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Abstract This study of aviation-related recreation loss

shows that a survey primarily aimed at collecting

information on invasive species’ pathways can also be

used to estimate changes in pathway-related ecosystem

services. We present a case study for Elodea spp. (elodea),

Alaska’s first known aquatic invasive plant, by combining

respondents’ stated pre-invasion actual flights with stated

post-invasion contingent behavior, plane operating costs,

and site quality data. We asked pilots about the extent of

continued flights should destinations become invaded and

inhibit flight safety. We estimate a recreation demand

model where the lost trip value to the average floatplane

pilot whose destination is an elodea-invaded lake is

US$185 (95 % CI $157, $211). Estimates of ecosystem

damages incurred by private actors responsible for

transmitting invaders can nudge actors to change

behavior and inform adaptive ecosystem management.

The policy and modeling implications of quantifying such

damages and integration into more complex models are

discussed.
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INTRODUCTION

Invasive species pose a threat to the health of aquatic

ecosystems worldwide and affect ecosystem services that

economic sectors such as recreation and fisheries depend

upon (Rothlisberger et al. 2012). Since markets do not cap-

ture prices related to biological invasions, welfare measures

of the damages remain largely unquantified (Finnoff et al.

2010). Non-market valuation can point to hidden costs but

few studies have looked at aquatic invasive species (AIS)

and those that have adopt ex-post perspectives measuring

impact after the invasion had established (Rockwell 2003;

Lovell et al. 2006; Marbuah et al. 2014). While such eco-

nomic impact estimates can illuminate the damage already

done, an ex-ante approach by contrast informs policy deci-

sions and management actions to avoid damages, particu-

larly if AIS pathways are well understood (Sepulveda et al.

2012). Ex-ante estimates are particularly important for AIS

which are more difficult to detect compared to terrestrial

invasive species and thus are more likely to be established

before being detected increasing the cost of action. In such

circumstances, ex-ante estimates provide the necessary data

to weigh management costs against benefits of taking action.

Economic research on aquatic invasions often focuses

on already established invasions with little attention to

areas where the invasive species problem is in its infancy.

For example, the invasion of Dreissena mussels in the

Great Lakes, USA, has been known since the 1980s and

economic research has focused on assessing economic

impacts and pathways (Muirhead et al. 2009; Timar and

Phaneuf 2009; Rothlisberger et al. 2012). In contrast, little

research has looked at long-distance dispersal into remote

regions of the world with largely intact ecosystems far

from human development. The invasive species problem is

just starting to become recognized in northern latitudes

where it is a contributor to biodiversity loss (CAFF 2013;

Schwörer et al. 2014). Ex-ante approaches can aid decision

makers in selecting management options that minimize

potential future damages and inform investments about the

long-term economic benefits of preventing new arrivals

and slowing the spread of existing invasions (Marbuah

et al. 2014).

Quantifying the social values at stake informs the

social–ecological assessments needed for adaptive
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ecosystem-based management and as such is an important

contribution to evidence-based decision making (Folke

2006). Such decision making is especially challenging for

aquatic systems where perturbations such as the introduc-

tion of AIS can cause regime shifts that trigger the loss of

ecosystem services (Angeler et al. 2014). In such situa-

tions, resource managers are not only in need of informa-

tion about the ecology of the waterbody at risk but also rely

on data and cooperation from actors responsible for the

ecosystem perturbations (Reyers et al. 2018). For example,

quantifying predictive damages can nudge or incentivize

actors to change their behavior (Bhargava and Loewenstein

2015) but also allow managers to weight cost of action

against the avoided damages to resource users.

Especially for research related to biological invasions,

past research has found strong bias towards investigation of

ecological rather than social–ecological questions (Estévez

et al. 2014). The combination of social and ecological

information inform social–ecological models that aid in a

structured decision-making process (Maguire 2004). An

important characteristic of such models is that the net

benefits associated with different management actions

resulting in various outcomes are quantified (Polasky et al.

2011a, b). It is difficult to accurately and reliably measure

expected net benefits, yet, they need to be known for

testing new theories and improving the sustainability of

complex social–ecological systems (Ostrom 2009). Also,

integrating expected net benefits into structured decision

making enhances risk communication and promotes trust

between stakeholders and decision makers in areas of

resource conflict which is often observed in the context of

biological invasions (Estévez et al. 2014; Young et al.

2016).

