
CARBON SEQUESTRATION AND BIODIVERSITY IMPACTS IN FORESTED ECOSYSTEMS

Input data resolution affects the conservation prioritization
outcome of spatially sparse biodiversity features
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Abstract Detailed spatial data are an essential part of land

use planning and decision-making. Their spatial resolution

sets limitations to their use, as coarse datasets are not

suitable for detecting small-scale phenomena. In this

study, we explored the effects of spatial resolution on the

ecological outcome of a conservation prioritization process

in Zonation software. Our study area was in Evo, southern

Finland, covering a mosaic of managed and conserved

forests. We produced the feature layers describing the

forest characteristics using high-resolution remote sensing

datasets, object-based mapping methods, and forest site type

data. We found that increasing the resolution above the 16m

baseline resolution resulted in substantial errors. The

conservation errors were the highest for rare features

related to European Aspen, whereas the common features

related to dominant tree species could benefit from the

growth of cell size. We conclude that adequate spatial

resolution is a prerequisite for efficient conservation

prioritization, and that the size and spatial distribution of

the features affect the resolution requirements.

Keywords Conservation prioritization � Forests �
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INTRODUCTION

Land use planning is highly dependent on spatial data sets.

The data provide decision-makers with information on the

subject area through key characteristics related to the

planning goals. The on-going biodiversity crisis, which

strongly connects to the climate crisis, underlines the

importance of ecological aspects as part of all land use

planning, such as avoiding ecological impacts in develop-

ment projects and the planning and designation of new

protected areas (Montanarella et al. 2018).

Conservation prioritization is an analytical step of sys-

tematic conservation planning (Sarkar and Margules 2002).

It identifies the priority areas for conservation across the

target landscape by finding that set of sites that together

maximize conservation outcomes for all included biodi-

versity features, such as species, habitats, and other rele-

vant indicators. An important part of spatial prioritization

is cost-effectiveness, i.e., maximizing conservation benefits

with minimal cost or land area (Moilanen et al. 2009;

Kukkala and Moilanen 2013). In conservation prioritiza-

tion, like in all land use planning, the spatial resolution

defines the level of detail that can be achieved with spatial

data. The requirements for the resolution vary, depending

on the purpose of the planning. Hence, the resolution and

quality of the data affect the use and interpretation of

spatial data sets and eventually the results of the analysis

(Araujo et al. 2005; Rondinini et al. 2006). In ecological

datasets the effect of spatial resolution varies by the scar-

city of the phenomena. The more detailed the input data,

the smaller patterns can be distinguished from the land-

scape. On the other hand, very detailed data can be

impossible to gather due to higher data acquisition and

processing costs, and the work can be left undone because

of this. Spatially explicit ecological data that cover large

areas at resolution relevant to land use planning are not,

however, easy to obtain. Most biological survey data are

based on point observations that cover only a small fraction

of subject areas, tend to be spatially biased, and do not
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provide information from unsurveyed areas (Boakes et al.

2010; Anderson 2012).

Biodiversity (BD) is typically mapped and monitored

using indicators, because the phenomenon itself is often too

complicated to measure in detail with the available

resources (Sakar et al. 2002). The BD indicators are typi-

cally phenomena, species, or other structural features that

indicate the site’s potential for hosting other species

(Ćosovi _c et al. 2020). For example, in boreal forests, the

presence of European aspen (Populus tremula L.) and the

amount of deadwood are key indicators for the level of

biodiversity (Harmon et al. 1986; Kuuluvainen 1994;

Krankina and Harmon 1995; Kivinen et al. 2020).

RS-based forest inventory systems have been used

already for decades in producing landscape-level forest

resource data (see, e.g., Tomppo 2006; Kangas et al. 2018).

