 25 130 ha of the forests are

clear-cut, and another 93 000 ha managed (e.g. thinned)

every year in this region (Vaahtera et al. 2021). All data

used in this study were scaled to a uniform 96 9 96 m

resolution grid covering the entire study area but excluding

water bodies.

Forest and carbon data

We used PREBAS to simulate forest variables and carbon

balance. PREBAS is a C-balance-based stand growth and

gas exchange model, which combines a process-based

forest growth model (called CROBAS, Valentine and

Mäkelä 2005) and a daily canopy gas exchange model

(PRELES, Peltoniemi et al. 2015). Photosynthesis (GPP)

and evapotranspiration are calculated using a light-use

efficiency approach linked to soil moisture and driven by

daily climate information and ambient CO2 concentration.

GPP is allocated to mean-tree growth and respiration at an

annual time step. To calculate net ecosystem production

(NEP), PREBAS has been linked through annual litter

inputs with the soil C model YASSO15, which has been

calibrated to one meter depth (Viskari et al. 2020). PRE-

BAS has been calibrated with Nordic eddy covariance sites

and Finnish growth experiments (Minunno et al. 2019).

PREBAS produces an array of outputs. Of these, we

used the stand volume, age, dominant tree species, mean

tree height and mean diameter at breast height (DBH)

(Table 1) together with information on forest site type to

represent the forest variables in our analysis. To represent

carbon values, we used the PREBAS estimated amount of

carbon stored in trees, ground vegetation and soil and the

annual size of carbon sinks of the stand, calculated from

NEP.

To initiate PREBAS simulations, we used information

on the initial state and type of the forest from the Multi

Source National Forest Inventory 12 (MS-NFI 12,

2014–2018) maps, which describe the forest parameters

across Finland at 16 9 16 m resolution (Tomppo et al.

2008). To reduce computational effort, the simulation was

done on homogeneous segments consisting of multiple

16 m pixels (Haakana et al. 2022). Within segments, the

initial value and growth in forest were assumed the same

for all pixels. Information on forest site type was extracted

directly from the MS-NFI data. Due to the sparsity of

measurement-based estimates, setting initial carbon content

of mineral soils is challenging and was therefore assumed

to be in a steady state with the historical mean levels of

harvest (round wood, pulpwood and energy wood). After

each simulation, the results were restored back to the 16 m

resolution and aggregated to the 96 9 96 m analysis res-

olution (Forsius et al. 2021). For the conservation priori-

tisation, we only considered carbon sinks by setting NEP

values to zero in pixels that on average acted as a source

across the simulated time period. This is in line with cur-

rent conservation policies where areas of large sinks may

be favoured but areas of large sources are not penalised if

the site is otherwise important for preserving biodiversity.

Fig. 2 Study area and its location in Finland, Europe. Maps A and B show the mean January temperature and major land-use categories,

respectively
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For calculating regional carbon fluxes, both sinks and

sources were considered.

Forest growth was simulated from 2015 to 2050 with a

two-year initiation period (2015–2016). For transparency,

during the simulations we assumed no climate change or

further forest harvesting to take place, as our goal was to

understand how input data uncertainty affects the spatial

distribution of conservation priorities. The output variables

from the simulations were produced as averages for three

time periods: years 2017–2025 (T1, 9 years), 2026–2033

(T2, 8 years) and 2034–2050 (T3, 17 years).

Biodiversity data

For biodiversity, we used the nesting suitability maps of six

forest-dwelling bird species: European honey buzzard

(Pernis apivorus, PERAPI), northern goshawk (Accipiter

gentilis, ACCGEN), common buzzard (Buteo buteo,

BUTBUT), white-backed woodpecker (Dendrocopos leu-

cotos, DENLEU), lesser-spotted woodpecker (Dryobates

minor, DRYMIN) and Eurasian three-toed woodpecker

(Picoides tridactylus, PICTRI). The nesting sites of these

species have been shown to be good indicators of forest

biodiversity, as they prefer mature or undisturbed forest

stands, mosaics of forest types and deciduous forests that

have high dead wood volume and richness of wood-de-

caying polypore species (Roberge and Angelstam 2006;

Burgas et al. 2014). All three hawk species and the white-

backed woodpecker are red-listed (threatened or near-

threatened, Hyvärinen et al. 2019) and the lesser-spotted

woodpecker and three-toed woodpecker have shown con-

siderable long-term declines in Finland (Väisänen et al.

1998).

