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Abstract Species Sensitivity Distribution (SSD) is a key

metric for understanding the potential ecotoxicological

impacts of chemicals. However, SSDs have been

developed to estimate for only handful of chemicals due

to the scarcity of experimental toxicity data. Here we

present a novel approach to expand the chemical coverage

of SSDs using Artificial Neural Network (ANN). We

collected over 2000 experimental toxicity data in Lethal

Concentration 50 (LC50) for 8 aquatic species and trained

an ANN model for each of the 8 aquatic species based on

molecular structure. The R2 values of resulting ANN

models range from 0.54 to 0.75 (median R2 = 0.69). We

applied the predicted LC50 values to fit SSD curves using

bootstrapping method, generating SSDs for 8424 chemicals

in the ToX21 database. The dataset is expected to serve as

a screening-level reference SSD database for understanding

potential ecotoxicological impacts of chemicals.

Keywords Chemical toxicity � Environmental toxicity �
Life cycle assessment � Machine learning � QSAR

INTRODUCTION

Climate change, habitat losses and the exposure to various

man-made chemicals are major threats to global biodiver-

sity (Hartley 2002; Vörösmarty 2010; Malaj 2014).

According to the Red List of Threatened Species by the

International Union for Conservation of Nature (IUCN),

1256 out of the total 8455 threats are associated with

pollution, of which 251 are due solely to the pesticide and

herbicide (The IUCN Red List of Threatened Species).

Our understanding of chemical’s toxicity footprints on

the ecosystem, however, is hampered by the sheer number

and diversity of the chemicals used by the society, their

wide variation in sensitivity across species, and the high

costs—and therefore the scarcity—of experimental toxicity

data (Bressler et al. 2006; Holmstrup 2010; Martin 2019).

The number of unique chemicals have been produced or

used in the European Union (EU) countries in excess of

one tonne per year reached 15,000 in 2018 and is growing

in the past years (ECHA Publishes Official Statistics for the

Last REACH Registration Deadline). Different species

may exhibit dramatically different sensitivity to the same

chemical. Pyrethroid, for example, is extremely toxic to

insects, but it is well tolerated by most mammals

(Wolansky and Harrill 2008).

The Species Sensitivity Distribution (SSD) is an

approach that allows estimating the potential ecosystem

impacts of a chemical considering the variation in the

sensitivity of species to toxicants. SSD uses the statistical

distribution of toxicity data points (Lethal Concentration,

or LC50, for example) across multiple species as a proxy

measure for the ecotoxicological impact of single stressor

to the entire community (forum, E.-U. E. 1998; Posthuma

et al. 2001). SSDs, combined with an assessment factor, are

often used in risk assessment to estimate the Predicted No

Effect Concentration (PNEC) (Raimondo et al. 2008; Ping

et al. 2011). In environmental risk assessment, PNEC is

often regarded as the safe concentration for chemical under

which the entire aquatic ecosystem is unlikely be adversely

affected (Calow and Forbes 2003; Cunningham et al.

2009). Furthermore, SSD can be also used in Life Cycle

Assessment (LCA) and Life Cycle Impact Assessment

(LCIA), where the Hazard Concentration at which half of
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the species are adversely affected, or HC50 value, is often

used to derive the ecotoxicity Characterization Factors

(CFs) of chemicals (Rosenbaum 2008; Henderson 2011).

The challenge is that experimental toxicity data are

scarce, and developing an SSD of a chemical requires

multiple toxicity data points across multiple species (Gar-

ner et al. 2015). The recommended minimum sample size

ranges from 8 to 15 (Newman et al. 2009; Lowry 2012).

The ECOTOX database, one of largest databases for

experimental toxicity values, contains about 500 organic

chemicals with experimental toxicity data for aquatic

species, and only about 80 aquatic species have been tested

on more than 5 organic chemicals. In USETOX, which is

one of the characterization models widely used in LCA,

only about 2000 CFs, which can be calculated using SSD,

were derived using experimental toxicity data that exist for

organic chemicals (Rosenbaum 2008). The scarcity of

experimental toxicity data is the primary barrier for

developing SSDs and for understanding the ecotoxicolog-

ical impact of chemicals (Andersen and Krewski 2009).

One of the approaches to overcome the scarcity of

experimental data is the use of Quantitative Structure–

Activity Relationship (QSAR) models. QSAR models

estimate a chemical’s bioactivity or toxicity using the

structure of the chemical in the absence of experimental

data (Cherkasov 2014). QSARs often use linear regression

or logistic regression models (Worth and Cronin 2003;

Chen et al. 2012). Mayer and colleagues for example,

predicted chronic toxicity of chemicals to multiple fish

species using linear regression model and acute toxicity

test data (Mayer et al. 1994). Raevsky and colleagues

estimated the LC50 values of chemicals to Guppy, Fathead

Minnow and Rainbow Trout using chemical similarity

approach (Raevsky et al. 2008). These QSARs, however,

are designed to be applied to targeted groups of chemicals

such as those with nonpolar Mode of Action (MOA)

(Raevsky et al. 2008), and, when applied to other groups of

chemicals, fail to provide reliable predictions (Cherkasov

2014).

