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Abstract The nutraceutical market for EPA

(eicosapentaenoic acid) and DHA (docosahexaenoic acid)

is promoting fishing for Euphasia superba (Antarctic krill)

in the Southern Ocean and Calanus finmarchicus in

Norwegian waters. This industry argues that these species

are underexploited, but they are essential in their

ecosystems, and climate change is altering their

geographical distribution. In this perspective, we

advocate the cessation of fishing for these species to

produce nutraceuticals with EPA and DHA. We argue that

this is possible because, contrary to what this industry

promotes, the benefits of these fatty acids only seem

significant to specific population groups, and not for the

general population. Next, we explain that this is desirable

because there is evidence that these fisheries may interact

with the impact of climate change. Greener sources of EPA

and DHA are already available on the market, and their

reasonable use would ease pressure on the Arctic and

Antarctic ecosystems.

Keywords Antarctic krill � Calanus finmarchicus �
Climate change � Docosahexaenoic acid �
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INTRODUCTION

The last years have seen an increase in the popularity of

fish oil nutraceuticals (Kantor et al. 2016). These oils, rich

in the omega-3 fatty acids EPA (eicosapentaenoic acid) and

DHA (docosahexaenoic acid), promise to improve cardio-

vascular health and cognition, as well as protect against

diabetes or even cancer (Shahidi and Ambigaipalan 2018).

However, voices have been raised denouncing that an

increase in the catches of forage fish to supply this growing

industry is putting pressure on the already decimated

fishing grounds of the planet. Jenkins and colleagues

described this threat and put it into the perspective of the

studies supporting the health benefits of these oils, and

concluded that these fisheries might not be justified

(Jenkins et al. 2009).

Various companies, in search of alternative sources of

EPA and DHA, are now exploiting zooplankton species.

They call this practice ‘fishing down the food web’, and

justify their activity in the high biomasses of these species

in the oceans. Thus, catches of Euphasia superba (known

as Antarctic krill), once used as food for domestic animals

or even as fertiliser (Nicol 2018), are now increasing in the

Southern Ocean to prepare these capsules. In addition, a

new commercial fishery has recently started in Norwegian

waters to capture Calanus finmarchicus, a 2–4 mm long

calanoid copepod with long antennae and a reddish tor-

pedo-shaped body (Norwegian Directorate of Fisheries

2019).

The companies exploiting Antarctic krill and C. fin-

marchicus claim that these species are underexploited.

However, both zooplankton species are essential in their

ecosystems, as they occupy the intermediate level in their

respective trophic webs, where they link primary producers

with predators (Fauchald et al. 2011; Atkinson et al. 2014).

Climate change is affecting the stocks and geographic

distribution of these zooplankton species (Beaugrand et al.

2003; Flores et al. 2012b; Atkinson et al. 2019), and in the

case of Antarctic krill, there is a debate about detrimental

effects of the fishery (Krüger et al. 2020; Watters et al.

2020).

In this perspective, we defend that exploiting Antarctic

Krill and C. finmarchicus to prepare EPA and DHA

nutraceuticals is not rational. To do this, we review the

current science available on the cardiovascular and
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cognitive benefits of these fatty acids, and we conclude that

the general population does not benefit from consuming

these oils. This, together with the threats posed by these

fisheries along with climate change to exploited ecosys-

tems, make us propose the cessation of fishing for these

zooplankton species.

HEALTH BENEFITS OF EPA AND DHA

Based on the best available evidence, there are

not significant cardiovascular benefits of EPA

and DHA in the broad population

EPA and DHA are long-chain (C C20) polyunsaturated

fatty acids (LC-PUFA) of the omega-3 family. Humans

obtain these fatty acids ingesting fish and seafood, but we

are also genetically equipped to produce these fatty acids

from dietary a-linolenic acid (ALA, Fig. 1) (Bradbury

2011). Interest on the benefits of EPA and DHA on human

health began when Danish researchers Bang and Dyerberg

associated the low incidence of ischemic heart disease in

the Inuit people of Greenland to their diet of fish, whales

and seals, rich in these fatty acids (Dyerberg et al. 1975;

Bang et al. 1976).

This work and the epidemiological studies that followed

suggested that EPA and DHA prevent cardiovascular risk

(Simopoulos 2002). Despite the importance of these works,

we must emphasize that by their nature, these studies are

only designed to generate work hypotheses, and not to

confirm them (Greenberg 2018). Subsequent randomised

placebo-controlled trials (RPCTs), whose design allows

questioning the working hypothesis, are yielding, never-

theless, contradictory results. On the one hand, supple-

mentation with EPA and DHA reduced the risk of sudden

cardiac death (GISSI-Prevenzione Investigators 1999),

slightly reduced death rate and admission to hospital for

cardiovascular reasons (Tavazzi et al. 2008), prevented

non-fatal coronary events in hypercholesterolaemic sub-

jects (Yokoyama et al. 2007), and lowered the risk of

cardiovascular death in subjects with elevated triglyceride

levels, but in this case, using only high doses of EPA-ethyl

ester (Bhatt et al. 2018). On the other hand, other RPCTs

reported that supplementation did not reduce the rate of

Fig. 1 Biosynthesis pathway of EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) in the liver. The pathway starts with the essential

fatty acid ALA (a-linolenic acid), which must be obtained from the diet. This fatty acid undergoes a series of desaturations performed by D5-
desaturase and D6-desaturase (FADS2 and FADS1 genes, respectively), and also elongations, performed by elongase-5 (ELOVL5 gene) to yield