The nesting suitability maps were produced using the

species distribution modelling (SDM) tool Maxent (Phillips

et al. 2006). As SDMs can account for a broader suite of

variables (climate, non-forest habitats) and spatially rele-

vant ecological drivers, such as the size and configuration

of suitable forests and the quality of matrix (area between

forests), they provide ecologically more realistic estimate

of the goodness of forests for biodiversity than simple

stand characteristics. We used bird ringing data indepen-

dent from the MS-NFI to mark the locations of nesting sites

of each species, and sets of environmental variables that

describe the climate, forest and land cover characteristics at

nesting site and landscape level (Table 2). Virkkala et al.

(2022) modelled the nesting suitability of these species at

the national scale and here we replicated these models

using the same nesting records and species-specific sets of

variables identified by Virkkala et al. (2022) (Table 2) but

cut to the study area. The modelling was done using R

v.4.1.0, Rstudio v.2022.07.01 and the package dismo v.1.3-

5. We used the default settings of Maxent. Likely spatial

biases in the ringing data were accounted for through the

use of a bias grid and target group sampling (Phillips et al.

2009; Virkkala et al. 2022). The models were validated

using a fivefold cross-validation to calculate the mean and

standard deviation of the Area Under the receiver operating

characteristic Curve (AUC), which is a commonly used

metric to describe how well the model discriminates

between known presences and absences. AUC val-

ues[ 0.7 are thought to indicate an informative model

(Fielding and Bell 1997) (Table 2). For the uncertainty

analysis, we used models that were fitted using all available

nesting records. We did not threshold the predicted values.

Sample iterations

The baseline forest variables were simulated using existing

forest data (MS-NFI). To create sample forest variables, we

iteratively repeated the PREBAS simulation while intro-

ducing three sources of uncertainty: (1) variable input

Table 1 Selected PREBAS outputs used in this study. The interlinked submodels of PREBAS simulate process-based forest growth (CROBAS),

daily canopy gas exchange (PRELES) and soil carbon through annual litter inputs (YASSO). For references and further details of the submodels,

see the main text

Variable name Meaning Unit Submodel

DBH Stand mean diameter at breast height cm CROBAS

Height Stand mean height m CROBAS

Vol Stand stem volume m3 ha-1 CROBAS

Dec. vol Deciduous stem volume m3 ha-1 CROBAS

Age Dominant tree age years CROBAS

Species Dominant tree species Pine, spruce, deciduous CROBAS

Soil C Total soil carbon kg C ha-1 YASSO

Ground veg C Total carbon in ground vegetation kg C ha-1 Ground vegetation submodel (see Junttila et al. 2023)

Tree C Total carbon in tree biomass kg C ha-1 CROBAS

NEP/C sink Net ecosystem production/size of carbon sinks g C m-2 year-1 PRELES ? CROBAS ? YASSO
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uncertainty; (2) model parameter uncertainty and (3)

uncertainty in weather conditions (Table S1).

To introduce variable input uncertainty, the initial seg-

ment-level variables (structural, site type and age) were

resampled from their respective estimate distributions. For

structural variable values (basal area split to proportions of

pine, spruce and birch, stand mean height and mean DBH),

estimate distributions were produced using data from three

remotely sensed 100 9 100 km tiles across Central Finland

from Miettinen et al. (2021) and assuming multivariate

normal distribution. Variables were resampled simultane-

ously for each segment using a covariance matrix of errors.

To avoid negative or unrealistically large values, and to

maintain the covariance structure between variables, the

segment samples were post-processed using the quantile

matching procedure (Junttila and Kauranne 2018). For site

Table 2 Number of nesting records and the environmental variables used in the nesting suitability models for each bird species, and the average

test AUC value and standard deviation of the models across fivefold cross-validation. For each variable, the values give the percent contribution

and permutation importance (in brackets) of the full model using all records. The first value describes how much the variable contributes to the

full model. The second value shows how much the model AUC is reduced when the variable is not included in the model. The three most

important variables for each species in terms of contribution and permutation are in bold. LS refers to variables that were calculated at landscape

level, either as averages (forest and climate variables) or proportion (land-use category), within a radius of either 500 m or 1 km around the

nesting site, depending on the species (woodpeckers and hawks, respectively). Fixed variables are those that were kept constant in all model

samples, whereas the others were replaced with a newly sampled data layer, see main text for details. PERAPI European honey buzzard,