Recent progresses in machine learning techniques,

however, opens an entirely new avenue of opportunities for

developing predictive models (Haupt et al. 2008). Artificial

Neural Network (ANN), for example, has been success-

fully applied to predict rate constants and reaction rates of

chemicals in atmosphere (Allison 2016) and extreme

weather (Liu, et al. 2016), and QSARs using simpler neural

networks have also been used to estimate acute toxicity of

chemicals to few aquatic species using inputs in varies

formats. For example, Devillers developed QSAR model to

estimate the acute toxicity of pesticide for Lepomis mac-

rochirus (Devillers 2001). Martin and colleagues provided

a new model in Neural Networks to estimate the LC50

(96 h) for Fathead Minnow, and achieved satisfying

performance (Martin and Young 2001). However, because

of the development of SSDs requires the ecotoxicity data in

comparable experimental conditions applied across various

taxa, therefore, the existing QSARs from different studies

cannot be assembled together to generate SSDs, and cur-

rently there isn’t an established method to estimate SSDs

with machine learning techniques. Researchers typically

combine existing QSARs for multiple species, which may

employ disparate machine learning models, limiting the

interpretability of the results when used simultaneously to

estimate SSDs. Furthermore, the existing QSARs were

developed with various sizes of training dataset, which are

often smaller than few hundreds of chemicals (Burden and

Winkler 1999; Devillers 2001; Devillers 2001; Kaiser

2003).

In this study, we present a novel approach to develop

SSDs for organic chemicals using assembled machine

learning techniques, taking only molecular structure

information as the input. We collected over 2000 experi-

mental ecotoxicity data points in LC50, produced under

comparable experimental conditions for 8 aquatic species.

Using these data and molecular descriptors, we developed

ANN models to estimate the ecotoxicity of chemicals in

LC50. A total of 8 ANN models were trained on experi-

mental toxicity data for each of 8 aquatic species: Pime-

phales Promelas, Daphnia Magna, Oryzias Latipes,

Oncorhynchus Mykiss, Lepomis Macrochirus, Cyprinodon

Variegatus, Americamysis Bahia and other water fleas. The

performances of the predictive SSDs were evaluated on

existing SSDs built by experimental data. The uncertainties

of the ANN models as well as the predictive SSDs were

analyzed. Finally, we applied our model and estimated the

SSDs for over 8000 organic chemicals in the Toxicology

Testing in the 21st Century (ToX21) database and char-

acterized their SSDs as well as the HC5 values. The per-

formances of log-normal, Gamma and Weibull

distributions to fit SSD were also evaluated.

MATERIALS AND METHODS

Ecotoxicity dataset collection

We collected 2521 experimental ecotoxicity data for non-

ionizable organic chemicals on 8 aquatic species: Pime-

phales Promelas, Daphnia Magna, Oryzias Latipes,

Oncorhynchus Mykiss, Lepomis Macrochirus, Cyprinodon

Variegatus, Americamysis Bahia and other water fleas, from

major public databases, including ECOTOX, eChem, EFSA

and HSDB (Todeschini and Consonni 2008; eChemPortal-

Home; ECOTOX|MED|US EPA; ESFA; Hazardous Sub-

stances Data Bank (HSDB)). Data from peer-reviewed lit-

eratures was also added as supplementary data source to
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develop the neural network models in this study (Russom

et al. 1997; Devillers 2001; Martin and Young 2001;

Raevsky et al. 2008; Results of ecotoxicity tests data con-

ducted byMinistry of the Environment in 2014; Austin et al.

2015; Toropov 2017). The number of experimental data

collected for each species can be found in Fig. S1 in sup-

plementary information. To ensure data quality of the eco-

toxicity dataset we collected from this study, the critical

experimental conditions, such as the testing duration,

chemical purity and pH values were strictly controlled. We

filtered the datasets and used only the LC50 data with 96 h of

duration for all species except for water fleas, for which 48 h’

data was used due to the concerns of dataset size. Chemical

purity must be higher than 85%. And the pH value must be in

the range of 5 to 9. Experimental data that not meet these

requirements was discarded. For chemical with multiple

experimental values, the geometric mean was used in the

final dataset. To utilize some of the discarded data, and to

increase the diversity of the species taxa, experimental val-

ues thatmet our data selection procedure for otherwater fleas

in ECOTOX database was combined and treated as an

individual species in this study. Within this category, there

are 20 chemicals for Ceriodaphnia Dubia, 13 chemicals for

Daphnia Pulex and 63 chemicals for Mix Water Flea (not

specified). Additional information, such as the CAS number,

SMILEs, molecular weight and the chemical names were

also collected, for referencing purpose. The unit of the LC50

values were converted to log10(LC50) in lmol/L. The final

dataset is available in the supplementary information.mol/L.

