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Abstract Seagrasses offer diverse ecosystem services, yet,

they are among the most threatened ecosystems. When

degraded or destroyed, their services are lost or reduced in

the process, affecting, for instance, local communities

directly dependent on their livelihood provision. The

Intergovernmental Panel on Climate Change (IPCC)

reported that climate change is projected to worsen over

time; thus, there is an urgent need for mitigation strategies

in practice and also in the longer term. This work aims to

provide an alternative perspective of seagrass restoration as

a nature based solution (NbS) on a global scale, yet, giving

an emphasis on tropical regions such as Indonesia. We

focused on seagrass restorations which are not yet well

established in comparison with other restoration programs

(e.g., mangroves) despite their critical roles. We present in

this work how restoring seagrass meadows fits the global

standard of NbS published by the International Union for

Conservation of Nature (IUCN). The results of this study

can serve as a basis for promoting seagrass restorations as

NbS against climate change particularly in countries with a

wide extent of seagrass coverage.
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INTRODUCTION

Seagrasses are marine flowering plants found on the coasts

of all continents except Antarctica (Duarte 2002). Seagrass

meadows are among the most important and productive

marine ecosystems globally, providing multiple and

essential ecosystem services that directly or indirectly

benefit people (Cullen-Unsworth et al. 2014). For instance,

seagrass meadows provide a habitat for multiple life stages

of commercially valuable fishes and invertebrates, support

local communities as food and livelihood sources, improve

water quality, stabilize sediment and prevent resuspension,

and offer coastal protection services by attenuating wave

and tidal current energy (e.g., Fourqurean et al. 2012;

Christianen et al. 2013; Unsworth et al. 2014; Quevedo

et al. 2020, 2022; McKenzie et al. 2021). Additionally,

seagrasses along with mangroves and salt marshes, col-

lectively known as blue carbon ecosystems (BCEs), have

gained renewed global attention for their essential role in

climate change mitigation (Duarte et al. 2013) because of

their efficient sediment accumulation capacity, which

makes them sequester and store organic carbon in sedi-

ments for the long term (Miyajima et al. 2021). Thus,

recently, there has been an increase in scientific investi-

gations of seagrass blue carbon, for instance, in policy and

financial scheme discussions such as in carbon–neutral

policies and carbon offsetting (e.g., Kuwae et al. 2022).

Despite all the essential benefits they provide at the local

and global scales, there has been a decline in seagrass

cover globally, which is mainly attributed to anthropogenic

disturbances (Duarte 2002; Orth et al. 2006). For instance,

in Southeast Asia, where seagrass diversity is considered a

global hotspot, seagrass meadows are declining, with an

estimated average decline of 5% per year from 2000 to

2020 due to multiple human-induced stressors such as

increasing coastal populations, unregulated coastal devel-

opment, unsustainable tourism industry, and destructive

fishing techniques (Waycott et al. 2009; Fortes et al. 2018).

Among the countries in Southeast Asia, Indonesia, which

has the largest extent of seagrass meadows (Fortes et al.

2018), has seen a decline of 30–40% in seagrass cover

since the 1960s caused by multiple stressors including

aquaculture expansion and coastal development (Alongi

123
� The Author(s) 2022, corrected publication 2023

www.kva.se/en

Ambio 2023, 52:546–555

https://doi.org/10.1007/s13280-022-01811-2

http://orcid.org/0000-0003-1863-2965
http://orcid.org/0000-0002-4729-9869
http://orcid.org/0000-0002-3019-9386
http://orcid.org/0000-0003-3098-1818
http://orcid.org/0000-0001-7363-896X
http://orcid.org/0000-0001-9276-7492
http://orcid.org/0000-0001-6822-4340
http://crossmark.crossref.org/dialog/?doi=10.1007/s13280-022-01811-2&amp;domain=pdf


et al. 2016; Unsworth et al. 2018b). When these ecosystems

are degraded, their beneficial ecosystem services are

reduced or lost in the process (Cullen-Unsworth et al.