However, the coarse resolution of the landscape-level data

dissolves the scattered BD indicators into the forest matrix

and the important details are lost. This is problematic for

ecological mapping, especially as the ecologically signifi-

cant remnants of natural forest structure are scarce within

the mosaic of managed forests (Korhonen et al. 2021). Like

the large-scale methods, also methods used in collecting

compartment-level data for operational forest planning are

typically based on field samples that are generalized for

larger landscapes using various RS data (e.g., Packalén and

Maltamo 2007). Such operational data do not adequately

represent the scarce ecological features, as the economi-

cally significant trees are typically emphasized in the col-

lection of field data (Suomen Metsäkeskus 2021). Hence,

the data produced using RS methods are often either too

coarse or imprecise for making ecologically sound land-use

decisions.

Within the last decade, very high-resolution RS data,

such as airborne LiDAR and drone imagery, have intro-

duced new possibilities in mapping forest structure and BD

indicators (Polewski et al. 2018). Coupled with powerful

machine learning algorithms and various spectral datasets,

these mapping methods have shown to be able to produce

detailed spatial data at the level of individual trees (Sothe

et al. 2020). However, the object-based mapping methods

typically suffer from bias caused from not detecting all

objects (error of omission) and, on the other hand, falsely

detecting objects that do not really exist (error of com-

mission) (see, e.g., Korpela et al. 2007). The question

remains whether the enhanced data on forest structure

brings enough advantages to compensate for the problems

related to detection bias.

The concept of spatial resolution is a well-studied sub-

ject in ecology (Poiani et al. 2000; Rahbek 2005). How-

ever, many of the studies focus on distribution of individual

species rather than the overall ecological value. Hence,

there is a limited number of studies focusing on the effects

of spatial resolution on conservation decisions. Also,

majority of the studies focusing on the overall conserva-

tional value date back several decades, which means that

the possibilities of acquiring high-resolution data by means

of RS have improved significantly. Studying the effect of

sampling unit size on the variability of species richness in

North America, Stoms (1994) showed that using larger cell

sizes lowered the reported species richness indices. Jantke

et al. (2013) studied the efficiency of wetland conservation

at different spatial scales over Europe and showed the link

between the increase of input data resolution and the

enhanced conservation efficiency. More recently, Delangre

et al. (2018) studied the role of resolution and shape of the

mapping units in habitat suitability models and showed that

resolution has a significant effect on model performance,

exceeding that of the shape of mapping units. Still, the

spatial resolution in all reported studies was rather coarse

when compared to the level of detail available in current

RS datasets.

The aim of this study is to investigate the effect of the

spatial resolution in spatial prioritization analysis of a

fragmented forest landscape. To achieve this, we use

detailed airborne RS data sets and novel machine learning

methods with Zonation 5 software to produce a priority

ranking of forest to support the planning of a hypothetical

conservation plan. Our focus was not on the accuracy of

state-of-the-art object-based methods, but on the effect

their output detail has on conservation outcomes.

We executed six prioritization analyses, each with the

same input features but with different resolutions and

compared the results to answer the following questions:

1. How does the resolution affect the spatial and conser-

vation error of prioritization? (R1)

2. Which input features are the most robust to changes in

spatial resolution? (R2)

3. What type of forests benefit the most from detailed

data? (R3)

MATERIALS AND METHODS

Study area

Our study area was in southern Finland consisting of a

mosaic of intensively managed forest, recreational forests,

and forest with strict conservation status (Fig. 1). The study

area covers 84 km2 and has been measured intensively both

in the field and by various remote sensing methods (see,

e.g., Mäyrä et al. 2021). The forests in the area are domi-

nated by conifers Norway spruce (Picea abies (L.) Karst)

and Scots pine (Pinus sylvestris L.) representing 40% and
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35% of the total volume, respectively. Together, silver

birch (Betula pendula Roth) and downy birch (Betula

pubescens Ehrh.) represent 17% and European aspen 5% of

the total volume. The study area is rather fertile as over

30% of it consists of herb-rich areas (herb-rich forests and

herb-rich heath forests) and more than 50% of mesic heath

forests (Table 1). Sub-xeric heath forest and areas with

even lower productivity are rather scarce, representing only

about 17% of the area. The area has a long history in

forestry as the first forestry school in Finland was founded

there in 1862. However, in addition to managed forests the

study area covers two valuable old forest areas (Kotinen

and Sudenpesänkangas) that have had very little human

impact.

