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Abstract Ecosystem-based management requires

understanding of food webs. Consequently, assessment of

food web status is mandatory according to the European

Union’s Marine Strategy Framework Directive (MSFD) for

EU Member States. However, how to best monitor and

assess food webs in practise has proven a challenging

question. Here, we review and assess the current status of

food web indicators and food web models, and discuss

whether the models can help addressing current

shortcomings of indicator-based food web assessments,

using the Baltic Sea as an example region. We show that

although the MSFD food web assessment was designed to

use food web indicators alone, they are currently poorly fit

for the purpose, because they lack interconnectivity of

trophic guilds. We then argue that the multiple food web

models published for this region have a high potential to

provide additional coherence to the definition of good

environmental status, the evaluation of uncertainties, and

estimates for unsampled indicator values, but we also

identify current limitations that stand in the way of more

formal implementation of this approach. We close with a

discussion of which current models have the best capacity

for this purpose in the Baltic Sea, and of the way forward

towards the combination of measurable indicators and

modelling approaches in food web assessments.
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INTRODUCTION

With increasing human use of the marine environment, an

ecosystem-based approach to management of human

activities is widely acknowledged as the fundamental

principle to accomplish sustainable resource use and

maintain healthy marine ecosystems (Pikitch et al. 2004;

McLeod and Leslie 2009). The underlying aim of this

approach is an ecologically sound resource management

that responds to natural ecosystem processes (Marasco

et al. 2007). Ecological indicators, serving as proxies for

multiple ecological processes and representing ecosystem

states, are being proposed to better inform management

decisions. Of particular interest are food web indicators,

which are becoming increasingly important because they

inform of the state of marine ecosystem functionality for

various policy needs (e.g. Rombouts et al. 2013; Broszeit

et al. 2017) and closely link with central ecosystem ser-

vices (Longo et al. 2015).

The critical and presently unresolved step in the science-

policy process is to identify and agree on food web indi-

cators that are not only understandable and defensible to all

stakeholders, but also capture key food web states and

processes that underlie critical and complex ecosystem

dynamics (Tam et al. 2017). This complexity is difficult to

monitor, as food webs are temporally and spatially

dynamic, and comprised of highly diverse and intercon-

nected components (Kortsch et al. 2021). The EU Marine

Strategy Framework Directive (MSFD; EU 2008) and the

revised EU Common Fisheries Policy (CFP) recognize this

and call for better integration of food web characteristics in

the assessment and management of biological resources.

Whereas the European Union’s nature directives address

structure and functions of habitats or populations (e.g., EU

1992), only the MSFD includes special attention to food
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webs, being one of the eleven descriptors for ‘good envi-

ronmental status’ (GES). In 2018, all EU Member States

provided reports on the state of the marine environment,

which were found to include surprisingly few food web

indicators (https://water.europa.eu/marine). With food web

indicators, we mean any data product that can be used to

assess the state of a marine food web and that reflects

impacts of human activities. In this perspective, we provide

a comprehensive review and a gap analysis of the food web

indicators developed for the Baltic Sea, which serves as a

good example of a marine area with a well-established and

long-running monitoring regime and is one of the most

data-dense regions in the world. Many indicators have been

operationalized, and knowledge of the food web interac-

tions is on a comparatively good basis due to the relatively

low marine diversity compared to oceanic ecosystems

(HELCOM 2018). Despite this good starting point, we

show that the indicator suite is strongly focused on the state

of populations and has not been developed to support

assessments of interconnected components (i.e. not con-

sidering food web interactions). Moreover, there is very

little evidence that the GES is defined in coherence among

the food web indicators (however, see Kauhala et al. 2019).

Altogether, this means that despite the recent interest to

advance and conduct food web assessments in the Baltic

Sea, a feasible, widely applicable, holistic and ecologically

relevant approach to design and carry out food web

assessments in the region is still lacking. To support the

development and ultimately implementation of such an

approach, we then reviewed a portfolio of scientifically

published ecosystem models for the same area and assessed

their usefulness to help integrating the complexity of food

webs in the assessments. Finally, we evaluated the capacity

of the models to aid indicator-based assessment of food

web status. As the Baltic presents an ideal test case, we

argue that the lessons learned are generally applicable.