2014). In Indonesia, seagrass degradation could potentially

lose 5.62–8.40 tons of sequestered C ha-1 y-1 (Wahyudi

et al. 2020), which is at least two-fold higher than the

global average (2.78 ton C ha-1 y-1) (Duarte et al. 2013).

Meanwhile, at the local level, it can potentially affect

coastal communities, particularly their livelihoods (e.g.,

Lukman et al. 2021; Quevedo et al. 2021a). Thus, a call to

improve the management, conservation, and restoration of

seagrasses is urgently needed in Indonesia (Unsworth et al.

2018b; Rifai et al. 2022), which is in line with global ini-

tiatives such as United Nations (UN) Decade on Ecosystem

Restoration from 2021 to 2030 (Fischer et al. 2021).

Historically, seagrass restoration efforts have been typ-

ically implemented across small spatial extents limited to a

few hectares partially due to the time and money required

for the methods used (Orth et al., 2006). In addition, there

is also a lack of up-to-date information on the status and

condition of many seagrass meadows, which are essential

details to have for seagrass conservation (Unsworth et al.

2019). Seagrasses, in general, received limited attention

both in scientific investigation and management agendas,

and are often included with other ecosystems. For example,

in the Intergovernmental Platform on Biodiversity and

Ecosystem Services (IPBES 2018) regional assessment

report on biodiversity and ecosystem services for Asia and

the Pacific, seagrasses are given a separate focus as ‘‘sea-

grass beds’’ and ‘‘other algal communities’’ along with

‘‘mangroves’’ or ‘‘coral and other reefs.’’

However, current trends of seagrass restoration and

conservation are increasing partially because of the

renewed interest in seagrass meadows in the blue carbon

(climate change mitigation) contexts (Shilland et al. 2021),

though, it is known that seagrass rehabilitation or restora-

tion is a slow process, with years to decades to observe a

successful recolonization (Leschen et al. 2010). Aside from

its significant contribution to global climate change miti-

gation, seagrass restoration leads to the recovery of other

beneficial ecosystem services such as improved water

quality, increased epifauna invertebrate population, and

fishery industry (Lefcheck et al. 2017; Edward 2018; Orth

et al. 2020). Thus, seagrass restoration can be considered a

nature-based solution (NbS), which is defined by the

International Union for Conservation of Nature (IUCN

2016) as ‘‘actions to protect, manage and restore natural or

modified ecosystems, that address societal challenges

effectively and adaptively, simultaneously providing

human well-being and biodiversity benefits.’’ The concept

of NbS as described above, therefore, relates or overlaps

with other approaches such as Ecosystem-based Adaptation

(EbA), where adaptation policies and measures are geared

toward the management of the natural environment

(ecosystems) to reduce the vulnerability of society to cli-

mate change (Vignola et al. 2009). According to the

Intergovernmental Panel for Climate Change (IPCC), the

concept of EbA is similar or related to NbS (both

approaches aim to manage the nature or ecosystems to

produce positive outcomes—ecosystem services or benefits

for society [Nesshöver et al. 2017]), however, NbS

includes a broader range of approaches with safeguards,

such as those that contribute to adaptation and mitigation

(IPCC 2022). Thus, NbS has often been used as an ‘um-

brella concept’ for these established concepts (e.g., EbA,

Green–blue infrastructure, Ecosystem Approach) (Nature

2017; Nesshöver et al. 2017).

The NbS can be categorized into five main approaches

including (1) ecosystem restoration, (2) issue-specific

ecosystem-related, (3) ecosystem-based management, (4)

ecosystem protection approaches, and (5) infrastructure-

related approaches (Cohen-Shacham et al. 2016). In this

paper, we specifically focused on the seagrass ecosystem

restoration approach as NbS to, for instance, climate

change (United Nations Environment Programme 2020).