EPA. Then, EPA is elongated by elongase-5 to yield DPA. From DPA, DHA can be produced either by elongation (elongase-2, ELOVL2 gene),

desaturation (D6-desaturase) and b-oxidation in the peroxisome, or by direct desaturation by D6-desaturase (Park et al. 2015). Apart from DHA,

EPA and DPA (docosapentaenoic acid) are found in appreciable amounts in human plasma. The alpha (a) end of the fatty acids denotes the

carbon counting start from the carboxy end and coincides with the recognition site of the desaturase enzymes, whose number specifies the carbon

where the desaturation is performed. The omega end denotes the end of the molecule opposite to the carboxy group and is used to denote the

position of the desaturations in the molecule. SDA stearidonic acid, ETA eicosatetraenoic acid, TPA tetracosapentaenoic acid; THA,

tetracosahexaenoic acid
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cardiovascular events in subjects at high risk of cardio-

vascular events (Bosch et al. 2012), did not lower cardio-

vascular mortality and morbidity on subjects with multiple

cardiovascular risk factors (Roncaglioni et al. 2013), did

not decrease the risk of serious cardiovascular events in

patients with diabetes and without cardiovascular disease

(Bowman et al. 2018) and did not reduce the incidence of

major cardiovascular events in patients free of cardiovas-

cular disease (Manson et al. 2019). EPA and DHA industry

representatives are concerned about these inconsistencies.

Among the possible causes, they point to the use of inad-

equate statistics, or the general lack of measurement of the

levels of EPA and DHA in the participants of the trials, as

the researchers do not know the baseline status for these

fatty acids or the effectiveness of the formulations in the

participants (Rice et al. 2016; Serini and Calviello 2020).

Despite this mix of positive and non-significant results,

EFSA recommends the consumption of between 100 and

450 mg of EPA and DHA daily for children, adults and

pregnant women (EFSA Panel on Dietetic Products 2010)

and allows companies to claim in their products that EPA

and DHA contribute to the normal function of the heart

(EFSA Panel on Dietetic Products and Allergies 2010b,

2011). FDA, on the other hand, while also allows for health

claims, enforces discretion requesting the addition of the

statement: ‘‘However, FDA has concluded that the evi-

dence is inconsistent and inconclusive’’ (Center for Food

Safety and Applied Nutrition (CFSAN) 2014).

To date, meta-analyses on available RPCTs with EPA-

and DHA-rich oils or foods, conducted by independent

groups, in different years and with different methodologies,

coincide in that EPA and DHA supplementation does not

prevent cardiovascular disease (Rizos et al. 2012; Aung

et al. 2018; Abdelhamid et al. 2020) (Table 1). The most

recent of these meta-analyses included 86 RPCTs with

adults at different cardiovascular risks, and concluded that

EPA and DHA supplementation did not significantly lower

all-cause mortality, cardiovascular mortality, cardiovascu-

lar events, stroke or arrhythmia in adults at cardiovascular

risk (Abdelhamid et al. 2020). Nevertheless, these authors

found low-certainty evidence that supplementation slightly

reduced events and mortality from coronary heart disease.

These reductions, measured as number needed to treat for

an additional beneficial outcome (NNTB) were, however,

very small. As an example, these authors estimated that

334 people would need to take EPA and DHA supplements

for four years for one person to avoid death from coronary

heart disease; the other 333 people would not get any

benefit. Given these results, Abdelhamid and colleagues

suggest that EPA and DHA supplementation ‘‘is probably

not useful for preventing or treating cardiovascular dis-

ease’’. For krill oil, the only meta-analysis of RPCTs per-

formed to date showed similar results to fish oil (Ursoniu

et al. 2017). Regarding Calanus oil, the antioxidant, anti-

cholesterolemic and anti-inflammatory roles reported for

this oil at the preclinical level (Gasmi et al. 2020) have

only been recently tested in humans (Wasserfurth et al.

2020). In this study, the consumption of Calanus oil in

people who were exercising moderately contributed to

losing weight in a similar way as eating a healthy diet.

Importantly, to give full meaning and credibility to the

health benefits of a nutrient, it is necessary to describe the

molecular mechanisms that underlie the effects found in

the clinic. To date, a large number of molecular mecha-

nisms by which EPA and DHA are involved in human

physiology have been described. Both fatty acids bind to

the GPR120 receptor to promote healthy adipogenesis,

maintain insulin sensitisation and control inflammation (Oh

et al. 2010; Hilgendorf et al. 2019). EPA and DHA also

undergo enzymatic modifications to yield signals such as

protectins, resolvins and maresins (Fig. 2) (Watson et al.

2019), which promote resolution of inflammation and

modulate the immune response (Spite et al. 2014; Serhan

and Levy 2018). EPA and DHA are also precursors of

omega-3 endocannabinoids (Fig. 2), which again regulate

inflammation (McDougle et al. 2017) but are also involved

in cognition, pain and cancer (Watson et al. 2019). Many of

these functions of EPA- and DHA-derived molecules have

been proposed to mediate the claimed benefits of supple-

mentation. For example, EPA and DHA have been pro-

posed to regulate atherosclerosis (Zehr and Walker 2018),

hypertriglyceridemia (Arca et al. 2018), platelet function

(Lagarde et al. 2018) and blood pressure (Guo et al. 2019).