ACCGEN northern goshawk, BUTBUT common buzzard, DENLEU white-backed woodpecker, DRYMIN lesser-spotted woodpecker, PICTRI
Eurasian three-toed woodpecker, DBH Diameter at breast height, LS Variable calculated at landscape level around the nesting site

Hawks Woodpeckers

ACCGEN BUTBUT PERAPI DENLEU DRYMIN PICTRI

Number of records 928 356 75 64 27 56

Test AUC 0.795 ± 0.014 0.780 ± 0.024 0.726 ± 0.052 0.976 ± 0.003 0.835 ± 0.082 0.880 ± 0.063

Environmental variable Fixed

Stand volume (m3) 8.8 (43.1) 39 (18.7) 58.3 (48.3) 0.0 (0.0) 0.0 (0.0)

Stand DBH (cm) 22 (1.3) 2.7 (5.0)

Stand height (m) 7.2 (13.2) 10.8 (0.0) 4.7 (0.0) 25.9 (4.6)

Dominant tree age (years) 38.6 (18.9) 7.7 (10.2) 1.9 (2.1) 1.4 (2.1)

Deciduous tree volume (m3) 4.1 (8.2) 3.3 (13.4) 28.3 (37.6) 5.0 (24.1)

Main tree species 16.5 (14.5) 1.6 (0.8) 1.5 (0.0) 6.7 (2.7)

Forest site type 3.2 (2.2) 1.4 (3.4) 4.6 (0.1) 3.0 (1.4)

Shoreline forest (%) x 11.7 (5.3)

Agricultural areas (%) x 1.4 (6.4) 2.3 (6.9)

Urban areas (%) x 1.2 (0.1) 4.8 (1.0) 4.5 (5.0)

Water areas (%) x 3.1 (6.7) 1.9 (3.5)

LS volume at 500 m radius (m3) 1.4 (2.5) 21 (1.0)

LS volume at 1 km radius (m3) 0.2 (0.3) 2.6 (4.0)

LS site type at 500 m radius (%) 5.3 (0.1) 16.2 (4.6) 11.8 (17)

LS site type at 1 km radius (%) 1.9 (2.7) 0.6 (0.4)

LS shoreline forest at 500 m radius

(%)

x 17.1 (4.7) 20.9 (36.6)

LS forest on peatland at 500 m radius

(%)

x 7.1 (30.9) 0.4 (1.8)

LS marshlands at 500 m radius (%) x 2.5 (0.0) 3.6 (2.0)

LS agricultural areas at 1 km radius

(%)

x 2.2 (2.0) 4.5 (15.0)

LS urban areas at 500 m radius (%) x 34.2 (17.9) 8.1 (8.4)

LS urban areas at 1 km radius (%) x 17 (18) 7.8 (18.6)

LS water areas at 500 m radius (%) x 2.4 (0.2) 0.9 (5.7) 3.9 (19)

LS water areas at 1 km radius (%) x 18.9 (13.8)

January mean temp (�C) x 4.4 (2.9) 22.4 (18.1) 3.7 (0.0) 15.9 (36.8)

GDD5 x 1.8 (4.2) 0.0 (0.0)

� The Author(s) 2023

www.kva.se/en 123

Ambio 2023, 52:1804–1818 1809

http://dx.doi.org/10.1007/s13280-023-01908-2


type, data on the satellite-based site type and forest struc-

tural variables from Miettinen et al. (2021) were used

together with a probit model to calculate the probability of

a segment belonging to each of the site type classes. Those

probabilities were then used to resample the forest site type

at the start of each iteration to reflect potential uncertainty

in the initial classification of the MS-NFI. Uncertainty in

the segment mean age was estimated using random sam-

ples from a normal distribution around MS-NFI-based

mean age (across all tree species) and 10% standard

deviation.

As the MS-NFI data does not include information about

height of the crown base, we used species-specific empir-

ical models fitted to data from permanent sample plots

(Minunno et al. 2019) and varied the estimates with 10%

standard deviation (estimate multiplied with h * N(1,

0.12)).Otherwise, model parameter uncertainty was gener-

ated by bootstrapping the joint posterior distributions of

PRELES, CROBAS and YASSO parameters from Min-

unno et al. (2016), Minunno et al. (2019) and Viskari et al.

(2020). The sampling strategy respected parameter corre-

lations and interactions. Weather condition uncertainty was

simulated by sampling yearly weather conditions from the

last 46 years (1971–2016) to represent the local weather

during the simulation period.

In total, we ran 50 iterations of the PREBAS simulation.