To date, applying seagrass restoration in the context of NbS

is still limited globally in comparison with other ecosys-

tems such as mangroves (e.g., Gijsman et al. 2021; Que-

vedo et al. 2021b). This paper aims to address this

knowledge gap and provide a different perspective on

seagrass restorations. Specifically, we used the global

standards of NbS published by the International Union for

Conservation of Nature (IUCN 2020) and provided sub-

stantial evidence on how seagrass restoration fits the cri-

teria of IUCN’s framework (Table 1). There are eight

criteria published by the IUCN (2020), however, we only

focused on criterions one to five since we aim to provide

conceptual evidence of seagrass restoration as NbS. The

Table 1 The eight criteria of the global standard of nature-based

solutions (NbS) (IUCN 2020)

Criteria Description

1 NbS effectively address societal challenges

2 The design of NbS is informed by scale

3 NbS result in a net gain in biodiversity and ecosystem

integrity

4 NbS are economically viable

5 NbS is based on inclusive, transparent, and empowering

governance processes

6 NbS equitably balance trade-offs between the achievement

of their primary goal(s) and the continued provision of

multiple benefits

7 NbS are managed adaptively, based on evidence

8 NbS are sustainable and mainstreamed within an appropriate

jurisdictional context
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other three criteria (criterions 6 to 8) are related to

implementation and mainstreaming actions (Quevedo

et al., 2021b). We envisage that by providing NbS per-

spectives of seagrass restorations, the approach will be

more appealing to stakeholders and policymakers, espe-

cially in the context of climate change mitigation and

adaptation through carbon sequestration and other valuable

ecosystem services (e.g., Wahyudi et al. 2020; Quevedo

et al. 2022).

CRITERION 1: SEAGRASS RESTORATIONS

ADDRESS SOCIETAL CHALLENGES

The first criterion ensures that NbS effectively addresses

societal challenges, understands clearly these challenges,

and delivers substantive benefits to human well-being in

response to these challenges (IUCN 2020). There are sev-

eral major societal challenges mentioned by the IUCN

(2016) such as climate change mitigation and adaptation,

disaster risk reduction, and economic and social develop-

ment. Climate change has become an increasingly dis-

cussed issue due to its impact on humans, and many

climate change mitigation efforts have been carried out by

optimizing the utilization of resources on land and sea

(Dewi et al. 2020). Conservation and restoration of BCEs,

such as seagrass meadows, are excellent examples of NbS

to achieve sustainable development goals (SDGs) of cli-

mate action (Herr and Landis 2016; Fauzi et al. 2021).

Seagrasses potentially mitigate the impacts of climate

change, for instance, they could reduce the impact of sea-

level rise, and have a great ability to lower sea surface

temperature (Rustam et al. 2017). Additionally, these

habitats have a high potential as large organic carbon sinks

because of their efficient sediment accumulation capacity,

which makes them sequester and store organic carbon in

sediments for the long term (Miyajima et al. 2021). How-

ever, there are countries (e.g., Indonesia, the Philippines)

where communities are less aware of the role of seagrass

meadows in climate change mitigation (Lukman et al.

2021; Quevedo et al. 2021a). In greater Southeast Asia,

there is the challenge of socio-economic and cultural dis-

connect for the seagrass ecosystems due to the lack of

appreciation and understanding of seagrass utilization and

value (Fortes et al. 2018). Thus, capacity building of

coastal communities to increase the awareness and uti-

lization of seagrass ecosystem services, which is beneficial

for the socio-economic aspects (e.g., fishing and gleaning

livelihood source, tourism potential) (Quevedo et al. 2022),

will be needed as an integral part of the NbS management.

Indonesia is one of the countries with expansive sea-

grass habitats; enabling them to store a significant portion

of the world’s blue carbon, thus, these important habitats

will significantly assist the country’s mitigation efforts in

reducing the impact of climate change (Rifai et al. 2022).

To date, the state of Indonesia’s seagrass compromises

both resilience to climate change and ecosystem services

provision (Unsworth et al. 2018a). A science-backed or

evidence-based plan for restoring degraded BCEs will

build climate change resilience and improve livelihoods

(Murdiyarso et al. 2018). For example, a low-carbon

development agenda consisting of blue carbon develop-

ment programs and governance support could unlock the

social, environmental, and economic benefits of blue car-

bon (Murdiyarso et al. 2015). Moreover, the inclusion of

blue carbon in the Paris Agreement has created a platform

for Indonesia to put coastal conservation at the heart of

climate mitigation (Unsworth et al. 2018a). However, to

date, there are no specific laws and/or regulations in

Indonesia dedicated to seagrass ecosystems (Rifai et al.