Of note, some of these EPA- and DHA-derived molecules

are even used as a model to synthesize analogues with

potentially greater beneficial effects (Imig et al. 2010).

Nevertheless, only clear and consistently positive results

from human trials, comparable to those published with cell

cultures and animal models, can support the use of EPA

and DHA to improve cardiovascular health (Mason et al.

2020).

EPA and DHA supplementation seem to benefit

vision and cognition, but in specific cases

EPA and DHA are also claimed as nutrients with beneficial

effects in vision and cognition, and much attention is

currently being paid to the potential role of these molecules

in neurodegenerative disorders, both at the preclinical and

at the clinical level (Martins et al. 2020; Yde Ohki et al.

2020). DHA is present in approximately 50% of the

phospholipids forming the membranes of the rod photore-

ceptors in the retina (Shindou et al. 2017), and constitutes

about 18% of the total fatty acids present in the grey matter

of the brain (Skinner et al. 1993). The importance of DHA

in vision and cognition is in great part because DHA-
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phospholipids enhance the flexibility of specialized cell

membranes in these organs and facilitate the function of

embedded proteins. This is because DHA is almost entirely

populated with double bonds (Fig. 1), which give the entire

molecule an unusually high degree of torsional rotation

(Gawrisch et al. 2003) that translates in great flexibility in

all three axes of space (Barelli and Antonny 2016). Thus, in

staked discs of rod photoreceptors, which are composed of

highly bent membranes (Burgoyne et al. 2015), DHA-

phospholipids facilitate continuous and efficient disc for-

mation and recycling (Shindou et al. 2017). At the same

time, in these membranes, DHA-phospholipids assist rho-

dopsin in its transition from the inactive to the active state

when it receives a light photon (Salas-Estrada et al. 2018).

In the membrane of neuronal axons (Yang et al. 2012),

DHA-phospholipids facilitate the formation of vesicles

with neurotransmitters, essential for synaptic transduction

(Manni et al. 2018). In addition to these structural roles,

DHA, together with EPA, is a precursor in brain and retina

of yet another family of signalling molecules, the elo-

vanoids (Fig. 2), which are elongated and hydroxylated

derivatives of these fatty acids (Shindou et al. 2017).

Elovanoids promote cellular pathways to counteract

uncompensated stresses in these organs (Shindou et al.

2017; Do et al. 2019).

These molecular roles of EPA and DHA in vision and

cognition suggest clinical benefits for supplementation, at

least in certain conditions. Thus, in preterm infants, a meta-

analysis suggested that supplementation is beneficial in

terms of visual acuity and cognitive development (Shulkin

et al. 2018), likely because dietary EPA and DHA com-

pensated the lack of placental transfer of these fatty acids

due to premature birth (Larqué et al. 2011).

At the perinatal stage, when the formation of neural

circuits is intense, EPA and DHA are likely crucial. As an

example, optimal levels of EPA and DHA are essential for

the appropriate development of the neural networks that

support the reward system in rats (Ducrocq et al. 2020).

Congruently, people with major depressive disorder,

schizophrenia, or bipolar disorder suffer from low moti-

vation and generally have low levels of these fatty acids in

blood (Messamore and McNamara 2016). Interestingly,

Table 1 Meta-analyses of the effects of randomised placebo-controlled trials (RPCTs) with EPA and DHA supplementation on cardiovascular

and cognitive health

Meta-analysis Health field RPCTs

analysed

Author’s conclusions

Rizos et al.

(2012)
Cardiovascular Health 20 Omega-3 PUFA supplementation was not associated with a lower risk of all-cause

mortality, cardiac death, sudden death, myocardial infarction, or stroke based on

relative and absolute measures of association

Aung et al.

(2018)
Cardiovascular Health 10 Omega-3 fatty acids had no significant association with fatal or nonfatal coronary

heart disease or any major vascular events. It provides no support for current

recommendations for the use of such supplements in people with a history of

coronary heart disease

Abdelhamid

et al. (2020)
Cardiovascular Health 86 Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces

risk of coronary heart disease mortality and events, and reduces serum triglycerides

(evidence mainly from supplement trials)

Brainard et al.

(2020)
Cognition in healthy adults 38 Long-chain omega-3 probably has little or no effect

on new neurocognitive outcomes or cognitive impairment

Shulkin et al.

(2018)
Childhood psychomotor and

visual development

38 n–3 PUFA supplementation improves childhood psychomotor and visual

development

Chang et al.

(2018)
ADHD 7 We provide strong evidence supporting a role for n3-PUFAs deficiency in ADHD,

and for advocating n-3 PUFAs supplementation as a clinically relevant intervention

in this group, especially if guided by a biomarker-based personalisation approach

Liao et al.

(2019)
Depression 26 Current evidence supports the finding that omega-3 PUFAs with EPA C 60% at a

dosage of B 1 g/d would have beneficial effects on depression. We note that the

long-term efficacy and health effects of omega-3 PUFA supplementation in

depression have yet to be elucidated

Deane et al.