The final dataset is available in the supplementary

information.

Two-step molecular descriptor selection

The originalmolecular structural descriptorswere calculated

using Python packages rdkit andMordred (rdkit: The official

sources for the RDKit library. 2017; Moriwaki et al. 2018).

The descriptor calculators can produce over 2000 descriptors

for a single chemical, including basic physicochemical

properties and autocorrelation descriptors. Large amount of

descriptors could lead to overfitting problem (Kaiser 2003;

Cherkasov 2014). Two-step feature selection procedures:

filter-based plus tree-based feature selection, were used in

this study to extract more meaningful descriptors (Guyon

and Elisseeff 2003; Saeys et al. 2007).

Filter-based feature selection removes descriptors that

have low variance, as well as the descriptors have high

mutual correlations with others (Stojić et al. 2010). Tree-

based feature selection method ranks the importance of

each descriptor by their contribution to the prediction

results in a decision tree model (Sugumaran et al. 2007)

(Broderius and Kahl 1985). In this study, during the filter-

based feature selection, descriptors with variance lower

than 10 were discarded. Then, the correlations between

every leftover descriptor were calculated and the second

descriptor was discarded if a descriptor pair has correlation

higher than 0.6. A decision tree regressor in Python

package Sklearn was used as the basis for the tree-based

feature selection on the remaining descriptors (Pedregosa

2011). The descriptors that contribute to the toxicity end-

point three times higher than the mean contribution were

selected as the final descriptors in this study. As a result,

the final descriptors are same for every chemical for one

species, but are different between species (different ANN

models). In this study, we used 8 to 15 structural descrip-

tors for developing our models. The most frequently uti-

lized molecular descriptor was SLogP (Wildman–Crippen

LogP), which appeared in all models. Xp-2dv (2-ordered

Chi path weighted by valence electrons) and PEOE_VSA6

(MOE Charge VSA Descriptor 6) were used in more than 3

models. The full list of descriptors used to develop each

model in can be found in Table S6 of the supplementary

information.

The development of neural networks models

and their applicable domain

ANNs were used as the modeling basis of the QSARs in

this study. The ANNs were developed using Tensorflow

and Keras in Python 2.7 (Chollet 2015; Abadi et al. 2016).

The hyper-parameters of ANNs that were optimized

through fivefold cross-validation in this study, including

the number of hidden layer(s), the number of hidden neu-

ron(s) in each layer, the regularization factor and the type

of activation function. These hyper-parameters were opti-

mized by minimizing the mean square error (MSE) of the

ANN models while holding others constant. The final

models were built using the hyper-parameters that gener-

ated the lowest MSE during cross-validation. The final

model performances were reported on 20 chemicals that

were randomly selected and left out during model devel-

opment for each species. The ANNs were built on the rest

of data.

ANNs have better performance on inputs that are like

the training data. We used Euclidean distance from the

input descriptors to the centroid of our training data as the

metric to evaluate the Applicable Domain (AD) in this

study. The Euclidean distance is calculated as:

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Xi � Cið Þ2
q

ð1Þ

where dn is the distance of chemical n to the centroid of

training data C; Xi and Ci are the ith molecular descriptors

of the input chemical and the training data. The centroid of

the training data was calculated as the mean value of the

molecular descriptors of all chemicals in the training data.
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Whether an input chemical falls inside the model AD

was determined by comparing a threshold value K with the

distance dn. For each ANNs, we first selected an initial

K and then grouped the chemicals in the validation dataset

by their distance to the centroid of the training data com-

paring with the K value (smaller or larger). The differences

of the MSEs between these two groups were calculated.

We then gradually increased the K value. The MSE dif-

ferences changed accordingly since the chemicals within

each group are different. We selected the K value that has

the largest MSE difference to be the final threshold for

model AD. The performance of this AD estimation was

reported on the chemicals in the testing dataset.

The development of SSDs and their uncertainties

SSD is a statistical distribution that illustrate the variation

in the response of species to the exposure of chemicals.