2022), despite the country’s recognition to manage and

conserve carbon sinks (Stankovic et al. 2022). Neverthe-

less, a new set of regulations with guidelines and plans for

carbon trading to achieve their nationally determined

contribution (NDC) (Situmorang and Putri 2022) is cur-

rently under preparation (Stankovic et al. 2021). As

described in Presidential Regulation No. 98 of 2021, the

carbon trading scheme will cover energy, agriculture, for-

estry, and other sectors (Situmorang and Putri 2022). This

progress can open opportunities for the implementation of

seagrass restoration in Indonesia as NbS to address the

impacts of climate change.

CRITERION 2: SEAGRASS RESTORATIONS CAN

COVER A WIDE SCALE

Among the criteria, this criterion is complex since it dis-

cusses that NbS designs should (a) recognize and respond

to interactions between economy, society, and ecosystems,

(b) integrate with other complementary interventions and

promote synergies across sectors, (c) and incorporate risk

identification and risk management beyond the intervention

site (IUCN 2020). The review article of Tan et al. (2020)

presents a good example of how seagrass restoration fits

the second criteria of NbS. For instance, they presented

pre-restoration considerations including (1) clear account-

ability and (2) adequate resourcing and strategic prioriti-

zation of efforts, which we cautiously interpreted as design

considerations before implementing NbS. In the first con-

sideration, Tan et al. (2020) highlighted that enabling

policies and legislations will facilitate broad-scale seagrass

restoration efforts; citing the Catchment Management

Framework in Victoria, Australia, which incorporates

environmental, economic, and social considerations for

coordinated management, as an example. In the second
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consideration, they further emphasized the importance of

identifying the intervention site, where synergies among

sectors (e.g., social, environmental, and cost) are possible.

Moreover, Tan et al. (2020) discussed that restoration

programs should be holistic and cover a broader scale (e.g.,

whole landscape and associated benefits) rather than a

single entity.

The study of Valdez et al. (2020) is another example of

how seagrass restoration if implemented in the context of

NbS meets the second criterion. They reviewed and doc-

umented the beneficial effects of integrating positive spe-

cies interactions in seagrass restoration designs. For

instance, in long-distance facilitations, which occur when

seagrasses are benefited by other species that are in adja-

cent areas or not in direct contact (e.g., mangroves), chal-

lenges in seagrass restoration such as light limitation and

nutrient stress can be mitigated; mangroves can remove

particulates from the water, thus, help in addressing light

available for seagrasses (van de Koppel et al. 2015). Val-

dez et al. (2020) noted that integrating long-distance

facilitation into site selection for restoration projects will

likely result in a positive outcome, though further research

is needed.

Seagrass restoration helps protect tropical beaches from

erosion (James et al. 2019), which in turn protects nearby

physical assets (e.g., hotels, beachfront pavements) and the

economy (e.g., tourism industry). Thus, nature-based

foreshore stabilization can be implemented as a long-term

solution in coastal areas with high erosion rates, as docu-

mented in the study conducted by James et al. (2019). Their

study showed the long-term efficacy of nature-based beach

management by evaluating coastal areas with vegetation

and without vegetation. In Indonesia, coastal erosion hin-

ders the socio-economic development of coastal zones such

as on the northern coast of Java Island. Implementing

seagrass restoration is an alternative to traditional hard-

built structures (e.g., seawalls, jetties), and it can be a more

sustainable and resilient long-term solution (Solihuddin

et al. 2021). Alternatively, seagrass restoration can be

applied together with existing hard-built infrastructures.

The presence of coastal vegetations at the offshore side of

the infrastructures dissipate wave energy, which in turn

reduces the load to built structures, thereby prolonging the

service and protection of other physical assets (Vuik et el.