(2019)
Depression and anxiety 31 Long-chain omega-3 supplementation probably has little or no effect in preventing

depression or anxiety symptoms

Canhada et al.

(2018)
Alzheimer’s disease 7 The effects of omega-3 fatty acids supplementation in mild AD corroborate

epidemiologicalobservational studies showing that omega-3 fatty acids may be

beneficial in disease onset, when there is slight impairment of brain function

Burckhardt

et al. (2016)
Dementia 3 We found no convincing evidence for the efficacy of omega-3 PUFA supplements in

the treatment of mild to moderate AD
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these low levels of EPA and DHA do not appear to be

related to diet (Noaghiul and Hibbeln 2003; Peet 2004).

Children and adolescents with attention deficit hyper-

activity disorder (ADHD) significantly improved their

clinical symptoms and cognitive performance (Chang et al.

2018), especially individuals with low basal levels of these

fatty acids (Chang et al. 2019). Beneficial effects in

depression is disputed (Deane et al. 2019; Liao et al. 2019).

Alzheimer’s patients, who usually have low levels of DHA

in the brain (de Wilde et al. 2017) due to a decrease of

DHA synthesis in the liver (Astarita et al. 2010), an

impairment of DHA import to the brain (Ochiai et al. 2019)

and poor eating habits (Samadi et al. 2019), could benefit at

the early stage of the disease (Canhada et al. 2018). It is

therefore tempting to hypothesise that these mental disor-

ders may have a genetic component responsible of a

reduced synthesis of EPA and/or DHA, which are essential

for the successful development, maintenance and function

of neural networks.

Nevertheless, a recent meta-analysis of 38 RPCTs con-

cluded that supplementation does not seem to help healthy

adults, as it does not prevent the onset of neurocognitive

illness (Brainard et al. 2020). Despite this, EFSA allows the

industry to claim that supplementation with EPA and DHA

contributes to the maintenance of normal visual and cog-

nitive functions (EFSA Panel on Dietetic Products and

Allergies 2010a, 2011). Here, although the molecular roles

of EPA and DHA and clinical data agree in specific situ-

ations or conditions, such as premature babies, adolescents

with ADHD and Alzheimer’s patients, there is no clinical

support for supplementation for the general population. For

this reason, we believe that the health claims that EFSA

allows in terms of vision and cognition, extended to the

entire population, exceed the real need.

Evidence suggest that DHA synthesis in healthy

adults from ALA is sufficient to supply the brain

Scientific literature generally agrees that DHA synthesis in

humans occurs with very low efficiency (Fig. 1). On

average, the male appears to convert only 1% of ingested

ALA to DHA in the liver (Goyens et al. 2006; Lin et al.

2010) and female 8% (Burdge and Wootton 2002). Com-

panies that market EPA and DHA oils use this reported

inefficiency in their marketing efforts, as it undoubtedly

favours their business interests. Nevertheless, authors like

Domenichiello and colleagues have elegantly argued that

DHA synthesis in humans may be sufficient to maintain

brain function (Domenichiello et al. 2015).

In this line, recent research suggests that prior evalua-

tion of DHA synthesis in humans yielded equivocal results.

Pignitter et al. have used circulating LDL (low-density

lipoprotein) as a proxy to assess DHA synthesis in the liver,

unlike previous studies, which looked for DHA in the

fraction of circulating phospholipids, fatty acids or red

blood cells. As a result, Pignitter et al. reported that in their

experiment, 30% of ingested ALA was converted to DHA

(Pignitter et al. 2018).

In addition to this, many studies have reported that the

retina and brain bear cell types that synthesize DHA.

Examples of this in the retina are the retinal pigment

epithelium (Wang and Anderson 1993; Chen et al. 1999),

microvascular endothelial cells (Delton-Vandenbroucke

et al. 1997) and retinal neurons (Simón et al. 2016). In the

Fig. 2 Signalling molecules derived from EPA and DHA. In black is depicted the structure of EPA and DHA. In blue are highlighted the

enzymatically made additions yielding resolvins, protectins, maresins, endocannabinoids and elovanoids. EPA eicosapentaenoic acid, DHA
docosahexaenoic acid, RvE1 Resolvin-EPA 1, RvD1 Resolvin-DHA-1, PD1 Protectin-DHA 1, PDX Protectin-DHA X, MaR1 Maresin 1, Mar2
Maresin 2, 1-EPG 1-eicosapentaenoyl-glycerol, 1-DHG 1-docosahexaenoyl-glycerol, EPA-DA EPA-Dopamine, DHA-DA DHA-Dopamine,

EPA-5HT EPA-Serotonin, DHA-5HT DHA-Serotonin, ELV-N32 Elovanoid N32, ELV-34 Elovanoid N34
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brain, astrocytes (Moore et al. 1991; Williard et al. 2001),

microvascular cells (Delton-Vandenbroucke et al. 1997)

and some types of neurons (Kaduce et al. 2008) also pro-

duce DHA. A proper assessment of the magnitude of this

DHA synthesized and used in the retina and brain could

contribute to demystifying the low production capacity of

DHA in humans.