The development of SSD begins with the generation of

individual toxicity value of chemicals to species. In this

study, we used LC50 values of chemicals to aquatic spe-

cies. The LC50s are ranked from low to high, or the most

sensitive to the least sensitive species. On the SSD graph,

as shown on Fig. 2, the x-axis is the concentration of

chemical, and the y-axis stands for the percentage of spe-

cies affected. For each data point, the location on y-axis is

the Median Rank position of it. Which is calculated using

the ppoint function in R, and reproduced in Python (ppoints

function|R Documentation).

Therefore, the LC50 values are used to estimate the

Cumulative Distribution Function (CDF) of a selected

distribution. Most of the SSDs were fitted using normal or

log-normal distributions (Wheeler et al. 2002; Aldenberg

and Rorije 2013). Other statistical method including log-

logistic distribution and Burr Type III method are also exist

but have not been widely used (Aldenberg and Slob 1993;

Wheeler et al. 2002). In this study, we used log-normal

distribution as the basic distribution to fit SSDs, which is

justified by the OVL analysis. The CDF of log-normal

distribution is presented in Eq. (2):

Fx xð Þ ¼ U
ln xð Þ � l

r

� �

ð2Þ

where U is the CDF for a standard normal distribution N(0,

1), shown in Eq. (3), and l and r are the mean and standard

deviation.

U xð Þ ¼ 1
ffiffiffiffiffiffi

2p
p e�

1
2
x2 ð3Þ

In this study, the decision of using log-normal

distribution to fit SSD was made through running

Overlapping Coefficient Analysis (OVL) testing on the

screening results of ToX21 database. OVL is a

measurement for the similarity of distributions, which

compare the percentage of overlapping of the Probability

Density Function (PDF) (Qin and Suh 2017). Equation (4)

shows the mathematic representation of OVL for

distributions fa xð Þ and fb xð Þ:

D fa xð Þ; fb xð Þð Þ ¼ rminffa xð Þ; fb xð Þgdx ð4Þ

For each chemical in ToX21 library, the actual

distribution of the LC50 values on 8 species were

compared with the empirical distributions that are fitted

using the mean and standard deviation values on log-

normal, Weibull and Gamma distributions. The area of

overlapping was calculated.

Bootstrapping approach was used to estimate the

uncertainty of SSD due to the limited amount of data points

(MacKinnon et al. 2004). During each iteration of boot-

strapping, eight data points were resampled using the fitted

distribution curve and the newly sampled data points were

used to construct new distribution curve. This process was

repeated for 1000 times, generating the upper and lower

bounds of SSD for each chemical. The uncertainty of the

QSAR predictions were also considered in the SSDs.

Depending on whether the chemical fell inside or outside a

model AD, different MSEs were attached to the QSAR

predicted values. Therefore, the upper and lower bounds of

SSDs can be reported.

Database screening

The chemical list in the ToX21 project is used as the

candidates to be screened against the models developed in

this study (US EPA 2015a). ToX21project aims to develop

better toxicity assessment techniques in high-throughput

robotic screening system. To date, about 10 000 chemicals

have been tested under the project, and the screening

results help to identify chemicals for further investigation

(US EPA 2015a). We removed inorganic chemicals, ion-

ized chemicals and chemicals that can’t find SMILEs

within this list. As a result, 8424 chemicals are left and

developed predictive SSDs using the models in this study.

Among these chemicals, 1239 chemicals fell into the ADs

for more than 4 (out of 8) ANN models. We considered

these predictive SSDs are trustful and discarded the rest of

predictive SSDs.

HC5 values for these (1239) chemicals were derived

from the predictive SSDs. Among them, 218 chemicals

were registered in the ECHA database, therefore we were

able to find the production bands for them (Registered
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substances-ECHA). To consider ecotoxicity and production

volume at the same time when comparing chemicals, we

considered them when evaluating the threatening of the

candidate chemicals. The threatening is calculated as

described in Eq. (5). The screening results for all chemi-

cals, as well as their production band can be found in the

supporting information.

T ¼ P

HC5
ð5Þ

where T stands for the threatening (tonne�L/year�umol),

which is a comparative score; P (tonne/year) is the annual

production band reported in ECHA database; HC5 (umol/

L) is the hazardous concentration read from the predictive

SSD.

RESULTS

ANN model performances and applicable domain

Figure 1 shows the performance of the ANN models. Cir-

cles in blue color are the training data points and triangles

in red are randomly selected testing data. If predicted

values match perfectly with experimental values, all the

data points would be perfectly aligned on the line,

x = y. The R2 of these ANN models ranged from 0.54 to

0.75 (mean 0.67, medium 0.69) on the testing data. More

information about the hyper-parameters of these models,

such as the number of hidden layers and neurons, is sum-

marized in Table 1. Other details about the model structure,

including the activation functions and regularization fac-

tors during training can be found in the supplementary

information (Table S1). According to the results on the

testing chemicals, the models for Daphnia Magna and

Oncorhynchus Mykiss showed the highest R2 on testing

data (0.75), followed by the Lepomis Macrochirus (0.72)

and Pimephales Promelas (0.71) models, while the Oryzias

Latipes model showed the lowest R2 on the testing data

(0.54).