In each iteration, the values for site type and PREBAS

parameters were sampled at the start and then kept constant

across the simulation time period. For more details on the

uncertainty sampling, see Junttila et al. (2023).

Spatial prioritisation

Priority areas for protection were identified using the spa-

tial prioritisation software Zonation v.5.0 (Moilanen et al.

2009; Moilanen et al. 2022). Zonation produces a priority

ranking of each spatial unit (here 96 9 96 m grid cells)

based on input feature data (6 bird species and 4 carbon

layers), ordering the units from the least to the most

important for conservation. This is done in an iterative

optimisation algorithm where the software seeks to find a

rank order that maximises the representation of all features

in the top ranked grid cells. Consequently, a set of top

ranked priority areas together typically capture high value

areas for all input features. For each feature j, we used a

benefit function vj (rj) = rj
z to describe the value of added

protection vj as a function of the accumulating fraction rj of

feature j’s full distribution that is protected. The parameter

z defines the shape of the function. We set z = 0.25 for all

biodiversity features (bird species), following the well-

established species-area relationship (Rosenzweig 1995).

For carbon features, we used z = 1 as, unlike species

persistence, the persistence of carbon in the landscape does

not have a non-linear relationship with the remaining area.

During the prioritisation, feature-specific benefits vj of

protecting a grid cell i were treated as additive. We pro-

duced a priority ranking for the baseline and each sampled

iteration of the biodiversity and carbon features, and

selected the top ranked 10% of the grid cells to represent

the potential conservation solution for that iteration.

Quantification of uncertainty

We quantified uncertainty by measuring across iteration

variability in (i) the PREBAS simulated forest variable and

carbon values per hectare, (ii) amount of suitable bird

habitat in the region and (iii) within grid-cell priority

ranking and the frequency at which any one grid cell was

included in the top 10% ranking. Although some of the

forest variables correlate (volume, height, DBH), we

examined them all as they have varying importance for

dependent biodiversity (Table 2).

For each sample iteration and time period, we extracted

forest variable, biodiversity, carbon and conservation pri-

ority values from 10 000 grid cells across the study region.

We conducted a canonical correlation analysis (CCA), a

multivariate extension of correlation analysis that allows

identifying linear relationships between two datasets con-

sisting of one or multiple variables (Stewart and Love

1968). We summarise the CCA results with the use of the

redundancy index that expresses the amount of variance in

the within-pixel priority rankings explained by each vari-

able (van den Wollenberg 1977). The index receives values

0–1, where higher value indicates that the variable explains

more of the variation, but there is no agreed interpretation

of the exact value. Therefore, we examine the derived

redundancy indices of each variable in relation to one

another to reveal relative uncertainties. To better under-

stand the explanatory power of the variables, we included

three prioritisations in the CCA which were based on

(i) both biodiversity and carbon features, (ii) biodiversity

only and (iii) carbon only. We summarise the result for

only (i) in the main text, see the Supplementary for all

results.

RESULTS

Changes and uncertainty input data estimates

In the absence of harvesting, the tree height, DBH, volume

and age of forests increased (Fig. 3). There was little

variation in the across study area mean of forest variables

between sample iterations (for segment-level variation, see

Table S2). The volume and proportion of deciduous trees
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also increased (Fig. 3, from 8.6 at T1 to 9.2% at T3),

mainly due to intraspecific competition and the domination

of deciduous tree species during the re-growth of recently

clear-cut and early succession forests that were initially

present in the region.

The amount of carbon stored in trees and soil increased

from 473 to 571 million t C (? 20%) across the region

(Fig. 3), as no carbon was removed from the system

through logging. Uncertainty around the tree carbon esti-

mates decreased towards the last time period, whereas the

estimates of soil carbon remained more variable. In con-

trast, ground vegetation carbon stayed relatively stable and

became less variable through time. The total size of carbon

sinks decreased across the region, from 3.6 to 2.3 million t

C year-1 (- 36%), as tree growth slowed down in the

maturing forests. Uncertainty around carbon sinks

remained stable across time. There was more variability

around the carbon estimates in comparison to forest vari-

ables (Fig. 3).