Evolution also indicates that the synthesis of DHA in

humans is a physiologically relevant process. The FADS1

and FADS2 genes are responsible for encoding the D-de-
saturases that constitute the bottlenecks that determine the

synthesis rate of this fatty acid (Fig. 1). After 23 000 years

of a diet of fish, seals and whales, the Inuit of Greenland

have fixed less efficient alleles of FADS1 and FADS2 to

produce less EPA and DHA and conserve ALA, scarce in

their diet (Fumagalli et al. 2015). On the other hand, the

predominantly vegetarian diet of Europeans during the

Bronze Age caused them to fix more active alleles of

FADS1 and FADS2 to produce more EPA and DHA

(Buckley et al. 2017). The notion that the diet is capable of

modulating the genetics of DHA synthesis throughout

evolution suggests that this process is key in human

physiology.

According to the above, despite the influence of diet on

the levels of DHA in the blood [up to 40% less in vegans

and vegetarians (Domenichiello et al. 2015)], there are

factors such as gender, stage of life, genetic background

and state of health that may have a determining role on

internal levels of this fatty acid. For this reason, we believe

that supplementation with EPA and DHA should be rec-

ommended only after a personalized analysis, and the EPA

and DHA nutraceutical industry should not target healthy

adults in their marketing efforts.

ANTARCTIC KRILL AND C. FINMARCHICUS

FISHERIES. MANAGEMENT, THREATS

TO THE ECOSYSTEM AND CLIMATE CHANGE

Although supplementation with EPA and DHA seems

unnecessary for healthy adults, we believe that this argu-

ment may be insufficient to stir consciences and reduce the

exploitation of ecosystems to source these fatty acids. That

is why we describe below how Antarctic krill and Calanus

fisheries can add up to climate change and threaten unique

ecosystems.

E. superba and C. finmarchicus, ecological

importance and commercial interest

Antarctic krill, a crustacean often compared to shrimp and

about 6 cm long, inhabits all waters surrounding Antarctica

(Fig. 3), occupying the key intermediate trophic level of

this ecosystem (Flores et al. 2012a). Here, this crustacean

grazes phytoplankton and serves as feed for whales, pen-

guins, seals, fish and birds (Murphy et al. 2007). Explora-

tory Antarctic fishing began in the early 1960s by the

former Soviet Union, driven by declining high seas fish

stocks and restricted access to the waters of coastal states

(Hofman 2017). In 1977, R. M. Laws formulated what later

became known as the ’krill surplus’ hypothesis, according

to which the observed increase in seal and penguin popu-

lations in those years was due to the previous near-exter-

mination of the whales, which led to greater availability of

krill for other species (Laws et al. 1977). At that time, this

hypothesis was used by others to justify krill fisheries,

since it was suggested that this ‘krill surplus’ could be

destined for human use (Hofman 2017). Nevertheless, this

hypothesis has been reviewed and considered incomplete

(Surma et al. 2014). After capturing more than 400 000

tonnes of Antarctic krill per season in the 1980s and using

it to feed pigs and chickens, to prepare food for humans or

used as fertilizer (Nicol 2018), CCAMLR (Commission for

the Conservation of Antarctic Marine Living Resources)

entered into force to regulate this practice (CCAMLR

1980).

C. finmarchicus thrives in the subpolar waters of the

North Atlantic Ocean (Scott et al. 2000), and is dominant in

the Norwegian Sea (Choquet et al. 2017; Strand et al. 2020)

(Fig. 5a). Likewise Antarctic krill, C. finmarchicus occu-

pies the key intermediate level in its trophic web (Fauchald

et al. 2011), grazing phytoplankton and serving as prey to

the North Atlantic right whale (Cronin et al. 2017), and to

fish species such as cod (in the larval stage) (Ottersen et al.

2014), herring (Prokopchuk 2009) and capelin (Buren et al.

2014). After small trials with this copepod for aquaculture,

pet food and even as an ingredient for soups in the 1960s

(Wiborg 1976), the company Calanus AS (Tromsø, Nor-

way) started to fish this copepod experimentally in 2003

(Fiskeridirektoratet 2016). In 2016, the Norwegian Min-

istry of Climate and Environment (NMCE) regulated the

commercial fishing of this copepod, and in 2019, this

regulation entered into force (Nærings- og fiskerideparte-

mentet 2019).

Management rules of these fisheries

To protect Antarctic krill and its predators from the impact

of the fishery, CCAMLR supervised an international effort

to estimate krill biomass in the Atlantic sector of the

Southern Ocean (Trathan et al. 1995), where 58–71% of

total krill biomass exists (Atkinson et al. 2008), and the

fishery was concentrating. CCALMR used this data toge-

ther with the annual growth rate, mortality rate, and

recruitment variability to calculate a precautionary fishing

quota of 5.61 million tonnes per season, (9.23% of the
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estimated 60.3 million tonnes of krill biomass) (Butter-

worth et al. 1992; Constable et al. 2000; SC-CAMLR

2010). CCAMLR also established a lower quota known as

trigger level to mark the use of more restrictive fishing

rules under small-scale management units (SSMUs). The

trigger level was established as the equivalent of the

maximum annual catches in the 1980s, which were con-

sidered safe for the ecosystem at that time (SC-CAMLR

1991; Hill et al. 2016). This trigger level, set at 620 000

tonnes per season (roughly 1% of basal biomass), was

divided among subareas 48.1–4 (Fig. 3) (CCAMLR

2016a). Once this volume of catches was reached in any of

the subareas, the use of the SSMUs would begin. However,

CCAMLR has not yet agreed on regulations for working

with SSMUs (Nicol and Foster 2016), thus making the

trigger level the interim catch limit.