To evaluate the model prediction confidence, we

employed the concept of Applicable Domain (AD) to

characterize the prediction accuracies of the ANN models

and serves as a proxy to estimate whether a chemical is

appropriate for the QSARs. The results of AD analysis are

presented in Table S3 in the supplementary information.

Among the ANN models that we developed, Oncorhynchus

Mykiss and the Lepomis Macrochirus models have the

narrowest ADs. For these two models, the mean square

error (MSEs) of the testing data inside of the ADs was 6%,

while those outside of AD were 15% and 22%,

respectively. For the Pimephales Promelas model, how-

ever, the average MSEs inside and outside of AD were 8%

to 220%, respectively, indicating limited utility of the

model outside of AD.

Predictive species sensitivity distributions

and evaluations

Using our ANN models, we estimated the LC50 values for

8424 chemicals from the ToX21 database for each of the 8

aquatic species. We also estimated the prediction errors of

the ANN models, as well as the inherent error of SSDs due

to the limited number of data points. These SSDs can be

found in the supporting information. Given the large

number of chemicals in our results, we randomly selected a

few chemicals to compare our predictive SSDs with the

SSDs derived from experimental data. Elaborated here is

one of them, DCMU (3-(3,4-dichlorophenyl)-1,1-dimethy-

lurea), an algaecide.

The predictive SSD for DCMU is shown in red line in

Fig. 2. The figure also shows the uncertainty range of the

ANN-derived SSD in gray. This uncertainty range was

calculated using the prediction error of each ANN model,

which was determined by whether this chemical fell into

the AD of each model or not. For a comparison, we col-

lected experimental data for the same species, and we

located experimental LC50 values for the same list of

species other than Oryzias Latipes, which were unavailable

in the literature and databases available to us. Using these

experimental values, we constructed an SSD as shown by

the green line in Fig. 2. According to the SSD derived from

experimental values, the HC5 of DCMU is about

1.82 mmol/L, whereas the HC5 from the ANN-based SSD

ranged from 2.51 to 3.24 mmol/L. Both experimental SSD

and the predictive SSD show that Pimephales Promelas has

the best tolerance to DCMU in water, with an experimental

LC50 of 61.7 mmol/L and a predicted LC50 of 75.9 mmol/

L. Figure 2 indicates that the predicted SSD tends to show

lower toxicity for this chemical at lower concentration

(i.e.,\ 0.5 Log lmol/L), and higher toxicity with higher

concentration (i.e.,[ 1.5 Log lmol/L), which will be

discussed in the next section.

Another 10 organic chemicals were randomly selected

from the ECOTOX databases to evaluate the SSDs derived

from our ANN models. We collected experimental LC50

data of these chemicals on other species than the afore-

mentioned 8 species in order to avoid any overlap with the

training data we used to develop our ANN models. Given

the inherent uncertainty in SSDs due to the limited number

of data points, we used the bootstrapping technique to

visualize the potential range of SSDs. The mean, lower,
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Fig. 1 The performances of all models in this study on the training data (blue circles) and testing data (red triangles). The horizontal axis is the

experimental values, and the vertical axis is the predicted values. The model structures were tuned using cross-validation technique
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and upper bounds of HC50 (hazardous concentration for

50% of the species) values on both predictive and experi-

mental SSD curves are presented in Table 2. The Over-

lapping Coefficient (OVL) score in Table 2 shows the

percentage of overlapping of the area of the predictive

distribution and the experimental distribution. The detailed

model prediction data for each of the chemicals, as well as

the experimental LC50 values can be found in Table S4,

and in the supplementary information. The predictive SSD,

experimental SSD along with their overlapping area for

chemical chlorpyrifos (2921-88-2) are presented in Fig. S2

as an example.