The presented research was motivated by the recent

discovery of Alaska’s first documented submersed fresh-

water aquatic invasive plant Elodea spp. (elodea). It was

found in 2015 in Anchorage’s Lake Hood, the world’s

busiest floatplane base (Hollander 2015). Known infesta-

tions are primarily in urban lakes and are being distributed

by floatplanes to remote destinations across the state where

the explosive and dense invasive plant growth creates

safety hazards for pilots (Hollander 2014). In Lake Hood,

the presence of dense aquatic vegetation has been a long-

time safety concern for pilots requiring continued vegeta-

tion removal (CH2MHILL 2005). Also, dense aquatic plant

growth such as observed with elodea can prevent pilots

from accessing lakes for recreation. Since Alaska is mostly

roadless, small single engine propeller planes with floats

play a large role for commercial and private transportation

during the summer (Gray 1980). The USA has the highest

ownership of private planes per capita in the world with

Alaska having 16 times as many aircraft per capita

compared to other U.S. states and there are six times as

many pilots (The Ninety-Nines 2016).

Very little is known about aviation-based recreation and

in particular the risk of aviation-based AIS transmission

(Carey et al. 2016). In order to inform managers and

engage resource users about the potential net benefits of

acting on AIS, this study had several research objectives.

First, we wanted to quantify and show the aviation-based

pathway for resource managers tasked with detecting new

infestations. The second objective was to show floatplane

pilots the hidden cost of their unintentional transmission of

elodea to raise awareness and nudge them to change

behavior that minimizes transmission risk. The third

objective was to quantify important variables for later

development of more complex social–ecological models

that can aid in the further management of AIS by inte-

grating social and economic with ecological data such as in

quantitative risk and decision analysis (Maguire 2004;

Verna et al. 2018).

We used an innovative approach combining spatial data

elicited through an online survey with available site quality

data to identify floatplane destinations and then estimate a

recreation demand model. The approach extends previous

exploratory research on the floatplane pathway (Carey et al.

2016) and borrows from the natural resource damage and

recreation demand literature (Hausman et al. 1995).

Resource damage and recreation demand approaches can

apply random utility models (RUMs) to quantify non-

market demand and associated welfare changes as a func-

tion of site quality (Shonkwiler and Shaw 2003; Scrogin

et al. 2004; Landry et al. 2012). The approach has been

applied to estimating changes in ecosystem services ex-

post related to environmental disasters such as the Exxon

Valdez and Deepwater Horizon oil spills (Carson et al.

2003; Glasgow and Train 2018).

We used the travel cost model in its traditional form

which measures non-market values associated with existing

recreation use (Trice and Wood 1958; Clawson 1959;

Parsons 2017). We extended it to include a set of hypo-

thetical questions where pilots were asked to state the

number of two-way flights (trips) between home base and

destinations. Destinations varied in environmental quality

first assuming current pre-invasion conditions followed by

hypothetical post-invasion conditions (Adamowicz et al.

1994; Englin and Cameron 1996). Most recent applications

of the approach were used for environmental valuation of

sport fishing experiences (Pokki et al. 2020) or to estimate

the impacts of wind turbines on recreation (Kipperberg

et al. 2019).

Our approach is also anchored in the larger literature on

environmental impact assessment which over the past

decade has seen a rise in stakeholder engagement and

participatory approaches (Gray et al. 2017). In cases where
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quantitative social–ecological models require quantitative

stakeholder input, structured survey techniques can provide

consistent information and central tendencies related to

environmental perceptions. These inputs can then be used

to develop statistically robust models (Nelitz and Beard-

more 2017). Lastly, our approach falls into citizen science

where there is a need for improved data quality which we

addressed through a structured elicitation technique

(Dickinson et al. 2012).

Below we first describe the structured survey approach

we used to elicit information on flight destinations and

operating costs and lay out the econometric model, data

compilation, and model estimation. Our study results

indicate that elodea can cause significant lost trip value for

recreational pilots. The article closes by discussing the

merits of the approach and important policy implications.

MATERIALS AND METHODS

Survey

A stratified random sample of 1 015 floatplane-certified

pilots residing in Alaska was drawn from the population of

2 625 pilots whose names, physical addresses, and certifi-

cations are published in the Airmen Certification Relea-

sable Database (FAA 2015),1,2 We divided the sample

frame into an urban and rural strata following U.S. Census

designations and oversampling the rural strata (U.S. Census

Bureau 2010).

The survey was administered via Qualtrics Software

between December 2015 and May 2016 (Qualtrics 2015).