Managed, recreational, and strictly conserved areas

cover 24%, 54%, and 21% of the study landscape,

respectively. For capturing the site types of the study area,

we utilized the compartment-level forest resource data

collected by the Finnish Forest Centre (Finnish Forest

Centre 2022). The original data divides the forest soils into

seven fertility classes, ranging from mesic groves to dry

sands and rock. Because of the scarcity of the most nutrient

Fig. 1 Upper panels The Evo study area in southern Finland. Lower panel An outtake of aspen occurrence at 16 m (black), 48 m (medium

gray), and 96 m (light gray) resolutions (Upper panel left: Made with Natural Earth. Upper panel right: NLS Finland image archives, 12/2022.

Lower panel: UEF-drone lab)
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rich and the most barren sites types, we combined the

classes on both ends of the spectrum. Thus, we divided the

area in four classes describing the site fertility (Table 1).

Data

We utilized several datasets that were originally collected

and processed for other studies or operational forest man-

agement. We derived the forest data from object-level

measurements of both living and dead trees, which allowed

a detailed description of small-scale variation in the forest

structure. The high-resolution RS data enabled detailed

description of the key indicators of forest biodiversity, such

as location, size, and species of trees in the dominant

canopy layer, as well as downed deadwood (DDW).

We used existing vector format tree maps produced for

Mäyrä et al. (2021) as a basis for our object-based data on

standing trees. The location, height, and tree species were

determined for all the 2.4 million treetops in the study area

using a fusion of airborne laser scanning (ALS) data and

airborne hyperspectral data (for details see Mäyrä et al.

2021). The existing tree-level data were determined for the

four most frequent tree species groups in the area. Three of

the groups consisted of individual tree species (Norway

spruce, Scots pine, and European aspen), whereas the

fourth group was a combination of the two birch species

(silver birch and downy birch). Standing dead trees were

not separated from the living trees.

For the purposes of this study, we processed the data

further by adding data on diameter at breast height (DBH)

and stem volume. First, we used the ALS-derived tree

height to estimate the DBH with existing species-specific

equations (Kalliovirta and Tokola 2005). Height and DBH

were further used for estimating the stem volumes with

species-specific volume equations by Laasasenaho (1982).

Figure 2 shows the relative occurrence of species and dis-

tributions of other features between the four forest site type

classes (listed in Table 1).

As comprehensive DDW data were not available for the

study area, we estimated the presence of DDW with dense

ALS data and 3D object detection. We used the method

introduced in Heinaro et al. (2021) that is based on

detecting linear objects from height classified ALS point

clouds. The method detects the fallen trunks directly from

the point clouds and derives them into estimates of DDW

instances with diameter, length, and volume.

Data processing and analysis

We first transformed all data layers into regular 16 m 9

16 m grid cells. The cell values were calculated using the

object, i.e., tree-level data within each grid cell. For the

living trees, we calculated total volume (Vol), height of the

Table 1 Forest site type classes

Used site fertility

classification

Class

abbreviation

Original fertility classes Share of the total

land area (%)

Herb rich f1 Herb-rich forests, herb-rich heath forest 32.4

Mesic f2 Mesic heath forest 51.1

Sub-xeric f3 Sub-xeric heath forest 15.6

Low productive f4 Xeric heath forest and barren heath forest. Additionally, the class includes rock

outcrop and scree habitat types

0.9

Fig. 2 Features occurrences at 16 m cell size. The figure shows the distribution of forest characteristics between the four forest site type classes

(f1 = Herb rich, f2 = Mesic, f3 = Sub-xeric, f4 = Low productive)
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tallest tree (Hmax), and mean height of the trees (Hmean)

within the grid cells. The attributes related to living trees

were calculated separately for the four species groups used

in the study. For the DDW, we calculated the total volume

of DDW instances within the grid cells. The DDW

instances occupying several grid cells were divided corre-

spondingly. After calculating the grid-level attributes, we

connected them with the four site type classes (Table 1).