Table 2 shows that the predicted HC50 values generated

by the ANN models are generally in line with the experi-

mental SSDs. The OVL results show that 8 out 10 chem-

icals have OVL score higher than 70%, which means that

70% of the area in the predictive SSD overlap with the SSD

generated by the experimental data. Among them, the

predictive SSD for the chemical diazinon (333-41-5) shares

the largest overlapping area with the experimental SSD

(96.8%), followed by the chemical chlorpyrifos (2921-88-

2) by 92.0% overlapping area. The predictive SSD shows

Table 1 The performance of the ANN models on the testing data for the 8 aquatic species in R2. The number of hidden layers and hidden

neurons for each ANN model

*PP *DM *OL *OM *LM *CV *AB *OWF

Model performance (R^2) on testing data 0.71 0.75 0.54 0.75 0.72 0.66 0.67 0.63

Number of hidden layer 2 1 2 2 2 2 1 2

Number of hidden neuron in each layer 32 9 16 16 64 9 32 64 9 32 32 9 16 16 9 8 16 16 9 8

*Spcies acronyms: Americamysis Bahia (A.B.); Daphnia Magna (D.M.); Lepomis Macrochirus (L.M.); Oncorhynchus Mykiss (O.M.);

Cyprinodon Variegatus (C.V.); Oryzias Latipes (O.L.); Pimephales Promelas (P.P.) and Other Water Fleas (O.W.F.)

Fig. 2 The SSD of DCMU (solid red line) constructed using the

ANN-based LC50 values (black points), along with the uncertainty of

ANN predictions (gray area), based on the model AD estimation for

Americamysis Bahia (A.B.), Daphnia Magna (D.M.), Lepomis
Macrochirus (L.M.), Oncorhynchus Mykiss (O.M.), Cyprinodon
Variegatus (C.V.), Oryzias Latipes (O.L.), Pimephales Promelas
(P.P.), and Other Water Fleas (O.W.F.). The SSD in green was

constructed using experimental LC50 values found for 7 species)

Table 2 The HC50 values of 10 chemicals in the ECOTOX database, along with the mean HC50 values for both ANN-based SSD and the

experimental SSD, as well as the percentage of overlapping of the distributions based on the predictive and experimental SSDs

Chemical CAS Chemical name HC50 mean (lower, upper bounds) in log (lmol/L) OVL score (%)

Predicted Experimental

50-29-3 Clofenotane - 0.45 (- 1.5, 0.62) - 0.85 (- 1.43, - 0.26) 70.6

87-86-5 Pentachlorophenol 0.32 (0.04, 0.62) 0.23 (- 0.11, 0.54) 89.6

58-89-9 Lindane 1.29 (0.26, 2.22) 0.87 (0.36, 1.4) 65.8

60207-90-1 Propiconazole 0.64 (0.08, 1.25) 0.88 (0.5, 1.25) 75.9

138261-41-3 Lmidacloprid 2.1 (1.4, 2.8) 1.65 (0.66, 2.7) 77.6

115-29-7 Endosulfan - 0.46 (- 1.09, 0.23) - 0.99 (- 2.12, 0.1) 72.0

2921-88-2 Chlorpyrifos - 0.03 (- 0.63, 0.66) 0.01 (- 0.76, 0.84) 92.0

206-44-0 Fluoranthene 0.9 (0.22, 1.58) 0.23 (- 0.04, 0.54) 50.3

62-53-3 Aniline 2.48 (2.21, 2.76) 2.71 (2.04, 3.42) 55.2

333-41-5 Diazinon 0.1 (- 0.72, 0.91) 0.04 (- 0.81, 0.87) 96.8
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the lowest OVL score is the one for chemical fluoranthene

(206-44-0) with OVL score 50.3% and followed by the

SSD for chemical aniline (62-53-3) with OVL score

55.2%.

We used the 97.5% percentile and the 2.5% percentile as

the upper and lower bounds, respectively, of the 1000 time

bootstrapping when fitting LC50 values to SSDs. Mean

values of predicted HC50 for all 10 chemicals are within

the upper and lower bounds of experimental counterparts,

regardless of the species and number of data points. Fig-

ure 3 shows the mean SSD curves for chemical chlor-

pyrifos (2921-88-2), as well as the upper and lower bounds

according to 1,000 times of bootstrapping (in light colors)

for both experimental (red) and predictive (blue) SSDs.

The range of experimental and predictive SSD are mostly

overlapped according to Fig. 3. The HC50 values of

chlorpyrifos based on predictive SSD range from 0.23 to

4.57 lmol/L, and the experimental HC50 values range

from 0.17 to 6.92 lmol/L. On both curves, fishes tend to be

more sensitive to the exposure of chlorpyrifos. The species

have the highest tolerance on the experimental SSD is

Sialis Lutaria (Insects/Spiders) with LC50 61.66 umol/L,

and on the predictive SSD is other water fleas with LC50

436.52 umol/L.

Screening-level chemical ecotoxicity analysis

We applied our models to the organic chemicals in the

ToX21 dataset. As a result, SSDs for 8424 organic chem-

icals were generated, among which 1240 fell into the AD

for at least four ANN models (out of eight). Their predicted

LC50 values, predictive HC5 and SSDs can be found in the

supplementary information.