The undisturbed maturation of forest stands led into

large increases in the amount of suitable nesting habitat for

most bird species, in particular for the northern goshawk,

common buzzard, the three-toed woodpecker but also the

European honey buzzard (Fig. 3). Wood volume, tree

height, DBH and age of forest stands were some of the

strongest predictive variables for these species (Tables 2,

S1) and all these increased through time. Although decid-

uous tree volume was a major predictor for the lesser-

spotted and white-backed woodpeckers (Table 2), its

increase did not translate into notable improvements in

their nesting habitat (Fig. 3). This might be because: (i) the

additional deciduous trees were mixed with conifers and

these species prefer pure deciduous forests, (ii) the habitat

increase of the lesser-spotted woodpecker is constrained to

nearby water bodies and (iii) in the absence of distur-

bances, such as fires, old-growth deciduous forests pre-

ferred by the white-backed woodpecker tend to become

overgrown by conifers (Fig. S2, Tables 2, S1). For all

species, the estimated amount of available habitat became

more uncertain through time, being largest for the common

buzzard (Figs. 3, S1). There was no clear relationship

between model fit (test AUC values, Table 2) and the

variation in the amount of available habitat (Figs. 3, S9).

Changes and uncertainty in conservation priority

rankings

Across the time periods, the priority rankings of forests for

biodiversity and carbon increased in the southeast of the

region, while forests in the northern parts of the region

became less important (Fig. 4). By the last time period,

there were only few forests ranked in the top 10% in the

northern parts, while their locations shifted and became

more evenly spread in the south-west (Figs. 4A, S4).

The ranking of individual grid cells varied notably

across the sample iterations in each time period (Fig. 4C,

vertical spread of points). This variation was reduced in the

second time period, but increased again in the third time

period (Figs. 4D, S5). There were no strong spatial patterns

in the variability of cell rankings (Fig. S5). In all cases, grid

cells that were on average ranked as the highest or the

lowest priority across the 50 iterations showed least vari-

ation (Fig. 4C, D).

Still, even for the on average top 10% ranked grid cells

(points right from the vertical line in Fig. 4C), this varia-

tion was large, and in some iterations, these cells were

ranked as moderate or low priority. Furthermore, by the

third time period, variation in the cell rankings increased

more in the high ranked than low ranked cells (Fig. 4C, D).

From this followed that the probability of any one grid cell

to be included in the top 10% in all iterations decreased

(Fig. 4B) and a larger number of grid cells could be ranked

as top priority in at least one of the iterations (Fig. 4C, area

of coloured points).

CCA

Across all grid cells, the variance in priority ranking was

most strongly and consistently explained by the amount of

carbon stored in trees and the distribution patterns of three-

toed woodpecker, honey buzzard and common buzzard

(Fig. 5A, upper row). Of the initial forest variables, tree

volume followed by tree height and DBH explained most

of the variation seen in priority rankings of all grid cells,

particularly in the first two time periods (Fig. 5B). Tree

volume and tree carbon storage correlate closely, in addi-

tion to which tree volume is one of the strongest predictors

of the nesting suitability for several of the bird species

(Table 1). Hence, minor changes in tree volume, and

thereby tree carbon storage, may trickle into the prioriti-

sation results via multiple input features, even if carbon

features are not included in the prioritisation (Fig. S7).

By the third time period, most of the forest stands had

become similar in terms of biomass and structural variables

(Figs. 3, S3), and the forest variables alone had little effect

on how grid cells were ranked. Concurrently, the impor-

tance of the tree carbon storage, common buzzard and

honey buzzard on the ranking were reduced, while the

importance of the three-toed woodpecker remained high

(Fig. 5A, upper row). In the last time period, changes in the

carbon sink estimates greatly affected the priority rankings,

although this effect in itself was highly variable across the

50 iterations.

In contrast to all grid cells, variation in the top 10%

ranked cells was more evenly explained by both carbon and
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Fig. 3 Variation in the sampled forest variables and the respective carbon and biodiversity values. For the forest variables and carbon features,

the values are given as means across study region. For segment-level means and variation, see Table S2. For the biodiversity features, the

proportion of study area that is suitable is given, calculated as the sum of predicted values divided by the study area. DBH tree diameter at breast

height, ACCGEN northern goshawk, BUTBUT common buzzard, PERAPI European honey buzzard, DENLEU white-backed woodpecker,