2016).

CRITERION 3: SEAGRASS RESTORATIONS CAN

RESULT IN BIODIVERSITY GAIN

AND ECOSYSTEM INTEGRITY

This criterion sets guidelines that NbS result in a net gain to

biodiversity and ecosystem integrity (IUCN 2020). The

design and implementation of NbS must consider the

integrity of the target ecosystem and proactively seek to

enhance the connectivity with other ecosystems. Further-

more, by identifying clear and measurable biodiversity

outcomes, NbS can set targets for conservation activities.

There are existing studies that documented increased bio-

diversity following a successful seagrass restoration pro-

gram. For instance, the study conducted by Edward (2018)

in the Gulf of Mannar, India showed that the population of

associated organisms such as fish and other macrofauna

was proportional to the increase of seagrass cover. Simi-

larly, Lefcheck et al. (2017) observed that after less than a

decade of seagrass restoration in the coastal bays of the

midwestern Atlantic, USA, the invertebrate community

became richer and exhibited greater variation in functional

traits resulting from the increasing density of eelgrass.

Additionally, successful seagrass restoration programs

have led to ecosystem integrity with evidence showing a

rapid recovery of seagrass ecosystem services (Orth et al.

2020).

One of the indicators to develop NbS under this criterion

is that the current state of seagrass meadows in the target

site should be well established (IUCN 2020). This becomes

a challenge since the global distribution and status of

seagrass meadows are difficult to monitor and map, and

there are still regions with seagrass meadows remaining to

be explored (Unsworth et al. 2019). However, studies and

techniques on seagrass mapping are advancing and more

regions are now being identified and quantified. For

instance, McKenzie et al. (2022) mapped the seagrass

cover of the Great Barrier Reef using combined methods of

field-based in situ mapping, high earth boundary tracking,

high earth mapping with unoccupied aerial systems, and

satellite-capture imagery mapping. These technologies

when combined produce more accurate seagrass maps.

Similarly, Nguyen et al. (2022) used combined methods of

in situ mapping using handheld devices and object-based

classification mapping (remote sensing) to produce high-

resolution seagrass map images of Nam Yet Island, Viet-

nam. Recently, unmanned aerial vehicles (UAVs) or drones

and deep learning techniques have been used and proven to

obtain higher-resolution images for seagrass mapping (e.g.,

Tahara et al. 2022). These advancements suggest that

seagrasses are currently receiving more scientific and

practical attention compared to earlier periods.

In Indonesia, the nationwide mapping of seagrass

meadows conducted by Hernawan et al. (2021) has paved

the way for other Indonesian scientists to strategically

identify areas across the country that need restoration

projects, particularly those pressured by anthropogenic

activities. For instance, in Bontang, East Kalimantan pro-

vince, seagrass meadows are severely damaged by fishing

activities, which in turn affects the livelihoods of small-
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scale fishers (Irawan et al. 2019). In Karimunjawa Island,

Central Java province, pollution discharge from domestic

wastes threatens seagrass meadows as perceived by coastal

communities (Quevedo et al. 2021a). A similar scenario

was observed in Spermonde Archipelago, South Sulawesi

province, where seagrasses’ condition was affected by the

nutrient loading, turbidity, and total suspended solids

resulting from domestic solid and liquid wastes, which

prompted a restoration project in 2016 (Ambo-Rappe

2022).

As NbS strives to enhance the connectivity between

ecosystems, this implies the notion of seagrasses as part of

a larger ecosystem (e.g., along with coral reefs and man-

groves). Such connectivity can be done to resolve existing

challenges, such as the case observed in Wakatobi National

Park, Indonesia, where initiatives of fruit tree plantations

and local ecological knowledge to identify threats to sea-

grass and educational programs facilitated the stabilization

of river banks and reducing sediment deposition to the

coast (Unsworth et al. 2019). The notion of people’s

involvement in seagrass restoration activities to enhance

biodiversity is another important aspect of NbS, which will

be further elaborated in Criteria 5.