Pilots were first contacted using a letter of invitation

including a URL address for completing the survey online

and a US$2 incentive payment, followed by a post card

reminder. The third contact included a reminder letter with

hard copy of the survey and a stamped return envelope

(Dillman 2007). Lastly, we called non-respondents for

which phone numbers were available and digitized their

response using the electronic survey.3

The web survey contained an awareness section about

elodea, an electronic mapping tool that we programmed in

JavaScript using Mapbox Outdoors general-purpose maps,

and a section about plane operating costs and socio-

demographics.

The mapping tool enabled precise identification of flying

destinations while avoiding spatial ambiguity. The online-

map was fixed to remain oriented North and allowed

respondents to zoom without a maximum zoom level.

Respondents were first asked about their home base fol-

lowed by a request to mark their 2015 first-leg freshwater

destinations (Fig. 1). Respondents placed an electronic

marker onto a destination and a pop-up menu asked the

pilot to state the 2015 annual flights to the marked desti-

nation and then select one of two statements: (1) I would

not land here if dense vegetation in the landing zone, and

(2) I would land here if dense vegetation in the landing

zone. With dense vegetation, how many flights would you

still make? (Fig. 1). Frequency of two-way flights between

home base and destination was reported using the follow-

ing intervals: \ 10, 10–25, 25–50, 50–75, 75–100, and

more than 100, where the midpoint of each interval was

used for empirical analysis.

Ten key informant interviews helped refine the sur-

vey and flight frequency intervals, and justified focusing

the mapping exercise on first-leg flights. Most pilots

mentioned flying to a destination and then returned to their

home base with few flights containing more than one

destination. We defined this first-leg two-way flight pattern

as a flight trip for further analysis.4 Assuming one flight

trip per day, the selected flight trip intervals are consistent

with season length (Rust’s Flying Service, pers. comm.).

Alternative approaches to data collection were not

considered because they require more time to design, are

more complex (e.g., discrete choice experiments), would

place an additional burden on respondents reducing par-

ticipation, or rely on the recording of recreation activity

(Carson et al. 2009).

Model

Below we describe the travel cost model that we used to

estimate the change in ecosystem services given biological

invasions. In principal, individual pilots spend varying

amounts of money to access destinations (Parsons 2017).

Destinations that are further away from the pilot’s home

base are visited less and cost more to access and vice versa.

Given the varying costs and frequencies to fly to destina-

tions, we used the survey data to estimate the change in the

average willingness to pay across pilots given a biological

invasion to the pilot’s destination. We model a pilot’s

decision to fly to a destination following random utility

theory which allowed us to place pilots’ destination choices
1 According to the FAA, opt-out rates for not wanting to release

personal data in this public database are\ 1%.
2 We excluded Southeast Alaska because floatplane bases are almost

exclusively in saltwater, minimizing freshwater AIS risk, AIS have

not been found there, and only 8% of floatplane pilots reside there.
3 Phone numbers were purchased from a private marketing company.

4 The survey results presented thereafter underline the fact that

Alaska floatplane pilots do not fly to many different destinations

limiting the frequency of multi-destination flights. For this and for

reasons of keeping the data collection and analysis simple we did not

investigate multi-destination flights.
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in the context of the set of available destinations. The

underlying assumption of random utility theory is that

pilots generally choose a destination they prefer over all

other destinations and that this choice only in part can be

explained by observation leaving some unexplained ran-

dom error (McFadden 1973).

We think of the decision to fly as comprised of two

parts, first selecting the destination followed by annual trips

to that destination (Manski and McFadden 1981).5 This

decision is reduced to just one level by using the number of

flight trips as a frequency weight.6 The econometric spec-

ification is,

Unj ¼ Vnj þ enj ð1Þ

where Unj is the overall utility of a destination alternative j

to individual pilot n comprised of an observable Vnj and

unobservable part of utility, enj. The underlying observable

utility Vnj can be described in mathematical form as

Vnj ¼ cþ djZn þ bXnj ð2Þ

where c represented the average of all the unobserved

sources of utility, d a vector of coefficients measuring the

contribution of Z a matrix of pilot-specific attributes,

specifically here ZA pilot age, b a vector of coefficients

measuring the contribution of X a matrix of destination-

specific attributes, specifically here XE a dummy variable

for hypothetical elodea-invaded destinations, XC travel cost

derived from plane-specific operating costs, and XS and XM

reported hunting quality for sheep and moose, respectively.