Each tree species class formed its own data layer in all four

site type classes.

Finally, we aggregated the original data layers for 32 m,

48 m, 64 m, 80 m, and 96 m grid cells. The 16 m cell size

is used in Finland for operational forest data (e.g., Mäkisara

et al. 2022), whereas the largest size has been used before

in nation-wide prioritization tasks (e.g., Mikkonen et al.

2018; Forsius et al. 2021). For the larger cells, we calcu-

lated the mean height as an average, maximum height as

maximum, and total volume as a sum of the 16 m cells

within them. As a result, we had a total of 312 data layers

describing the attributes of living trees (288) and DDW

(24) describing the spatial forest characteristics of the study

area (Table 2, Appendix S1). As all coarser data were

generated from the 16 m data, the inevitable uncertainties

in the object-based mapping of forest structure should not

have affected the results between different resolutions.

Next, we identified priority forest areas for a hypothet-

ical conservation plan. The study area was prioritized using

Zonation 5 spatial prioritization software (Moilanen et al.

2022). Zonation produces a nested hierarchical priority

ranking of spatial units, here grid cells, based on their

importance for conservation. Through an iterative opti-

mization process, the software seeks to find a priority

ranking of cells that maximizes the representation of all

input biodiversity features in the top ranked grid cells. The

optimization utilizes core concepts of systematic conser-

vation planning such as complementarity and irreplace-

ability (Kukkala and Moilanen 2013) to find the most cost-

effective solution (or area-effective, if no cost data is

available). Consequently, the top ranked areas typically

cover core or high-quality habitats of all input features

(see, e.g., Kujala et al. 2018). Additionally, Zonation

reports information on the fraction of each input feature’s

total distribution that is protected by any top ranked frac-

tion of the grid cells. All together six analyses were done,

each with the same number of input features (n = 52) but at

six different resolutions (See Appendix S1). During the

prioritization, feature-specific benefits (vj) of protecting a

grid cell i were treated additive (Moilanen 2007). For each

feature j, we used a benefit function to describe the value of

protection vj as a function of the accumulating fraction rj

of feature j’s total distribution that is protected. vj (rj) is a

power function, where the parameter z defines the shape of

the function. We set z = 0.25 for all biodiversity features,

following the well-established species-area relationship.

From each of the six spatial prioritization results, we

selected the top ranked 2% and 10% of grid cells to rep-

resent our conservation plan. The 10% was based on the

EU biodiversity strategy 2030 target of strict protection

(European Commission 2020). In addition, we selected the

2% to understand if there are additional effects on the most

critically important areas.

For defining the spatial error, we used the prioritization

results based on the 16 m resolution data as our baseline.

We then compared the top 2% and 10% priority areas

identified at the coarser resolutions with those of the

baseline. From the comparisons, we first defined the rela-

tive area shared with the baseline map, i.e., intersection of

the two prioritizations. In addition, we defined the error of

omission for all five resolutions. For conservational error,

we calculated the relative loss or gain in protection of input

features that happens as the selection of priority areas are

based on increasingly coarser data. We did this by com-

paring the total sums of each feature (i.e., Hmax, Hmean,

and Vol) that is protected by the different priority solu-

tions, calculated using the baseline (16 m) data.

RESULTS

Spatial error

The overlap with the baseline priority areas decreased with

cell size, both for 2% and 10% top fractions (Fig. 3). The

overlap of the 2% top fraction varied between 0.34 (32 m

9 32 m resolution) and 0.21 (96 m 9 96 m), whereas for

the 10% top fraction the overlap varied between 0.45 and

0.31. The decrease in the overlap was highest between

baseline and the next finest 32 m 9 32 m resolution,

although the greatest drop in the overlap took place already

during this first resolution decrease (Fig. 3). The error of

omission increased steadily with increasing cell size.