It has been suggested that the trigger level is not safe for

the Antarctic ecosystem (Medley et al. 2009). This level

has been reached in the last seven seasons in subarea 48.1,

and captures are rapidly increasing in subarea 48.2

(Fig. 4a), driven by an increase in the activity of Norwe-

gian companies (Fig. 4b) (CCAMLR 2019). Furthermore,

fishing hotspots have been identified in subarea 48.1

(Fig. 3b) (Santa Cruz et al. 2018), which coincide with the

feeding grounds of whales (Herr et al. 2016), penguins and

Antarctic fur seals inhabiting this region (Miller et al.

2010; Hinke et al. 2017). A recent work by Watters and

colleagues confirms the detrimental effect of these over-

laps, finding a significant correlation of periods of penguin

underperformance with years of high krill catches in their

fishing grounds (Watters et al. 2020). Therefore, measures

like the implementation of SSMU rules are urgent, but

CCAMLR suffers a continuous internal struggle between

the fishing and conservative interests of the countries that

comprise this organisation (Jacquet et al. 2016; Hofman

2019). Other examples of this are the difficulties to

establish marine protected areas (MPAs) (Brooks 2013;

Brooks et al. 2020) or to address the impact of the fishery

(Constable et al. 2000). Because of this, and because they

are aware of the potential impact of their activities, fishing

companies sometimes make unilateral decisions and, for

example, temporarily suspend fishing near penguin colo-

nies, even when CCAMLR has not reached an agreement

to implement this measure (CCAMLR 2016b). Neverthe-

less, other movements of these companies are criticised,

like the process of obtention of Certification as a Sustain-

able Fishery from the Marine Stewardship Council (MSC)

by Aker BioMarine AS (Medley et al. 2009; Christian et al.

2013).

Despite the difficulties that CCAMLR faces in manag-

ing Antarctic krill fishery, the Norwegian Ministry of Cli-

mate and Environment (NMCE) has been inspired by the

Fig. 3 Density distribution of Antarctic Krill (E. superba) and current main fishing area of this crustacean (CCAMLR Statistical area 48),

including fishing hotspots identified in Area 48.1. a Representation of the southern hemisphere, and distribution area of Antarctic krill, where the

shaded areas of light or dark orange represent a low or high density of this crustacean, respectively (adapted from previously published data

(Atkinson et al. 2004). The Antarctic krill fishing area currently mainly exploited (CCAMLR Area 48 and its subdivision in statistical subareas)

is also shown. The black stars denote the fishing concentration zones, located in the South Shetland Islands in subarea 48.1, the South Orkney

Islands in subarea 48.2 and South Georgia in subarea 48.3. The white bounded area represents the area displayed in (b). b Representation of the

section of subarea 48.1 that contains the fishing hotspots identified by Santa Cruz et al. (2018). Each fishing hotspot is enclosed by a black border

and is shaded in dark blue. Areas with borders in different colors represent the foraging areas of Antarctic krill predators such as humpback

whales (Hw), Fin whales (Fw) (Herr et al. 2016), Chinstrap Penguins (Cp), Gentoo Penguins (Gp) (Miller et al. 2010) and Antarctic Fur Seals

(Fs) (Hinke et al. 2017)
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work of this organisation to establish a fishing quota for C.

finmarchicus. Of note, although NMCE recognised the

need for a research effort similar to that supervised by

CCAMLR, this agency realised that obtaining this empir-

ical data would require a long-term international initiative

that was difficult to take on (Fiskeridirektoratet 2016). Of

note, in 2012 the Norwegian Ministry of Fisheries and

Coastal Affairs requested to the International Council for

the Exploration of the Sea (ICES) an ‘‘exploratory

assessment of Calanus finmarchicus in the Norwegian

Sea’’. However, this proposal was not supported finan-

cially, and ICES could only limit itself to commenting on

the data generated by the Norwegian government. In its

report, ICES noted that the estimated annual consumption

of C. finmarchicus by pelagic and mesopelagic fish, as well

as by invertebrates, left little (or no) biomass available for a

fishery. In another comment, ICES focused on by-catch

concerns, as this fishery uses 500-micron mesh nets that

can collect fish eggs and larvae. Thus, in an experiment that

caught 85 075 kg of C. finmarchicus, thousands of fish eggs

and larvae were accidentally captured. In the worst-case

scenario calculations, ICES estimated that this by-catch

eliminated the possibility of recruitment of 41 724 cod,

which is equivalent to 327 370 kg of fish. This is almost

four times more biomass than that of captured C. fin-

marchicus. However, and as the authors ironically point out

in their report, the value of Calanus oil is higher than that

of cod (ICES 2017). The Norwegian government, for its

part, considers this by-catch to be negligible, but encour-

ages fishing to be limited to areas with low presence of fish

eggs and larvae (Fiskeridirektoratet 2016).