CRITERION 4: SEAGRASS RESTORATIONS ARE

ECONOMICALLY VIABLE

This criterion emphasizes that NbS should be economically

feasible to be conducted through the support of financial

institutions and/or incentive schemes (IUCN 2020). There

are several studies documenting that coastal ecosystem

restorations including seagrasses are economically viable

as they provide net benefits, which is defined as the mon-

etary value of ecosystem services generated by the restored

ecosystem (Stewart-Sinclair et al. 2021).

Seagrass restoration has been conducted to recover

ecosystem services or benefits lost due to habitat degra-

dation (Rezek et al. 2019). Multiple co-benefits obtained

from a restored habitat could highlight the economic via-

bility of seagrass restoration projects and encourage other

groups to conduct such activities. For instance, in Aus-

tralia, recovery of ecosystem functions through seagrass

restoration can potentially produce net benefit ranging from

AUD 40 000 ha-1 to AUD 7.8 million ha-1 (Rogers et al.

2019). In Virginia, USA, a 7-km2 of restored eelgrass has

removed 9,600 tons of CO2 from the atmosphere over

15 years which is equivalent to financial benefits of as

much as US$ 87 000 or about US$ 124 ha-1 (Oreska et al.

2020). In Atlantic coastal lagoons, after 10 years, well-

developed restored seagrass meadows provide important

multiple co-benefits such as housing diverse animal com-

munities, sequestering substantial stocks of carbon and

nitrogen, and facilitating the restoration of previously

depleted seagrass associated fauna ‘‘the bay scallops’’

(Orth et al. 2020). However, despite the economic viability

of restored seagrass meadows, it is widely recognized that

their re-establishment are time consuming, frequently

requiring years to decades (Tan et al. 2020). Meanwhile, in

areas where seagrass restoration is perceived as a way to

promote a state shift, from an unvegetated to a vegetated

state, coastal managers and practitioners should understand

and consider the factors limiting the transition to meet their

expectations and restoration goals (Paulo et al. 2019).

The cost for seagrass restoration is approximately US$

700 000 ha-1, which is much lower than the cost for coral

reef restoration which is nearly US$ 3 000 000 ha-1

(Bayraktarov et al. 2015). Moreover, under a best scenario,

seagrass restorations can yield a positive internal rate of

returns (IRR) of 3% and a cost–benefit ratio of 1.7, indi-

cating that the benefit exceeded the cost (de Groot et al.

2013). In this case, it has been calculated the time to return

on investment for seagrass restoration is more than

70 years (Stewart-Sinclair et al. 2021). This longer time

frame could be an important predictor of a net benefit in

seagrass restoration, however, the future cost would decline

after the installation of the restoration project, and a min-

imum amount will be required for maintenance and mon-

itoring (de Groot et al. 2013).

The restoration cost can also be influenced by the

selected restoration method and the addition of advanced

equipment involved in setting up seagrass restoration pro-

jects. For instance, in Australia, mechanical seagrass

plantation such as the use of an ecosub system (a

mechanical device used to cut and plant large sods) will

cost AUD 1 000 000 ha-1, covering the design and devel-

opment, fabrication, testing, and site selection (Paling et al.

2009). In contrast, manual plantation will only cost AUD

16 000–34 000 ha-1 if conducted by volunteers and AUD

84 000–168 000 ha-1 if the restoration is conducted by

professionals (Paling et al. 2009). The selection between

seed- or transplant-based methods for seagrass restoration

is also an important factor in determining the length of

maintenance and monitoring period of the restoration site.

When seeds are used for seagrass restoration, it is estimated

to take only 10 years to recover in comparison with natural

recovery which takes 100 years (Reynolds et al. 2016). For

example, a large-scale seed-based seagrass restoration has

been conducted in midwestern Atlantic coastal lagoons,

leading to a rapid recovery of the previously degraded

seagrass bed after 10 years (Orth et al. 2020). However,

using seeds and seedlings in seagrass restorations can be

challenging, especially when the sites are exposed to, for

instance, high wave energy (Paling et al. 2009) or the

presence of seed predators such as shore crabs, hermit

crabs, and sea urchins (Infantes et al. 2016). Thus, site
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selection for seagrass transplantation using seeds should be

properly observed to ensure the successful growth of the

planted seeds.