FOOD WEB INDICATORS IN THE BALTIC SEA:

STATE-OF-THE-ART

To summarize the state-of-the-art regarding all food web

indicators for the Baltic Sea, we compiled them from three

sources of indicator information: the EU member states’

reporting under the MSFD in 2018 (https://water.europa.

eu/marine), the HELCOM indicator catalogue (https://

helcom.fi/baltic-sea-trends/indicators/), as well as scientific

publications of food web indicators. The scientific publi-

cations were available through multiple, properly docu-

mented international sources, including research papers in

scientific journals, EU-funded project reports, and online

publications by international organisations or research

groups (for further details see Ojaveer et al. 2020).

The search was concluded with a total of 64 hits and,

after removing four clear overlaps, we identified 60 food

web-related indicators with different application areas in

the Baltic Sea (see full results in Appendix A). Some of the

indicators were closely similar, but we treated them sepa-

rately if there were differences in the name or calculation

method and the descriptions did not mention similarity to

any other indicator.

In this study, we use the requirements of the MSFD,

because this offers a well-defined, legal basis for the anal-

ysis. Although the MSFD requirements pertain only to the

EU member states, definitions of the food web assessments

are applicable to all marine food webs. The MSFD defines

GES of food webs by a qualitative descriptor 4 (D4), which

is further divided into four GES criteria: the diversity within

and balance of abundance between trophic guilds (i.e., the

two primary criteria D4C1 and D4C2), as well as the two

secondary GES criteria: the size distribution of individuals

across a trophic guild (D4C3) and the productivity of the

trophic guild (D4C4; Table 1). We categorized the indica-

tors to these criteria from the reported information (Table 2).

In addition, we noted the Baltic Sea sub-basins where each

indicator is in use or was tested for, and identified which

trophic guilds the indicators address using the list of trophic

guilds by ICES (2015) and assigning species to trophic

guilds following Ojaveer et al. (2020) (see Appendix A—

Table S1). This synthesis allowed us to then conduct a gap

analysis of the suite of available indicators against the GES

criteria (Table 1).

Table 2 shows that the majority of food web indicators

fell into the two primary GES criteria (13 and 25, respec-

tively), but that indicators were also found for the two

secondary criteria (7 and 10 indicators, respectively). Some

indicators covered two GES criteria. From the trophic guild

point of view, 11 out of 19 trophic guilds were covered by

the indicators. Significant gaps were found for macro-

phytes, benthic filter-feeders, benthic planktivores and sub-

apex benthic invertebrate predators for which no indicators

were found (Table 2). Planktivorous mammals, demersal

mammals and apex fish predators also lacked indicators,

but these guilds do not exist in the region. There were 15

indicators for planktonic guilds, but a closer look shows

that these do not include jellies or mysids which are

important elements of food webs in large parts of the Baltic

(Hays et al. 2018; Kiljunen et al. 2020). Benthic deposit

feeders were covered by two indicators. Altogether 12

indicators were found for planktivorous fish, and 16 and 19

indicators for sub-apex predatory fish of demersal and

pelagic species, respectively. Two seabird indicators

addressed apex predators, three indicators for planktivores

and four indicators for pelagic and demersal sub-apex

predator each. Marine mammals were covered by 12

indicators.
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Table 1 Information on the EU MSFD criteria for good environmental status of descriptor 4 ‘food webs’ (EU 2017). Specifications for an

assessment are given for each criterion on the basis of the Commission Decision (EU 2017) (denoted as *) or based on our own criterion to

calculate any distribution (�)

Criteria for marine food web assessments

D4C1—Primary: The diversity (species composition and their relative abundance) of the trophic guild is not adversely affected due to

anthropogenic pressures

(�) There are 3 or more components (typically species) included in a trophic guild

D4C2—Primary: The balance of total abundance between the trophic guilds is not adversely affected due to anthropogenic pressures

(*) There are 3 or more trophic guilds in the model, including two non-fish and one primary producer guild

D4C3—Secondary: The size distribution of individuals across the trophic guild is not adversely affected due to anthropogenic pressures

(�) There are 3 or more age / size groups included in a trophic guild, or explicit modelling of mean weight, weight-at-age or similar

D4C4—Secondary (to be used in support of criterion D4C2, where necessary): Productivity of the trophic guild is not adversely affected due to

anthropogenic pressures

(�) Parameters for reproduction rate, or the adult population and offspring production rate can vary in the model (to evaluate changes in

productivity of the species)

Table 2 Availability of food web indicators by trophic guilds (ICES 2015) and the EU Marine Strategy Framework Directive (MSFD) criteria

for good environmental status (GES). Geographical coverage of the indicators depicted from the indicator sources where the indicator is either

operationally used or successfully tested. EU Member states reported the use of food web indicators in 2018 (https://water.europa.eu/marine).