Table 2 Biodiversity variables and resolutions used to compile input

data for the conservation prioritization. Spatial maps of biodiversity

features (height and volume of dominant tree species and dead wood

volume, n = 13) were prepared separately for each site class (n = 4)

and resolution (n = 6), resulting in a total of 312 data layers

Tree size (3) Hmax, Hmean, and Vol

Tree species (4) Spruce, Pine, Birches, and Aspen

(living trees only)

Volume of downed deadwood

(1)

DDW (no species information)

Site classes (4) f1, f2, f3, and f4

Data resolutions (6) 16 m, 32 m, 48 m, 64 m, 80 m, and

96 m
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Conservation error

We report the results for conservation error separately for

height features (Fig. 4) and volume features (Fig. 5). For

height features, only results for feature Hmax are shown, as

the outcomes for Hmax and Hmean behaved similarly with

the increase of the cell size. Results for feature Hmean are

given in Appendix S2.

Overall, the decrease of spatial accuracy (i.e., increasing

cell size) had a negative impact on the conservation out-

come for features (Figs. 4, 5, Appendices S2 and S3). In

most cases, the priority areas protected less of their values

within the priority areas, than what could have been pro-

tected with a higher resolution data. There were a few cases

that stood out. For biodiversity features found on forest site

type class 4, which was the rarest site type, the 2% top

fractions show an increasing conservation error with res-

olution in both height and volume features, but in the 10%

top fraction the error remains marginal and steady at all

cell sizes and the differences between feature types are

small.

In site type class 2, both the height and volume features

of the dominant tree species, i.e., pine and spruce, show a

positive trend between the increasing cell size and

decreasing conservation error. In the 2% top fraction, the

conservation error for height features of pine, spruce, and

birch decreases with cell size (Fig. 4). For pine and spruce,

the outcomes with coarser data were at times even greater

than the 16 m baseline. In the 10% top fraction, the errors

for pine, spruce, and birch are generally higher but still

close to or even slightly above the baseline. In volume

features, the trends are similar but even more positive for

pine and spruce (Fig. 5). In all site types the effect of

increasing resolution varied between different features.

Aspen features suffered the most from the increase of cell

size. While these features lost 20%-60% from their highest

attainable protection already when moving from baseline to

32 m cell size, the loss increased steadily further, peaking

at about 75% (Vol feature at 96 m cell size, 2% top frac-

tion). For the DDW, the effect of cell size was twofold. The

relative loss from the baseline is significant, but in forest

site type class 2, the increase in cell size resulted in better

outcomes than the baseline.

DISCUSSION

In this study, we explored the effect of spatial resolution on

spatial prioritization-based conservation outcomes in a

boreal forest site. Our results show that the spatial error

increases drastically when resolution is lowered (R1). The

relative share of common area between the baseline and

coarser resolution solutions dropped to 0.35–0.45 (2% and

10% top fractions, respectively) already at the first cell size

increase from 16 9 16 m to 32 9 32 m (Fig. 3). The share

of common area continued to decrease with increasing cell

Fig. 3 Upper panel An outtake from the study area showing the 2% (green) and 10% (dark blue) prioritized top fractions at 16 m, 48 m, and

96 m cell size. The 2% top fraction is included in the 10% top fraction. Lower panel Detected spatial error in relation to the decrease of

resolution. The relative value of common area and error of omission sum up to 1. Background image: RGB-drone data UEF-drone lab
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Fig. 4 The relative change of height features’ values that are protected by the priority areas under each data resolution. Here, Hmax describes the

height of the tallest trees within the map cells. The top row presents the variation in the top 2% fraction and the lower row in the top 10% fraction

Fig. 5 The relative change of volume features’ values that are protected by the priority areas under each data resolution. Here vol describes the

volume of each tree species and DDW. The top row presents the variation in the top 2% fraction and the lower row in the top 10% fraction
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sizes, but slower. We believe that the relative increase in

the cell area plays an important role here. Increasing the

cell size from 16 9 16 m to 32 9 32 m results in four times

larger cell extent, whereas further increases in cell size

have much lower relative effect on the cell extent. Also

Arponen et al. (2012) reported low overlap between the top

priority outcomes in prioritization analyses conducted at

different resolutions.