Each individual pilot evaluated all destination alterna-

tives, Uj for j = 1,…, J alternatives and chose the desti-

nation alternative with maximum utility, max(Uj). The

probability of an individual pilot choosing destination

alternative i, was equal to the probability that the utility

associated with alternative i was equal or greater than the

utility of any other destination alternative, Uj, in the choice

set, thus pi = p(Ui C Uj), where i = j and j [ j = 1,…,

J. Note, we use i instead of j to distinguish between the

chosen destination alternative and all other destination

alternatives.

We used Multinomial logit (MNL) and multinomial

probit (MNP) to estimate the random utility models,

commonly used for estimating recreation demand

(McFadden 1973; Hausman et al. 1995; Chen et al. 1997).

In the MNL, the pattern of substitution between destination

alternatives is limited by the Independence of Irrelevant

Alternatives (IIA) property. Under IIA, a change in one

destination alternative has the same effect on all other

destination alternatives. Thus, all destination alternatives

are assumed to be equally dissimilar with none being more

Fig. 1 Computer screen view of online mapping tool for eliciting floatplane destinations

5 One could argue that there is a third level—flight distance.

Respondents indicated small sets of destinations with a mean of four

and median of three destinations (Table 2).
6 Frequency weights indicate duplicate observations and are integers.

If the frequency weight for an observation is equal to three that means

that there are three identical observations.
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or less similar to each other (Hausman et al. 1995). As

such, when the pilot chose destination alternative i from a

set of J destination alternatives, the choice probability

equaled:

pni ¼
ebnZni

PJ

j¼1

ebnZnj
ð3Þ

where i = j and j [ j = 1,…,J (McFadden 1973). In

contrast, with the MNP, the probability ratio depends not

only on the utility functions for alternatives i and j but all

alternatives, thus relaxing the IIA assumption (Chen et al.

1997). The resulting choice probabilities are given by:

pni ¼
Z 1

�1
Fj Xj � Xi

� �
bn þ enj

� �
denj ð4Þ

where Fj is the joint distribution of the errors. Estimation of

these choice probabilities relies on Monte Carlo simulation

techniques such as Gibbs sampling.

The welfare changes estimated from either of the two

recreation demand models are equal to the total derivative

of the utility function (Eq. 2) with respect to changes in the

elodea XE and cost XC attributes and expressed as follows

(Hole 2007):

dXC

dXE
¼ WTPXE ¼ � bXE

bXC

ð5Þ

Equation 5 represented the annual value lost per

floatplane trip, a change in consumer welfare related to

elodea invasion, XE. The same formula is used for deriving

other welfare estimates related to sheep and moose hunting

quality, where XS and XM replaces XE, respectively in

Eq. 5. The introduction of elodea changes the vector of

benefits pilots derive from a destination by altering

accessibility, recreational quality, and other amenities. A

measure of the benefits associated with these factors is

equal to the difference between the pre- and post-invasion

change in cost that keeps utility—the overall satisfaction of

the pilot with the destination—unchanged. The loss in trip

value can then be aggregated across the population of pilots

to reflect the loss in consumer surplus, in other words, the

loss in non-market value associated with potential

invasions of floatplane destinations.

Data compilation

Since the survey did not ask about destination character-

istics and the motivation of pilots, we relied on statewide

publicly available site quality data. In order for substitution

patterns to emerge and proper damage assessment to occur

(Hausman et al. 1995), we created a panel dataset (Sch-

woerer et al. 2019). The pre-invasion actual flight

information was combined with information on post-inva-

sion contingent behavior as reported by pilots (Englin and

Cameron 1996; Hynes and Greene 2013). Each respon-

dent’s individual destinations were grouped into eight

regions encompassing large watersheds defined by the

National Hydrographic Dataset (NHD) (Fig. 2) (USGS

2017).

This aggregation was necessary for two reasons. First,

the data showed more than 700 individual destinations, a

number too large for estimation purposes. Many econo-

metric software packages limit the number of alternatives

in the choice model. Second, the regions closely align with

watershed boundaries of smaller scale game management

units (GMU) for which data on hunting quality is available

(ADFG 2016).7 Hunting quality was assessed by calculat-

ing species-specific successful hunter ratios as reported

within a GMU in 2015 for moose and sheep hunts (Table 1)

(ADFG 2016). We calculated successful hunter ratios in

order to capture both the recreation outcome and effort like

catch per unit effort used in fisheries. It served as an

indirect measure for the abundance of target species and

thus as a site quality attribute (Skalski et al. 2005). If a

GMU spanned multiple watersheds we used area differ-

ences to allocate hunters and harvest among watersheds.