Criteria codes as in Table 1. Full indicator list in Appendix A

Number of

indicators

Addresses GES criteria Sub-basins Reported under

MSFD
D4C1 D4C2 D4C3 D4C4

Primary producers: phytoplankton 7 4 4 0 0 All DK, FI, LT, PL

Primary producers: macrophytes 0 0 0 0 0

Secondary producers: zooplankton 9 4 5 1 0 All DK, FI, LT, PL

Filter-feeders: benthos 0 0 0 0 0

Deposit-feeders: benthos 2 2 0 0 0 All PL

Planktivores: benthos 0 0 0 0 0

Planktivores: nekton (excl. warm-blooded) 12 2 6 4 0 All EE, LT, PL, SE

Planktivores: seabirds 3 2 3 0 0 All DK

Planktivores: marine mammals 0 0 0 0 0

Sub-apex pelagic predators: nekton (excl. warm-

blooded)

19 3 9 5 2 All DK, EE, LT, PL, SE

Sub-apex pelagic predators: seabirds 4 2 4 0 0 All DK

Sub-apex pelagic predators: marine mammals 0 0 0 0 0

Sub-apex demersal predators: benthos 0 0 0 0 0

Sub-apex demersal predators: nekton (excl. warm-

blooded)

16 3 7 5 0 All DK, EE, LT, PL, SE

Sub-apex demersal predators: seabirds 4 2 4 0 0 All DK

Sub-apex demersal predators: marine mammals 0 0 0 0 0

Apex predators: nekton (excl. warm-blooded) 0 0 0 0 0

Apex predators: seabirds 2 0 1 0 1 All FI, PL

Apex predators: marine mammals 12 0 5 1 7 All DK, FI, PL

Unspecified 1 0 1 0 0 EE marine

area

EE

Country codes: DK = Denmark, EE = Estonia, FI = Finland, LT = Lithuania, PL = Poland, SE = Sweden
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The balance between trophic guilds (i.e. D4C2) is an

essential indication of the state of food webs. It means that the

biomass or abundance ratios of the different trophic guilds are

not adversely affected, as might happen for example if the

abundance of top predators decreases and that of their prey,

therefore, increases. We found that 11 indicators include at

least three guilds (as required by the MSFD, see Table 2).

However, the majority do not assess the balance between the

guilds per se but rather give separate results for each guild; i.e.

GES is not assessed for the balance of the guilds. The only

indicators truly bridging trophic levels (i.e., directly providing

for D4C2) are the following: Ratio of total zooplankton bio-

mass to total phytoplankton biomass, Balance of lower guilds,

Zooplankton mean size and total stock (MSTS), as well as the

various indices comparing proportion of large fish to all the

fish (e.g. Large fish index or Fish community trophic index,

see Appendix A). All these cover two trophic levels, except

the MSTS which attempts to cover three levels, determining

status on the basis of phytoplankton abundance (as food for

zooplankton) and on the basis of the condition of planktivo-

rous fish (indicating zooplankton as food for fish) (Gorokhova

et al. 2016).

Based on the analysis, we claim that most of the indi-

cators do not explicitly address the GES criteria. In the case

of D4C1, D4C3 or D4C4, they do not indicate diversity,

size distribution, or productivity within a trophic guild but

within a taxonomic group. Similarly, under D4C2, they do

not indicate balance between guilds, but abundance within

a guild or a larger species group. These failures to meet the

requirements are obviously caused by the ‘recycling’ of

indicators from other state assessments to address food

webs. It is, however, also clear that the indicators can

rather easily be developed to operational indicators meet-

ing the food web perspective by re-arranging the data,

whereas re-defining indicator thresholds to set GES may

require more elaboration.