The increase in spatial error also led to higher conser-

vation errors, although there was a lot of variation between

the features (R1). Typically, the spatially more common

features were less affected by the increasing cell size and

even benefited from it, whereas more scarce features were

clearly lost. The effect of scarcity can be seen especially

for aspen. Having the lowest relative occurrence and rel-

ative volume and being a species that occurs only spo-

radically, often as single trees, in the study area,

information about aspen-specific biodiversity features

became lost when cells were aggregated into larger units.

Unlike dead wood and features of other tree species, aspen-

specific features had a declining trend in all forest site type

classes and both top fractions, the only exception being the

Low productive site type class (f4) in the 10% top fraction.

In our study system, both the tree species and the site

type class defined how common or rare a feature was. For

example, spruce was one of the most common dominant

species in site type classes 1 and 2 (Fig. 2), and in both

classes, the conservational error of spruce-specific features

remained relatively low (Figs. 4 and 5, Appendix S2). In

contrast, spruce was less commonly dominant in site type

class 3, and in this class the increasing cell size increased

the conservation error of spruce-specific features. On the

other hand, forest site type class itself can be rare. In our

study, the site type class 4 covered only 0.9% of the total

study area. Since the prioritization aimed to capture core

occurrences of all features within the priority areas, the few

locations of site type 4 became selected at rather high

frequency (Appendix S4). This led to all species behaving

rather similarly within site class 4, especially within the

10% top fractions, where nearly all of the cells of this site

class were selected in the priority areas (Figs. 4 and 5.

Appendix S2). According to our results, the forest areas

hosting scattered and small-scale features tend to be sub-

stituted by areas hosting more common features in con-

servation plans based on coarser data (R2 and R3). We

believe this to be driven by two processes. First, the spatial

aggregation of feature’s occurrences defines how well

information about its presence is carried through to higher

cell sizes. This is highlighted by the differences between

features related to aspen and site type class 4, which show

that rare aspen features with sporadic occurrence, tend to

be lost in the cell aggregation and therefore suffer from

much higher conservation error in comparison to the rare

site types forming continuous areas, which are simpler to

aggregate into larger cell sizes. Second, with coarser res-

olutions the number of selectable cells is lower within the

landscape. Although the remaining rare features still drive

the selection of cells as priorities, at coarser resolution it

becomes impossible to select the rare and scattered features

without bringing in large amounts of the common features

(Fig. 1). From this follows, that the most common features

can even benefit from the increasing cell size as the pri-

oritization process actually selects more of these features

from the landscape compared to the baseline. For example,

the amount of protected pine features at site type class 2

rose well above the baseline (Figs. 4 and 5, Appendix S2).

In this study, the scarce forest features were represented

by aspen features (Hmax, Hmean, and Vol) and DDW fea-

tures. In the analyses, the aspen features behaved as

expected whereas the behavior of the DDW features was

somewhat unexpected. The DDW features’ response to the

increasing cell size resembles that of the common tree

species (Fig. 5), although it is a scarce and scattered phe-

nomenon in the landscape. Prior to the analysis, the cor-

rectness of the DDW feature layer was checked by

comparing its average volume to the DDW volumes mea-

sured from the area in field surveys. Although the mean

volumes were rather similar, it seems that the RS-based

detection overestimated the occurrence of DDW by making

its spatial distribution more even, thus making it a more

common feature in the landscape. The ALS-based DDW

mapping method has been reported to work best with large

diameter trunks (Heinaro et al. 2021) that contribute the

most for the total volume. Although the falsely detected

DDW instances, i.e., errors of commission are typically

small in size, they build up in larger cell sizes and affect

the total volume. As the method seems to work best on

large diameter trunks, it would be interesting to use it for

mapping only the occurrence of the largest DDW diameter

classes. In general, this study did not consider the uncer-

tainties related to remote-sensed forest attributes. However,

if the results were to be used for, e.g., planning of new

conservation areas, all RS-based forest attribute maps

should be validated using adequate reference data.