We mapped these chemicals with the ones registered as

high-volume chemicals in European Chemicals Agency

(ECHA) database (Registered substances-ECHA). We

identified top 10 chemicals, of which the products of pro-

duction volume and toxicity (inverse of HC5) are the

highest (Table 3). If no additional data are available, these

chemicals deserve attention given their high volume of

usage and the high ecotoxicity, according to our screening-

level analysis results (see IS for the full screening results).

Among them 4,40-diphenylmethane diisocyanate (101-68-

8, MDI) shows the highest volume X toxicity value. MDI is

widely used in the manufacture of polyurethane. MDI

makes up about 60% of the global production of diiso-

cyanate in 2000 (Randall and Lee 2002), and the U.S.

demand for pure MDI was about 200 million pounds in

2008 (US EPA 2015b). Under certain circumstances, MDI

can be released from adhesive and sealants in a format that

isn’t completed reacted, therefore cause potential occupa-

tional exposure (US EPA 2015b).

OVL testing

SSDs can be fitted by different statistical distributions. We

used the coefficient of overlapping (OVL) method to

compare the performance of different statistical distribu-

tions: log-normal, Weibull and Gamma, when fitting SSD

curves. As the results show, the average OVL score of log-

normal distribution was 0.82. More than 93% of the 8424

SSDs have OVL score higher than 0.60 on log-normal

distribution. The comparison between log-normal, Weibull

and Gamma distributions is presented in Fig. S3. The

average OVL scores for Weibull and Gamma distributions

were 0.71 and 0.67, respectively. Log-normal distribution

was the one that has the highest average OVL score among

all distributions we tested. The resulting standard log-

normal SSD function shows the average logmean (l) and
average GSD (geometric standard deviation, r) of 3.21 and

2.58, respectively, for the 8424 SSDs.

Fig. 3 The mean (solid blue line), upper (97.5%), and lower (2.5%)

bounds (dash blue lines) of the predictive SSD, and the mean (solid

red line), upper (97.5%), and lower (2.5%) bounds (dash red lines) of

the experimental SSD for chlorpyrifos. Each data point and numbers

on the curves represent a species for corresponding data group

(predictive, blue, or experimental, red). 1: Americamysis Bahia
(Crustaceans, shrimp); 2: Cyprinodon Cariegatus (Fish); 3: Daphnia
Magna (Crustaceans, water flea); 4: Lepomis Macrochirus (Fish); 5:
Pimephales Promelas (Fish); 6: Oncorhynchus Mykiss (Fish); 7:

Oryzias Latipes (Fish); 8: Other water fleas (Crustaceans, water flea);
9: Pungitius Pungitius (Fish); 10: Gasterosteus Aculeatus (Fish); 11:
Neocaridina Denticulate (Crustaceans, shrimp); 12: Lctalurus Punc-
tatus (Fish); 13: Aplexa Hypnorum (Molluscs); 14: Carassius Auratus
(Fish); 15: Zilchiopsis Collastinensis (Crustaceans); 16: Sialis Lutaria
(Insects/Spiders)
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DISCUSSION

To our knowledge, our study is the first that consolidated

aquatic ecotoxicity data from multiple data sources, and

used them for large-scale SSD development using ANN.

The resulting dataset, which is, to our best knowledge, the

largest of its kind, is made freely available through our

website. The predictive SSD, can be used for screening

analysis to estimate the safety concentration of chemicals

in aquatic ecosystem. Our results can also be used for as

the reference ecotoxicity data in LCIA when better quality

data are lacking, which is a acknowledged problem in LCA

(Reap et al. 2008).

The performance of QSAR models developed in this

study was promising and the results were comparable tothe

existing QSARs in literature (Buccafusco et al. 1981;

Devillers 2001; Toropov 2017). Our study demonstrates

that advanced machine learning models can be used to

improve the performance of QSAR models.

We collected extensive chemical toxicity dataset from

reputable databases including ECOTOX and eChem. The

datasets collected include over 2000 data points with

comparable experimental conditions for reliable QSAR

modeling. The QSAR models developed in this study using

ANN can achieve R2[ 0.7, when the training dataset is

larger than 300 data points for a single species. With lesser

data points, the ANN model must be reduced to simpler

structure, which compromises its ability to estimate

chemical toxicity. For future studies, even larger training

dataset would be desirable to minimize the chance of

missing out uncommon chemical structure–toxicity

relationships.

We used the QSAR models to create predictive SSDs in

this study. Our predictive SSDs showed a good perfor-

mance compared with the SSDs created by experimental

values. In Fig. 2, the predictive SSD showed lower toxicity

at low concentration, and higher toxicity at high concen-

tration. This is mainly due to the fact that the experimental

SSD was created with less toxicity data points, compared

with our predictive SSD. It is expected that the accuracy of

SSD increases with more toxicity data points, and more

diverse taxa (Posthuma et al. 2001, 2019). It is notable that

the predictive SSD showed closer HC50 values compared

with the experimental SSDs.