The identified food web indicators have sufficient and

relevant spatial coverage in the Baltic Sea (Table 2), but

our analysis suggests that they only partly reflect changes

that are caused by manageable pressures and their GES

targets are not well defined (Table 3). The key require-

ments for such food web indicators include sensitivity to

distinguish impacts of anthropogenic (manageable) pres-

sures and certainty in defining GES (EU 2017). It seems

obvious that there are severe gaps in the availability and

application of the food web indicators in the Baltic Sea.

TROPHIC MODELS FOR THE BALTIC SEA

AND THEIR APPLICATION

One of the central objectives of this study was to evaluate

whether food web models could fill the gaps in the current

suite of food web indicators. We made a Web of Science

search of the models using the keywords ‘model’, ‘food

web’ and ‘Baltic Sea’ (incl. their various expressions). As

the search terms were, on purpose, general, we

received[ 250 hits among which we had to pick studies

fitting to at least one of the GES criteria (see Table 1). In

addition, we excluded studies where Baltic food web

models were used as components of a geographically or

thematically larger study (e.g. Piroddi et al. 2021) or where

different models were compared (e.g. Gårdmark et al.

2013). Finally, we identified 36 papers presenting suit-

able food web related models and included them in the

present review (Table 4, Appendix 1). Some of the papers

self-report that they build on models in earlier studies, but

for consistency, we treated them all as separate models in

this paper.

To evaluate whether the models can provide information

that could be used to aid food web assessments, we cate-

gorized the models according to the GES criteria (see

Table 1). Further, the Commission Decision (EU 2017)

specifies that the selected trophic guilds meet these criteria:

at least three trophic guilds (defined according to ICES

2015) are included, preferably from top, middle and bottom

of the food chain, two of them are non-fish trophic guilds

and at least one is a primary producer trophic guild. In this

study, we call these ‘evaluation criteria’. Moreover, we

defined two additional evaluation criteria for the assess-

ments of diversity (D4C1) and size distribution (D4C3) that

a minimum of three components are needed to assess those,

and that an assessment of productivity (D4C4) requires a

model to enable a varying reproduction rate (Table 1). We

note that these two latter criteria are artificial, but they help

to filter out models not suitable for these two GES criteria.

We evaluated whether the models support the assessments

with these conditions.

The models are mostly defined at species (sometimes

genus or higher taxa) level. We mapped the species in each

model to the trophic guilds according to ICES (2015) and

Ojaveer et al. (2020) (Appendix A—Table S1). Most of the

models included the three most important commercially

exploited fish species, sprat, herring, and cod which rep-

resent the ‘Planktivores: nekton (excl. warm-blooded)’ and

‘Sub-apex demersal predators: nekton (excl. warm-bloo-

ded)’ (Table 4). Other trophic guilds that were often rep-

resented in the models included phytoplankton,

zooplankton, and benthic planktivores (practically mysids).

Marine mammal apex predators, most often seals, and in

the Atlantis model also harbour porpoise, were represented

in 13 models. The recent Ecopath with Ecosim (EwE,

Bauer et al. 2018; Opitz & Froese 2019) and Atlantis

(Bossier et al. 2018) models included the highest number of

trophic guilds, 13, 10 and 12, respectively. Some of the

models included modelled groups that could not be mapped
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into trophic guilds, such as meiozoobenthos, macro-

zoobenthos or ‘omnivores’. In the case of Yletyinen et al.

(2015) the trophic guilds were not identified for this reason

but in Sandberg et al. (2004), the group ‘‘fish’’ was

assumed to include planktivorous fish, as this model was

otherwise dealing with lower trophic levels only. In addi-

tion, our review includes information on the geographical

areas that the models cover, the model type, and whether

they can, based on the trophic guilds and taxa that they

include, help to fill the gaps in the Baltic Sea food web

indicator suite (Table 4, Appendix A—Table S4).

The analysis (Table 4) indicates that the models show

potential for helping food web assessments particularly in

relation to D4C2 (balance between trophic guilds) for

benthos, where indicators were lacking. Some models

could also help in assessing the D4C4 (productivity), while

gaps in D4C1 (diversity of a trophic guild) were only filled

by the models of Bossier et al. (2018) and Opitz and Froese

(2019). The gaps in D4C3 (size distribution within trophic

guild) were potentially filled by five models.

HOW CAN MODELS HELP IN FOOD WEB STATUS

ASSESSMENTS?