In Indonesia, a long-term seagrass restoration has been

conducted in the Spermonde region, South Sulawesi using

multiple seagrass species in a 600-m2 area. The project,

which started with roughly 10% of seagrass transplant

coverage, had a total cost of approximately US$ 100 000

covering the preparation cost, initial installation, and a

3-year monitoring program. A successful rate was obtained

after 7 years through the indication of an increased cover of

restored seagrass meadows, more diverse faunal commu-

nities, and increased coastal protection from erosion

(Asriani et al. 2019).

CRITERION 5: SEAGRASS RESTORATIONS

EMPOWER LOCAL STAKEHOLDERS

The fifth criterion of the global standard of NbS states that

‘‘NbS acknowledges, involves and responds to the concerns

of a variety of stakeholders, especially rights holders’’

(IUCN 2020, p. 14). This criterion has five indicators

including (1) feedback and grievance resolution mecha-

nism, (2) participation is based on mutual respect, (3)

stakeholders have been identified and involved, (4) col-

laborative decision-making process, and (5) respect

boundaries and enable joint decision-making (IUCN 2020).

Seagrass restorations fit this criterion well since ensuring

the successful implementation of this activity requires a

great understanding of ecological science and a compre-

hensive approach toward the integration of human partic-

ipation into all stages of restoration measures (Wylie et al.

2016). Engaging local communities residing adjacent to

seagrass areas in all restoration activities is an integral part

of seagrass restoration projects. This is because the fun-

damental objectives of ecosystem restoration such as sea-

grass restoration include the recovery of degraded habitats

to support biodiversity and providing various goods and

services to local people (Fischer et al. 2021). Moreover,

seagrass restoration projects can be considered successful if

local communities provide full support to the project

implementation (Bennett and Dearden 2014).

Given that seagrass restoration projects have high labor

costs since many people are needed to collect restoration

materials and deploy the transplant units to the restoration

site, the involvement of communities (citizen scientists)

and volunteers will significantly reduce this cost (Tan et al.

2020). In addition, there are other benefits of engaging

local community members in seagrass restoration activi-

ties. First, involving local communities in all stages of

restoration efforts will generate a sense of ownership and

encourage community members to return and provide more

of their time (Tanner et al., 2014). Second, citizen scientist

participation will allow a larger and longer-term data col-

lection leading to a greater understanding of the seagrass

life cycle (Jones et al. 2018). Third, local community

involvement will allow rapid knowledge transfer from

seagrass scientists to community members which is very

useful to increase the understanding of seagrass-related

matters among the people (Tanner et al. 2014; Jones et al.

2018).

Unlike mangrove or coral restoration programs, how-

ever, there is no incentive from the Indonesian government

to foster community involvement in seagrass restoration

projects. Moreover, Rifai et al. (2022) noted that the par-

ticipation of local stakeholders in seagrass restoration

activities is hindered by their lack of awareness and

appreciation of the functions and services of seagrass

habitats. The lack of awareness and appreciation is con-

sidered the biggest threat to seagrass conservation (Uns-

worth et al. 2019). Thus, there is a need to enhance the

awareness to foster active participation of the people in

seagrass restoration activities.

POTENTIAL IMPLEMENTATION OF SEAGRASS

RESTORATION IN THE CONTEXT OF NBS

IN INDONESIA

Under the Paris Agreement in 2015, Indonesia has com-

mitted to reducing greenhouse gas emissions by 29% with

the national budget, and up to 41% with global support by

2030 (Murdiyarso et al. 2018). Following this commitment,

Indonesia has proposed a plan to include blue carbon in its

NDC at the Conference of the Parties (COP) 22 meeting.

Then, at COP 25, Indonesia has clearly stated to include

blue carbon ecosystems such as seagrass and mangrove

ecosystems as a means to address climate change. How-

ever, Indonesia’s seagrass meadows are currently in mod-

erate condition, allowing opportunities to be improved

(Hernawan et al. 2021). The declining condition of sea-

grass meadows in the country suggests that restoration

programs are urgently needed.