NMCE estimated the basal biomass of C. finmarchicus

in Norwegian waters at 33 million tonnes, and applied the

precautionary fishing quota that CCAMLR calculated for

Antarctic krill (9.23%, rounded to 10% of basal biomass)

(Fiskeridirektoratet 2016). This yielded a precautionary

catch limit of 3.3 million tonnes per season. As NMCE

considered that there is uncertainty about the estimation of

C. finmarchicus basal biomass, the resilience of this

copepod and that of its predators against fishing, the effects

of the accidental capture of fish eggs and the impact of

climate change, this organism decided to adopt a more

restrictive fishing quota. Again, NMCE, inspired by the

work of CCAMLR, adopted their trigger level (1% of basal

biomass) for C. finmarchicus. This yielded a catch limit of

330 000 tonnes per season (Fiskeridirektoratet 2016),

which applied to 77% of the area surveyed, resulted in

254 000 tonnes of C. finmarchicus catch allowable per

season (Nærings- og fiskeridepartementet 2019).

Until 2018, the catches of C. finmarchicus have been

less than 1% of the trigger level (Fig. 5b). Therefore, at the

current stage of development, this fishery is unlikely to

have impacted the population of C. finmarchicus or its

predators. However, the collateral capture of fish eggs and

larvae in fishing nets is a cause of concern for the

authorities and for the companies that fish for this crus-

tacean. If this problem is not resolved, increased fishing

efforts can affect the fish populations that inhabit the C.

finmarchicus fishing area and, by extension, the species that

feed on them (Eysteinsson et al. 2018). It is therefore

surprising that NMCE uses CCAMLR rules for Calanus

fishery when these rules are being questioned, and fur-

thermore C. finmarchicus is a different species, lives in

different waters and is part of a different trophic web.

Fig. 4 Catches of Antarctic krill. a Catches per season in statistical subareas 48.1, 48.2 and 48.3, represented as the percentage of the trigger

level. Data obtained from the Fishery Report: Euphasia superba in Area 48 (CCAMLR Secretariat 2020). Each fishing season is represented by

the year it ends. b Total seasonal catches per country. Data obtained from CCAMLR Statistical Bulletin (2019, Volume 31, Table 8.1—Catch

Effort Data)
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The impact of climate change and interactions

with the fisheries

We have described above the weaknesses in the regulations

that govern Antarctic krill and Calanus fisheries. Now we

describe how climate change affects the exploited ecosys-

tems and how the fisheries may aggravate this impact.

The area of Antarctic Peninsula is considered a clima-

tological anomaly within Antarctica (Vaughan et al. 2003)

since it is experiencing higher increases in surface air

temperature than the rest of the continent (2–5 �C in the

last 50 years) (Vaughan et al. 2001; Compo et al. 2011;

Gonzàlez and Fortuny 2018). Water temperature increases

in this area are also higher than average, due to a change in

the wind regime that is causing a greater entry of deep

circumpolar warm water in the Amundsen Sea (Cook et al.

2016; Holland et al. 2019). Thus, the increase in air and

water temperatures are making the sea ice extent 7% lower

(Comiso et al. 2011; Parkinson 2019) and last three days

less each year (Stammerjohn et al. 2012). Glaciers are

retreating (Cook et al. 2016), and ice shelves are melting

(Etourneau et al. 2019; Rignot et al. 2019), which is pro-

moting a decrease in the ice sheet of the Antarctic Penin-

sula (Shepherd et al. 2018; Rignot et al. 2019). Sea ice is a

crucial habitat for the diatoms that constitute the main feed

for the post-larval stage of krill (Montes-Hugo et al. 2009;

Flores et al. 2012b). Although there is a debate about

whether sea ice decline, water temperature increase and

water acidification is affecting krill biomass (Atkinson

et al. 2004; Melbourne-Thomas et al. 2016; Cox et al.

2018; Hill et al. 2019), a majority of researchers defend

that climate change is threatening Antarctic krill (Saba

et al. 2012; Kawaguchi et al. 2013; Piñones and Fedorov

2016), to a point that has forced a southward migration of

this crustacean looking for colder waters (Atkinson et al.

2019).

Importantly, climate change and the fishery seem to be

interacting to cause a decrease of penguins in the Antarctic

Peninsula (Trivelpiece et al. 2011; Klein et al. 2018;

Krüger et al. 2020) and produce stress in pack-ice seals

(Forcada et al. 2012). Despite this, the moratorium on

commercial whaling implemented in the mid-1980s is

allowing the whales to recoup, with humpback whales

(Megaptera novaeanglae) likely recovering their pre-ex-

ploitation levels by 2030 (Zerbini et al. 2019). Neverthe-

less, a rough estimate from these authors suggests that only

humpback whales are currently removing 2.5–4.3% of

Antarctic krill biomass per season in the South Atlantic.

For its part, CCAMLR allows for captures up to 1% of

Antarctic krill biomass in this sector of the Southern

Ocean. If we also take into account the biomass of krill

consumed by penguins, seals and birds, and the confluence

of these species with the fishery in the same fishing

grounds (Santa Cruz et al. 2018) there is a significant

potential for a remodelling of the structure of this ecosys-

tem (Zerbini et al. 2019). Furthermore, a more fierce fight

for available krill, together with the expected decrease in

biomass of this crustacean in the future due to climate

change, has led different authors to predict that whale

populations will decline again in the coming decades

(Wiedenmann et al. 2011; Seyboth et al. 2016; Tulloch

et al. 2019).