DRYMIN lesser-spotted woodpecker, PICTRI Eurasian three-toed woodpecker. Note that the y-axes are not fixed but are on different scales
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Fig. 4 Priority areas for conservation and their associated uncertainty in each time period. For each time period, a baseline and 50 sample

prioritisations were produced using the resampled forest variables and their corresponding carbon and bird distribution maps. Panel A shows the

top ranked 10% of grid cells (dark blue) for baseline data at each time period. Panel B gives the probability of a grid cell to be in the top 10%

across the 50 sample prioritisations. The scatterplots (C) show the mean (x-axis) and range (y-axis) in rank values for each grid cell across the

sample solutions. Here grid cells have been ordered based on their mean rank values from lowest (left) to highest (right) priority and for each cell

the points give the rank value for one iteration. For visibility, these are shown for a subset of 4000 grid cells. The point colours correspond to the

probability of the cell to be within the top 10% across samples, as in B. The boxplots in panel D show the distribution of standard deviations (SD)

in the rank values for grid cells. The colours correspond to each of the probability groups shown in B and C
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biodiversity features (Fig. 5A, lower row). This is logical

as the prioritisation seeks to rank highest those areas that

capture the high-value locations of all input features.

Variation was predominantly explained by the three-toed

woodpecker, northern goshawk and tree carbon storage on

the first time period and became balanced between tree

carbon storage and sinks and the three woodpecker species

in the last time period. Unlike in the full ranking, the

variation in the top ranked 10% grid cells was consistently

explained most by the forest structural variables describing

the mean height, volume and DBH together with dominant

tree age of the forest stands, although the explanatory

power was low.

The CCA patterns were consistently similar for priori-

tisation based only on biodiversity, whereas in the carbon-

only prioritisation uncertainty in the ranks were predomi-

nantly only explained by carbon sinks (Figs. S7, S8).

DISCUSSION

Our results illustrate the complex nonlinearities between

model input and output uncertainties across the different

modelling levels (forest variables, carbon and biodiversity

features, priority rankings). The seemingly small alter-

ations in the simulated forest variables often resulted in

much larger variation in carbon and biodiversity estimates

(Fig. 3). To some degree, these are explained by the dif-

ferent ways uncertainty accumulates in these estimates. For

example, the large variation around soil carbon is likely

driven by the uncertainty in the initial estimate (not tested

here), which assumes steady state and is in turn affected by

uncertainty around PREBAS parameters and forest man-

agement (Junttila et al. 2023). Variation around biomass

and carbon stored in trees and ground vegetation mostly

stems from the input variable uncertainty, that is, variation

in the initial structural forest variables and mean age,

which becomes reduced as the simulated forest growth

evens out differences between forest stands (Junttila et al.

2023). In contrast, uncertainty around the carbon sink

estimate accumulates from multiple submodels of PRE-

BAS (Table 1). Unlike input variable uncertainty, the effect

of PREBAS parameter uncertainty increases with time as

model outputs generated with different parameter vectors

become more diverged (Mäkelä et al. 2020; Junttila et al.

2023), increasing uncertainty in the sink estimate. Simi-

larly, despite the perceived certainty around forest variable

estimates, the bird habitat estimates become more uncer-

tain with time (Fig. 3) as the combined environmental

conditions (forest and non-forest variables) of the region

becoming increasingly different from those under which

the model was calibrated (Barry and Elith 2006).

On the other hand, the priority rankings of grid cells

showed both spatial stability (Figs. 4B, S5) and dispro-

portionally large within-pixel variability (Fig. 4C) in

comparison to uncertainty around carbon and biodiversity

estimates (Fig. 3). The latter is explained by the way values

within each biodiversity and carbon feature are distributed

(Fig. S6). For all features, the highest values tend to be

rare. Most of the grid cells, therefore, have low (biodi-

versity) or intermediate (carbon) values and their relative

conservation importance becomes similar. Hence, even

modest alterations in the raw carbon and biodiversity val-

ues can drastically change the priority of these middle-low

ranked cells (Kujala et al. 2018b). In contrast, the few grid

cells with the highest biodiversity and carbon values con-

strain the top rankings to these locations. As the sample

iterations do not significantly alter the shape of the value

distribution, the top ranked grid cells remain more stable.

Finally, the study area has some 3.8 million grid cells: even

very large variations in single pixel rankings (Fig. 4C) do

not necessarily translate into changes in the overall spatial

patterns (Fig. S5). These observations show that the con-

nections between input data uncertainty (forest attributes,

carbon and biodiversity patterns) and decision uncertainty

(priority rankings) are complex, and that care must be

taken in interpreting how one influences or is driven by the

other.