Scarce features suffered the most from the increase of

cell size. Hence, we argue that any rare phenomenon is

likely to disappear into the forest matrix with large cell

sizes. Lehtomäki et al. (2015) proposes that the data col-

lected primarily for operational forest planning would be

informative in the context of spatial conservation prioriti-

zation. Unlike the operational forest data that utilizes sta-

tistical models to generalize field-measured attributes with

RS data (see, e.g., Brosofske et al. 2014), the input features

in this study based on direct detection and identification of

forest features from RS data. According to our results, even

detailed object-level data (i.e., tree and deadwood maps)
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will not guarantee that scarce and scattered phenomena will

be present in the final prioritization results, if the spatial

resolution of the final input feature is too coarse for the

phenomenon. Such phenomena require a finer resolution

than rare but strongly clustered phenomena. Hence, the

spatial distribution of the phenomenon affects its chance to

be included in conservation schemes.

Ecological features such as local species diversity may

result in biased estimates on very fine resolutions (Noss

1990). Hence, there are trade-offs between optimal reso-

lutions for mapping different features. Nevertheless, the

cost-efficiency of defining the ecologically most significant

areas still suffers from coarse resolution. Coarse resolution

data introduces spatial uncertainty to conservation plans, as

part of the scarce resources may be misplaced to protect

well fairing biodiversity features while rare ones are

missed.

As Zonation software only considers the location and

relative abundance of input features (Kujala et al. 2018),

the results of this study are applicable to all forest

ecosystems hosting rare and scattered features that are

important for biodiversity. However, the definition of high

or coarse resolution varies between ecosystems as it

depends on the extent of the target features. The resolution

has a significant effect on the qualities of the prioritized

forest areas and on the conservation outcome for the target

features.

As spatial datasets from rare and scattered phenomena

are challenging to produce for high resolutions, the future

research should focus on how to produce high-resolution

spatial data sets efficiently. Object-based techniques and

state-of-the-art remote sensing material already make this

possible for the dominant trees (Kaartinen et al. 2012;

Dalponte and Coomes 2016). In contrast to the area-based

estimates relying on statistically sound plot-level data,

object-based methods do not produce unbiased estimates,

as all objects are rarely spotted from the RS data. However,

only the object-based methods can capture the fine scale

variation of the scarce features that are needed in effective

spatial conservation prioritization.

CONCLUSIONS

We conclude that prioritizations made with coarse resolu-

tion are biased towards the dominant forest types and

features in the landscape. Using large cell sizes favors the

features that are common and evenly distributed in the

landscape. To capture the rare, scattered, and clustered

features from the landscape, input features used in priori-

tizations should be based on spatial data capable of cap-

turing the smallest mappable features significant for the

prioritization. High resolution of input features enhances

the inclusion of rare and scattered forest features and thus

the overall quality of spatial prioritizations in fragmented

forest landscapes. High-resolution RS data and object-

based methods offer a means for mapping ecological key

components in detail for the needs of conservation

prioritization.

Still, the twofold nature of resolution remains. As this

research has shown, high-resolution input features help

maintaining small-scale key components of biodiversity.

On the other hand, overly high resolution also results in

fragmented output that, e.g., lowers the resilience of con-

servation areas. Hence, the overall goal of the analysis

should always set the final resolution of input features.

However, it is important to keep in mind how the chosen

resolution affects ecological features with different spatial

distribution.
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Arponen, A., J. Lehtomäki, J. Leppänen, E. Tomppo, and A.

Moilanen. 2012. Effects of connectivity and spatial resolution

of analyses on conservation prioritization across large extents.

Conservation Biology 26: 294–304.

Boakes, E.H., P.J. McGowan, R.A. Fuller, D. Chang-qing, N.E. Clark,

K. O’Connor, and G.M. Mace. 2010. Distorted views of

biodiversity: Spatial and temporal bias in species occurrence

data. PLoS Biology 8: e1000385.

Brosofske, K.D., R.E. Froese, M.J. Falkowski, and A. Banskota.

2014. A review of methods for mapping and prediction of

inventory attributes for operational forest management. Forest
Science 60: 733–756.
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