Seagrass restoration programs in Indonesia, in general,

are limited (Asriani et al. 2018), about 22 restoration pro-

jects recorded from 1987 to the present, despite the

urgency to restore seagrass meadows in the country (Her-

nawan et al. 2021; Rifai et al. 2022). Additionally, the

outcome of these projects is not well documented since

publications of results or project reports were limited to a

few (Williams et al. 2017; Ambo-Rappe 2022). There is

also the concern about the lack of restoration activities due

to the relatively lesser attention given to seagrasses com-

pared with other ecosystems such as mangroves (Nadiarti

et al. 2012). We argue that there is a need to revisit how
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Indonesia can implement seagrass restoration programs

that can produce similar trends observed in mangrove

restoration activities. One approach is introducing seagrass

restoration in the context of NbS particularly in addressing

climate change (UNEP 2020). There is an opportunity in

Indonesia to implement seagrass restoration in the context

of NbS to meet their national commitment to reducing

greenhouse gas emissions.

In this paper, we presented a different perspective of

seagrass restorations. Interpreting the five criteria of the

global standard of NbS (IUCN 2020), we summarized and

reflected here on the potential of seagrass restoration as NbS

in Indonesia. The country has a wide extent of seagrass

cover, enabling them to store a significant amount of the

world’s blue carbon, thereby putting them on the global map

as an important ally to climate change mitigation (Hernawan

et al. 2021; Rifai et al. 2022). Recent estimates showed that

Indonesia’s seagrass meadows can store up to 368.5 Tg C or

about 1.7% of the total blue carbon reservoir in the world

(Alongi et al. 2016). Using the US standard of carbon pricing

at $ 10 ton-1 in 2016 (Hamrick and Gallant 2017), it is

estimated that the value of Indonesia’s seagrass meadows

related to carbon stock services (Alongi et al. 2016) is

approximately US$ 3 685 000 000. As we carefully pro-

vided evidence that seagrass restorations are economically

viable (see Criterion 4), we envisage that this new perspec-

tive will attract international organizations (e.g., Conserva-

tion International) and investors (e.g., World Bank) to

consider utilizing seagrass restorations as NbS to address

global climate change through, for example, voluntary car-

bon market schemes (Shilland et al. 2021). This scheme,

which refers to voluntary payments made by individuals or

organizations from regional to global based on a chosen

carbon standard (Shilland et al. 2021), can be a reliable

source of funds to ensure the sustainability of seagrass

restoration projects in Indonesia. This will be in line with the

NDC goal of Indonesia as the government strongly encour-

ages the implementation of the carbon tax (Situmorang and

Putri 2022), though, currently, the Ministry of Finance

through the Fiscal Policy Agency (BKF) is still preparing the

roadmap to implement this concept and discussing the

potential of implementation with House of Representative

members of Indonesia.

CONCLUSION

We presented here conceptual evidence on how seagrass

restoration meets the first five criteria of NbS proposed by

IUCN (2020), namely (1) addressing societal challenges, (2)

covering a large scale, (3) recovering biodiversity loss, (4)

economically viable, and (5) empowering local societies.

Looking at Indonesia’s case, there is a potential for

implementing seagrass restoration in the context of NbS.

However, the lack of the national budget and low awareness

of the communities regarding the importance of seagrass

restoration can hinder the implementation of this concept. To

address these issues, we argue that all stakeholders (e.g., the

scientific community, government, local communities, and

non-government organizations) need to collaborate to solve

the underpinning problems effectively; capacity building

and seagrass awareness campaigns, efficient and realistic

restoration designs, and implementation of payment for

ecosystem services. By implementing seagrass restorations

in the context of NbS, we envisage that it will attract more

restoration activities in Indonesia compared to the present,

thereby, degraded seagrass ecosystems will recover quickly,

allowing them to provide maximum ecosystem services that

are integral in the era of climate change.
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