Sea surface temperature is also increasing in the North

Atlantic Ocean (Abram et al. 2016), and C. finmarchicus

Fig. 5 Density distribution of C. finmarchicus, fishing area and catches. a The light and dark red shaded areas represent the geographical

distribution area of C. finmarchicus, adapted from (Choquet et al. 2017). The areas limited with white borders represent the commercial fishing

areas of C. finmarchicus established by the Norwegian government until 2019, consisting of 50.6% of the survey area. b Total catch per season

represented as the percentage of the trigger level (254 000 tonnes per season). Data provided by the Department for fisheries and aquaculture,

Ministry of Trade, Industry and Fisheries, Norway
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does not seem able to adapt to this change (Hinder et al.

2014). As a consequence, the temperate species C. hel-

golandicus is replacing C. finmarchicus at the south of the

Norwegian Sea (Montero et al. 2020), and this species is

also decreasing in the south-western Norwegian Sea

(Kristiansen et al. 2019). Ultimately, and similarly to

Antarctic krill in the south, the distribution area of C. fin-

marchicus is shifting north (Beaugrand et al. 2002; Chust

et al. 2013; Montero et al. 2020). The weakening of the

Atlantic Southern Overturning Circulation (AMOC), also

caused by global warming (Rahmstorf et al. 2015; Caesar

et al. 2018; Thornalley et al. 2018) could result in less

mobilisation of nutrients to the photic layer, which would

negatively affect the microalgae blooms that C. fin-

marchicus feeds on (Osman et al. 2019). Decreases in the

biomass of phytoplankton and changes in the timing of

their blooms can, in turn, have a substantial impact on the

blooms of C. finmarchicus. The specific lipid profile and

lipid load of this species, as well as its size, are more

advantageous for cod larvae than those of C. helgolandi-

cus, the species that is replacing C. finmarchicus in these

waters. These changes in the composition of the prey of

cod larvae can result in a decrease in the survival and

recruitment of this fish (Kattner and Hagen 2009; Kris-

tiansen et al. 2011). Projections of a continuous scenario of

high greenhouse gas emissions (temperature increase of

about 4.3 �C by 2100, relative to pre-industrial tempera-

tures) (IPCC 2013), predict that the biomass of C. fin-

marchicus may decrease up to 50% in the southern limits

of its distribution at the end of this century (Grieve et al.

2017). These threats are expected to have cascade impacts

on fish and the threatened North Atlantic right whale.

These whales, which mainly feed on this copepod

(Baumgartner and Mate 2003; Pendleton et al. 2012), and

of which only 409 individuals remain in the world (Pettis

et al. 2019), may be irretrievably affected by these changes

in prey availability (Meyer-Gutbrod and Greene 2018).

Birds such as the common guillemot (Uria aalge) or the

Atlantic puffin (Fratercula arctica), whose diet is based on

fish that feed on C. finmarchicus, will entrust their survival

to their adaptability to move northwards in search of prey

(Frederiksen et al. 2013). Little auk (Alle alle), which feeds

directly on C. glacialis, a more nutritious species than C.

finmarchicus (Kidawa et al. 2014), could also be affected if

this species is replaced by C. finmarchicus in northern

waters (Karnovsky et al. 2010; Amélineau et al. 2019).

These changes in the distribution and biomass of C. fin-

marchicus are also detrimental to its role in the seques-

tration of atmospheric carbon (Brun et al. 2019). Through

its faecal pellets and discarded carapaces, as well as by the

catabolism in the depths of the ocean of the fatty acids that

they synthesize in the photic layer in spring, C.

finmarchicus contributes to the role that the ocean plays in

the control of atmospheric CO2 (Jónasdóttir et al. 2015).

CONCLUDING REMARKS

We tend to trust the publicity displayed by the companies

commercialising nutritional supplements, either because

we are not trained to challenge it, or we do not have time to

evaluate all the points of view on their effectiveness.

Besides, the possibility of consuming these products allows

us a certain degree of self-indulgence with our lifestyle.

Nevertheless, the best science available today suggests that

supplements with EPA and DHA have no benefit in vas-

cular or cognitive health for healthy adults. The best

available science also conclude that climate change is

affecting our planet, especially the poles and their

ecosystems. Therefore, we encourage counteracting our

comfortable position adopting a varied and healthy diet,

practicing moderate exercise, and thinking that extracting

EPA and DHA from our ecosystems threatens the equi-

librium of the planet where we live.

For population groups that could benefit from supple-

mentation, such as premature babies, children at risk for

mental illness in adulthood due to genetically low levels of

EPA and DHA, and for patients with Alzheimer’s disease,

we advocate for supplementation with EPA and DHA only

by informed recommendation, and using non-extractive or

recycled sources, such as the cultivation of heterotrophic

microalgae or fish trimming.

We suggest EFSA and FDA re-evaluate the latest pub-

lished meta-analyses to reconsider the health claims they

allow. An eventual decrease in the importance of these

health claims, together with truthful information about the

threats that these fisheries and climate change pose, could

push CCAMLR and the Norwegian government to apply

the precautionary principle and work towards a gradual

cessation of these fisheries. Importantly, we extend this

request to forage fish fisheries, as these species, like

Antarctic krill and C. finmarchicus, also occupy the key

intermediate level in their trophic webs.
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