We recommend that the predictive model to be used as a

supplementary to experimental data. Our models cannot

replace SSDs derived from experimental toxicity data, as it

has prediction uncertainties, and focusing on single stressor

in this study. Furthermore, since ANN is a ‘‘black box’’

model, it should not be used to interpret the mechanism of

ecotoxicity with molecular structure (Stojić et al. 2010).

Given the current scarcity of experimental data and the

high cost of developing them, however, we believe that our

results demonstrate the potential for machine learning

techniques to be used as a proxy for SSDs when better

information is lacking. Furthermore, the rapidly growing

number of chemicals in the lab and in the marketplace

makes it challenging for experimental data alone to meet

the needs for understanding the potential ecotoxicological

impact of chemicals. We believe that our results can serve

as a screening tool in the absence of experimental data to

prioritize the candidates for further analysis. We view

machine learning techniques not as a replacement of but as

a complementary tool for experimental studies.

Table 3 The top chemicals with the highest threatening among the registered chemicals in the ECHA database

Chemical name Chemical

CAS

HC5

umol/L

Number of chemicals in

model AD

Production band in ECHA (thousand

tonnes year-1)

4,40-Diphenylmethane diisocyanate 101-68-8 0.19 4 100–1000

2-Ethylhexyl acrylate 103-11-7 3.1 4 100–1000

2-Ethylhexyl nitrate 27247-96-7 5.6 5 100–1000

Anthraquinone 84-65-1 0.13 4 1–10

tert-Butylperoxy 2-ethylhexyl carbonate 34443-12-4 0.19 4 1–10

Dodecanoic acid 143-07-7 2.6 4 10–100

2-Methyl-40 0 0-(methylthio)-2-

morpholinopropiophenone

71868-10-5 0.29 5 1–10

Methyl dodecanoate 111-82-0 3.3 4 10–100

6H-Dibenzo[c,e][1,2]oxaphosphinine

6-oxide

35948-25-5 0.37 5 1–10

1,3-Benzenedicarboxylic acid 121-91-5 57.1 4 100–1000
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Experimental toxicity studies are also crucial for improving

the quality of machine learning models to follow. High

species sensitivity or low HC5 values in our SSD database

should constitute a reason for in-depth testing, although

predicted low species sensitivity or high HC5 values alone

should not be taken as a proof that the chemical is safe.

We believe that the complementarity between predictive

modeling and experimental studies can be further improved

by standardizing the conditions for toxicity experiments

and reporting. First of all, we cannot emphasize enough the

importance of standard data exchange protocol on experi-

mental conditions which is critical to accommodate

machine readability of experimental data. Due to the poor

documentation and the lack of standard data exchange

protocol, extracting data on experimental conditions from

existing literature and databases required painstaking

effort. Second, consistency in experimental methods is

crucial. We could not utilize many valuable experimental

data points because one or more experimental conditions

were not identical to the rest of the dataset. The variation in

experimental conditions in e.g., duration of exposure,

temperature, and chemical purity, significantly degraded

the value of experimental toxicity data. A wider adoption

of standard protocols for documenting and sharing toxicity

testing results is urgently needed to tap into and maximize

the value of experimental toxicity data for predictive

modeling. While there are existing standards and guideli-

nes including the OECD Test Guidelines, the Good Lab-

oratory Practice (GLP) principles, and the Catalogue of

Standard Toxicity Tests for Ecological Risk Assessment

(Epa 1994), a universal applicable testing guideline is still

lacking.

Machine learning techniques for ecotoxicological

applications are still in a nascent stage, and there is con-

siderable room for improvement in our study. Experimental

data of better quality and quantity will improve the per-

formances of the ANNs. Our models do not properly rep-

resent the toxicological impacts under multi-stressor

conditions, because the experimental data used for training

our model are all based on single chemical species. In fact,

mixtures of chemicals are scarcely tested for ecotoxicity,

and the development of protocols for mixture testing and

reporting is in its infancy. In reality, however, ecosystem

species are exposed to multiple chemicals at any given

time. Although there are some studies that evaluate the

concentration addition effect of chemical mixture (Her-

mens et al. 1984; Broderius and Kahl 1985; Wolf et al.

1988; Niederlehner et al. 1998), given that the number of

possible combinations of chemical mixtures in both com-

position and proportion is extremely large, experimental

data alone won’t be able to meet the growing needs of data.

Additional data and research are needed to adequately

address the ecotoxicological impacts of multiple stressors,

especially in the context of using SSDs.
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