The big question is whether and how models have the

potential to help with food web assessments in practice,

and what currently stands in the way. For example, how do

we move from an observed gap in a measurable indicator,

to filling this gap based on model output? While we found

gaps in the set of food web indicators in the Baltic Sea

especially for macrophytes, birds and filter- and deposit-

feeding benthos (Tables 2 and 3), these groups are included

in eight, seven, and 14 of the 36 models, essentially the

EwE model family (Tomczak et al. 2009, 2012, 2013;

Bauer et al. 2018, 2019; Opitz & Froese 2019) as well as

the Atlantis model (Bossier et al. 2018) (Table 4, Appendix

A—Table S4). While all the existing models already

include some of the key pressures on the Baltic Sea, most

often fisheries and eutrophication, impacts of hazardous

substances and non-indigenous species were missing in

many models. The EwE and Atlantis models can be

developed to include these pressures and evaluate their

management (Fulton et al. 2011; Pinnegar et al. 2014;

Piroddi et al. 2015; Walters and Christensen 2018).

The reliability and potential usefulness of model-derived

time series (e.g. biomasses, catches or mortalities) to fill in

the indicator gaps can be evaluated through reviewing

model predictions for ecosystem components whose data

has not been included into the model, but for which some

data are available so that the prediction accuracy can be

evaluated (e.g. Natugonza et al. 2020; however, see Mal-

donado et al. 2019 for caution). For example, Trifonova

et al. (2015) created a dynamic Bayesian network model

for the North Sea that was able to mimic zooplankton

dynamics even though zooplankton data was not included

into the model. Also EwE models have been shown to

predict observed data relatively well at different trophic

levels (Tomczak et al. 2012; Piroddi et al. 2017; Chagaris

et al. 2020).

Also Tommasi et al. (2021) recommended that EwE and

the Atlantis models can adequately capture the entire food

web and support management decisions. The EwE models

have great potential in providing multiple spatio-temporal

indicator results for the food web assessment and the

Atlantis is useful for strategic analyses at a system level

Table 3 Rank-based evaluation of food web indicators for meeting the selected data and management-related criteria (Tam et al. 2017,

adjusted). Green shades: generally meets criteria (darker shade means stronger agreement); yellow shades—meets criteria only partly, red—fails

to meet criteria. The evaluation of GES thresholds was strictly evaluated against the needs of the MSFD criteria (EU 2017). See Appendix A for

full evaluation
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Table 4 The trophic guilds each model includes (all coloured cells) and the model type. If the model has potential of filling an indicator gap for a

trophic guild, that cell is coloured yellow and the criteria are shown. Note that only the potential for filling indicator gaps (identified in Table 2)

are highlighted. Full details of the classification to GES criteria are given in Appendix A

Karlson et al. (2020), Kiljunen et al. (2020), Skov et al. (2020), Bauer et al. (2018, 2019), Costalago et al. (2019), Daewel et al. (2019), Kadin

et al. (2019), Kulatska et al. (2019), Maldonado et al. (2019), Opitz and Froese (2019), Tunca et al. (2019), Bossier et al. (2018), Uusitalo et al.

(2018), Yletyinen et al. (2016), Blenckner et al. (2015), Gårdmark et al. (2015), Niiranen et al. (2013), Radtke et al. (2013), Tomczak et al.

(2009), Casini et al. (2012), Svensson et al. (2012), Maar and Hansen (2011), Fennel (2009), Lindegren et al. (2009), Håkansson and Bryhn

(2008), Hansson et al. (2007), Sandberg (2007), Sandberg et al. (2000, 2004), Harvey et al. (2003), Jarre-Teichmann (1995), Wulff and

Ulanowicz (1989), Elmgren (1984)
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and for testing whether observed trends in ecosystem

components can be reproduced (Fulton et al. 2011; Bossier

et al. 2021). Piroddi et al. (2015) identified EwE models as

most widely used food web models in Europe: in the North

Sea, the Celtic Seas, the Bay of Biscay, the Baltic Sea, the

Mediterranean Sea and the Black Sea. Because of this wide

use, this section gives an example of the possibilities of

EwE models to support the food web assessment.