The need to reduce uncertainty around input data

depends on how it affects the decision being made

(Howard 1966). Refining estimates of those input data that

explain most of the variation in priority ranks is the most

logical starting point, and in our study case, the uncertainty

around placement of protected areas (top 10% ranked sites)

would be most reduced by improving our understanding on

the distribution of the three-toed woodpecker, the northern

goshawk, tree carbon storage and carbon sinks (Fig. 5). A

more detailed uncertainty analysis of the different mod-

elling approaches, such as done by Junttila et al. (2023) for

PREBAS, can reveal strategies for how to best achieve this.

However, our results reveal also other important observa-

tions. First, which input data introduces most of the

uncertainty in the priority solution depends on what frac-

tion of the landscape we focus on (Fig. 5). Second, high

variability in predicted values or differences in model fit

(AUC, Table 2) indicated poorly which input feature

introduced most uncertainty in the priority ranking

(Fig. S9). Instead, the spatial rarity, nestedness and co-

occurrence with other input features explains how much of

the ranking is driven by an input variable (Kujala et al.

2018b). For example, as tree carbon storage, common

buzzard and honey buzzard became spatially more com-

mon with time (Figs. 3, S1, S3), there were more equally

good options to protect them and they explained less of the

ranking variability (Fig. 5a). The habitat of the three-toed
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woodpecker also increased (Fig. 3) but remained spatially

confined (Fig. S2) and retained its high influence on the

ranks. In contrast, the decrease in carbon sinks (Figs. 3, S3)

increased its influence on the priority ranks. Carbon sinks

also tend to have different spatial patterns in comparison to

stored carbon and biodiversity (Fig. S6), as NEP is highest

in relatively young, fast growing forest stands (Minunno

et al. 2019). Since the spatial prioritisation aims to capture

Fig. 5 Redundancy indices of different modelled input variables from the canonical correlation analysis. Higher values of the redundancy index

mean the feature explains more of the variation in the priority rankings. The boxplots show how different input features (A. carbon and

biodiversity, B. forest variables) explain the variance in the priority rankings of all grid cells (upper row) and in the top 10% ranked grid cells

(lower row) and how much this varies across the 50 sample iterations (boxplot). The results are broken down for each time period (T1, T2, T3).

The leftmost panel (‘‘All’’) shows the canonical correlation across all time periods. The redundancy index values are comparable between

columns, but not between rows, as these measure correlations between different sets of input features and priority solutions (see text). Ground
veg ground vegetation carbon, ACCGEN northern goshawk, BUTBUT common buzzard, PERAPI European honey buzzard, DENLEU white-

backed woodpecker, DRYMIN lesser-spotted woodpecker, PICTRI Eurasian three-toed woodpecker, DBH tree diameter at breast height, Dec. vol
volume of deciduous trees, Type forest site type (fertility). Note that the scales of the y-axis differ across panels
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high-value areas of all input features, one feature with a

strongly dissimilar distribution from others can influence

the ranking more (Kujala et al. 2018b). This effect varied

greatly between sample iterations (Fig. 5a), even though

the increase in uncertainty around carbon sinks was only

moderate.

Our work focused solely on input variable uncertainty.

Most notably, we did not account for uncertainty arising

from forest management actions and future climate change,

which can have an even larger impact on forest and bio-

diversity estimates (Buisson et al. 2010; Mäkelä et al.

2020). Although this was necessary to single out the

impacts of target uncertainties, real-world conservation

planning would rarely happen in isolation from these

threats, and our results particularly for future time steps

need to be interpreted with this in mind. However,

observing the changes in forests in the absence of har-

vesting allowed us to better understand why certain forest,

carbon and biodiversity values become such important

drivers of the spatial prioritisation solution.

Our results also need to be interpreted in light of the

made modelling choices and their potential limitations.

Although the area on which the original bird species dis-

tribution models (SDMs, Virkkala et al. 2022) were built

overlaps with ours, and thus, the risk of model extrapo-

lating is small, the transferability of these types of models

can be poor (Barry and Elith 2006). We also focused on

just one region and used one type of forest model, SDM

method and spatial optimisation. The benefit of the chosen

spatial prioritisation algorithm is that it does not require

pre-defined conservation targets (such as percentage of

area protected) to be set for each feature, which would add

an arbitrary constraint and reduce the transparency and

interpretability of the results. Nevertheless, there are many

other options for modelling tree growth, carbon fluxes and

species distribution patterns, and the selection of modelling

method is a known source of uncertainty in itself (Buisson

et al. 2010; Mäkelä et al. 2020). Including all these factors

would likely result in higher uncertainty in the priority

areas and carbon and biodiversity estimates than shown

here.