EwE is an opensource, freely available modeling

framework comprising three modules: (i) Ecopath—a sta-

tic, mass-balanced snapshot of the system, (ii) Ecosim—a

time dynamic simulation module and (iii) Ecospace—a

spatial and temporal dynamic module (www.ecopath.org;

Christensen and Walters 2004). The Ecopath input data are

trophic interactions expressed as diet composition, esti-

mates of biomass, production and consumption rates, and

mortality. The Ecosim as a temporal model, requires input

data as a time series of environmental and anthropogenic

forcing. Ecospace employs the spatial time-dynamic model

in each cell of the raster grid, while accounting for cell

connectivity and species movements explicitly depended

on environmental condition. The module allows for

exploring effects and interplay of extrusive drivers on the

ecosystem.

In a balanced model, the Ewe can predict biomass of any

taxa that has the necessary population parameters but

missing or incomplete time series data. The EwE software

also provides ready-made ‘ecological indicators’ which

relate to biomass of the model’s functional groups, diver-

sity and ecosystem structure. Good state of the ecosystem

or a functional group can be tested, for instance, by sim-

ulation scenarios or optimizing objectives for, e.g.,

ecosystem structure or ‘health’ (Christensen 1995). Pres-

sures can be introduced to affect any of the population

parameters which influence the model outcomes. The

pressure impacts and setting of thresholds can be analyzed

at level of functional groups by calculating ecological

network analysis, indicating resilience, i.e. the system’s

reserves before collapse (Heymans et al. 2014).

REQUIREMENTS FROM MODELS TO SUPPORT

FOOD WEB ASSESSMENTS

Trophic guilds form the food web through dynamic inter-

actions and, hence, GES of food webs cannot be assessed

by one trophic guild alone but by an indicator comparing

more than one guild at the same time. This entails several

problems for the current definition of indicator thresholds.

First of all, it is likely that the current indicators’ GES

thresholds have not been aligned with each other, as they

were developed in isolation. Moreover, there is probably

more than one food web configuration that maintains GES

at different biomass-levels of one single guild (cf. Yletyi-

nen et al. 2016). The GES harmonisation and the alterna-

tive stable states could be evaluated using models, leading

possibly to better-informed GES thresholds than what can

be inferred from monitoring data alone. Simulation models

that can be run with different starting points can be used to

find low and high limit values for species and guild

abundances that are still consistent with healthy and

stable ecosystem functioning. Because GES assessments

under the MSFD require an indicator-based approach (EU

2017), we therefore argue that support from food web

models can substantially improve this approach.

While potential benefits of food web models are clear,

their realization in practise depends strongly on model

limitations and data needs. Uncertainties can stem from the

model structures, e.g. the predator–prey relationships (e.g.

Tunney et al. 2017), as missing trophic connections

potentially lead to erroneous outputs when simulating yet-

unseen scenarios. Additionally, the model parameters, e.g.

the feeding, growth, or recruitment rates, are usually

assumed to follow functions that are invariant in time. This

assumption is usually needed to derive these parameters

from data, but it may be problematic in the face of regime

shifts and changing climates and other stressors (but see

Tomczak et al. 2013). The Dynamic Bayesian networks

models reviewed in this study (Uusitalo et al. 2018; Mal-

donado et al. 2019) explicitly allow the possibility that the

trophic interaction functions change (implemented through

latent variables in the models). This allows not only for

guild balance to shift from one stable state to another along

the defined functions, but also for species interaction

functions (such as productivity for D4C4) to actually

change, as could happen due to climate change, new

unmodelled invasive species, or some other driver outside

the modelled domain. These models also include an

assessment of uncertainty of the model parameters and

predictions. We did not further explore the Dynamic

Bayesian networks models in this study, because more

commonly used food web models may be the first step in

supporting marine food web assessments.

RECOMMENDATIONS FOR THE NEXT

GENERATION MARINE FOOD WEB

ASSESSMENTS

Current assessments of Baltic Sea food webs utilize indi-

cators which are only partly fit for purpose. Among the 60

indicators, we found only nine clearly assessing the balance

between trophic levels or guilds and only one potentially

meeting the requirement of using at least three trophic

guilds, with two non-fish trophic guilds and at least one

primary producer trophic guild (sensu EU 2017). However,
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we believe that the available suite of food web indicators

for the Baltic Sea has the potential to better meet the

MSFD requirements if separate indicators are first rear-

ranged from a taxonomic grouping into trophic guilds, then

combined to indicate balance between the guilds (in the

case of D4C2) and GES thresholds are re-defined for these

combined indicators. We also found that there are major

gaps for key trophic groups—especially macrophytes,

macrozoobenthos and benthic planktivores (e.g. mysids)—

which are driving forces for food web interactions in both

the shallow coastal areas and open sea systems (Kiljunen

et al. 2020; Kortsch et al. 2021). Our conclusion is that

even after the proposed re-adjustments, there will be gaps

in key indicators and needs for improving definitions of

GES.

Food web models have great potential to support food

web assessments where indicators fail (Piroddi et al. 2015),

but they also have their model specific limitations. Our

analysis of the available food web related models indicated

that there are food web models that encompass multiple

trophic levels and allow runs of different scenarios (e.g.

management of pressures, re-adjustment of GES thresh-

olds). Especially the EwE, Atlantis and Dynamic Bayesian

networks models could provide valuable support to indi-

cator-based assessments and EBM of human activities.

We recommend that models could support food web

assessments in two overarching ways: First, the models can

help to define GES thresholds for indicators by exploring

their possible stable states under different pressure sce-

narios. We believe that such ‘intercalibration’ is difficult

for separate indicators without a model framework (see

however, Kauhala et al. 2019). Based on our analysis, we

think that the simulations by EwE and Atlantis models

could be currently the best choices to find GES thresholds

for indicators because they transparently account for

pressures-species interactions in the ecosystem and are

readily available for many marine regions. Second, we

highlight that the models help to populate food web indi-

cators with data, if monitoring data is poor in time and/or

space. This would be a more ecologically justified way to

assess the diversity, biomass or size/age distribution of a

trophic guild or taxon rather than simple interpolation of

data, because the modelling approach considers the eco-

logical interactions in the system. Integration of indicators

and modelling outputs may give a strong assessment result,

if implemented by integrated assessment frameworks

(Borja et al. 2016; HELCOM 2018).

These two proposed approaches would capitalize on the

strengths of ecosystem models, i.e. the fact that they inte-

grate a vast body of scientific knowledge about food web

interactions and ecosystem functioning with quality-as-

sured data, and that they explicitly account for interactions

of multiple ecosystem components through the time series.

However, practical implementation of a hybrid food web

assessment with indicators and models is not immediately

within our reach in the Baltic Sea, because the parame-

terized models have not been set in synchrony with indi-

cators in space and time (i.e., assessment areas and

periods). In the Baltic Sea, where the regional sea con-

vention (HELCOM) is preparing for the next assessment of

the state of the marine environment, we propose to select

pilot assessment areas in order to test our approach and

overcome the technical challenges of the integration.

Despite the support from models, food web assessments

should still rely on monitored data and transparent metrics

as is the spirit of the policy assessments like the EU MSFD.
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Jülich (PtJ), Germany, the Swedish Research Council Formas, the

German Federal Ministry of Education and Research and the Estonian

Research Council. MCN and EB acknowledge the support by Åbo
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Karulis, S. Saraiva, and M.T. Tomczak. 2019. Food web and

fisheries in the future Baltic Sea. Ambio 48: 1337–1349.

Blenckner, T., M. Llope, C. Möllmann, R. Voss, M.F. Quaas, M.

Casini, M. Lindegren, C. Folke, et al. 2015. Climate and fishing

steer ecosystem regeneration to uncertain economic futures.

Proceedings of the Royal Society B 282: 20142809.

123
� The Author(s) 2022

www.kva.se/en

1694 Ambio 2022, 51:1687–1697

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Borja, A., M. Elliott, J.H. Andersen, T. Berg, J. Carstensen, B.S.

Halpern, A.-S. Heiskanen, S. Korpinen, et al. 2016. Overview of

integrative assessment of marine systems: The ecosystem

approach in practice. Frontiers in Marine Science 3: 20.

Bossier, S., A.P. Palacz, J.R. Nielsen, A. Christensen, A. Hoff, M.

Maar, H. Gislason, F. Bastardie, et al. 2018. The Baltic Sea

Atlantis: An integrated end-to-end modelling framework eval-

uating ecosystem-wide effects of human-induced pressures.

PLoS ONE 13: e0199168.

Bossier, S., J.R. Nielsen, E. Almroth-Rosell, A. Höglund, F.
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