CONCLUSION

Input data uncertainty may lead to misguided spatial plans

and decisions, resulting in excessive spending of resources

or the neglect of targeted values in areas mistaken as

unimportant. Although the conservation priority of indi-

vidual grid cells was highly sensitive to input data uncer-

tainty, the spatial patterns remained rather stable. In

particular, the top priority areas were least sensitive, giving

some confidence that spatial prioritisation-based conser-

vation plans can be robust against data uncertainty.

We did not find evidence that forest conservation

strategies would be more sensitive to uncertainties in either

biodiversity or carbon data. The amount of uncertainty in

feature estimates themselves, whether measured by vari-

ability in predicted values or model fit (AUC), was a poor

indicator of which the input features introduced most

variation in the priority rankings. Rather, their impact was

explained by the combination of what fraction of the for-

ests was being considered and the spatial rarity and co-

occurrence of the input features. Thus, even small estimate

variation in a very influential input feature (e.g. tree carbon

storage or three-toed woodpecker at time period T1) could

have large effect on the location of priority areas and vice

versa (e.g. common buzzard at T3).

The presented approach allows identifying input fea-

tures that most strongly define the conservation priority of

forest stands, and which are less important to account for.

This helps us to understand the relative importance of data

uncertainties and how to most effectively reduce it when

improving the accuracy of spatial prioritisation-based

conservation plans.
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Annikki Mäkelä is a Research Director at the University of Helsinki,

Institute for Atmospheric and Earth System Research (INAR). Her

work focuses on process-based modelling of forest growth and

material balances, and model applications to forest management

under climate change.

Address: Department of Forest Science, University of Helsinki, P.O.

Box 27, 00014 Helsinki, Finland.

e-mail: annikki.makela@helsinki.fi

Raimo Virkkala is a Leading Researcher at the Finnish Environment

Institute. His research work focuses on the effects of land-use and

climate change on species and habitats and significance of protected

area network for biodiversity.

Address: Finnish Environment Institute Syke, Latokartanonkaari 11,

00790 Helsinki, Finland.

e-mail: raimo.virkkala@syke.fi

Anu Akujärvi is a Researcher at the Finnish Environment Institute.

Her work focuses on model applications to forest carbon balance

under different forest management and climate change scenarios.

Address: Finnish Environment Institute Syke, Latokartanonkaari 11,

00790 Helsinki, Finland.

e-mail: anu.akujarvi@syke.fi

Niko Leikola is a senior research scientist at the Finnish Environment

Institute. His research interests include conservation biology of

endangered species and habitat types.

Address: Finnish Environment Institute Syke, Latokartanonkaari 11,

00790 Helsinki, Finland.

e-mail: niko.leikola@syke.fi

Risto K. Heikkinen is a Leading Researcher at the Finnish Envi-

ronment Institute. His research interests include conservation biology

of endangered species and habitat types, species distribution mod-

elling and impacts of climate change on biodiversity.

Address: Finnish Environment Institute Syke, Latokartanonkaari 11,

00790 Helsinki, Finland.

e-mail: risto.heikkinen@syke.fi

123
� The Author(s) 2023

www.kva.se/en

1818 Ambio 2023, 52:1804–1818

https://doi.org/10.1890/07-2153.1
https://doi.org/10.1186/s40663-018-0131-5
https://doi.org/10.1016/j.biocon.2005.12.008
https://doi.org/10.1016/j.biocon.2005.12.008
https://doi.org/10.1017/CBO9780511623387
https://doi.org/10.1017/CBO9780511623387
https://doi.org/10.1021/acs.est.6b00122
https://doi.org/10.1037/h0026143
https://doi.org/10.1037/h0026143
https://doi.org/10.1016/j.rse.2007.03.032
https://doi.org/10.1016/j.rse.2007.03.032
https://doi.org/10.1093/treephys/25.7.769
https://doi.org/10.1002/eap.2505
https://doi.org/10.5194/gmd-13-5959-2020
https://doi.org/10.5194/gmd-13-5959-2020
https://doi.org/10.1007/BF02294050

	Role of data uncertainty when identifying important areas for biodiversity and carbon in boreal forests
	Abstract
	Introduction
	Materials and methods
	Overview of the analysis design
	Study area
	Forest and carbon data
	Biodiversity data
	Sample iterations
	Spatial prioritisation
	Quantification of uncertainty

	Results
	Changes and uncertainty input data estimates
	Changes and uncertainty in conservation priority rankings
	CCA

	Discussion
	Conclusion
	Funding
	References