Consequently, if two pilots flew to the same watershed

region but their individual destinations fell into different

GMUs, hunting quality varied between the destinations.

It is recognized that hunting quality is only part of what

sets one region apart from another and does not describe

floatplane activity. Here, the variation in successful hunter

ratios was solely used as a descriptor of how regions varied

in harvest and wildlife viewing quality. Unlike other pub-

licly available recreation-based data derived from angler

and visitor surveys for example (Romberg 2014), the

reported hunting data were more reliable for inclusion in

the model. Unfortunately, additional data on other covari-

ates were unavailable such as water depth, extent of aquatic

vegetation, or water quality.

A no-fly alternative was included to account for the

difference between pre- and post-invasion flight activity

across all destination alternatives. The resulting panel data

then contained two choice sets for each pilot (18 rows),

where the first set of nine choice alternatives (regions)

represented the 2015 flight pattern, and the second set

showed hypothetical response under post-invasion condi-

tions. Thus, we imply that destinations pre-invasion do not

have dense vegetation but would have dense vegetation

post-invasion. This assumption is justified as the mean

native aquatic vegetation cover in un-invaded Alaska lakes

7 The Alaska Department of Fish and Game divides Alaska into game

management units (GMU) which roughly align with watershed

boundaries consistent with each region j.
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is 27 %, whereas in invaded waters can reach 100 %

(Rinella et al. 2008; Lane 2014).

A binary choice variable indicated to which region the

pilot flew for both the pre-invasion and post-invasion

choice sets. The remaining explanatory attributes included

pilot age and travel cost. The cost to fly to each alternative

region was individual-specific for regions the pilot chose to

fly to and estimated for all regions including those the pilot

did not choose to fly to. The stated floatplane operating

cost, aviation fuel cost, pilot’s plane type and cruising

speed were used to calculate a per km cost for each

respondent multiplied by the weighted average of each

respondent’s Euclidean distances between home base and

destinations within region j. Costs associated with regions

to which the pilot did not fly, were estimated using the

pilot’s per km cost multiplied by the Euclidean distance

between the pilot’s home base and centroid of the regions

not chosen.

Fig. 2 Eight regions defining destination alternatives in the recreation demand model (each shown in a different shade of gray), Game

Management Units within these regions, and areas specified in the urban strata (see insert)

Table 1 Successful hunter ratios by species and descriptive statistics

on size and number of Game Management Units within each region,

2015

Region Sheep

Mean (SD)

Moose

Mean (SD)

Gulf 0.16a 0.35 (0.27)

Knik Arm 0.15 (0.21) 0.16 (0.01)

Cook Inlet 0.18a 0.25 (0.10)

Kodiak 0.00a 0.31 (0.23)

Bristol Bay 0.00a 0.30 (0.09)

Kuskokwim 0.73a 0.57 (0.07)

North Slope 0.24 (0.27) 0.32 (0.31)

Yukon 0.20 (0.18) 0.36 (0.14)

All regions combined 0.22 (0.23) 0.34 (0.20)

Proportion of successful hunters varies by game management units

within region. Not all regions contain sheep for harvest
aRegions with data limitations
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Model estimation

Non-participation in the survey was assumed to be ran-

domly distributed across the population of pilots and was

addressed via weighting. Econometric analysis used fre-

quency weights equal to the number of flight trips taken to

respondents’ destinations in each region. The weight was

further scaled to the population of pilots in each stratum,

accounting for oversampling in rural areas and flights not

taken. We estimated the models using the general linear

model package in STATA with a logit and probit link,

respectively (Hausman et al. 1995; StataCorp 2018).

White’s robust standard errors were used for inference

as data collection possibly caused the explanatory attri-

butes and the error term to not be identically distributed as

assumed by the model (White 1980). For the damage

assessment following Eq. 4, a 95 % confidence interval was

estimated surrounding the mean using the Krinsky and

Robb method with 2 000 replications (Krinsky and Robb

1986; Hole 2007).

RESULTS

Survey response

Of the 1 015 initial mailings, 15 were undeliverable. A

total of 444 pilots responded for a response rate of 44 %,

which included 162 hard copy mail returns. The average

web-based respondent took 24 min to complete the survey.

A total of 239 pilots reported that they flew a floatplane in

Alaska in 2015 and 229 of those provided mapping

responses useful for analysis. Of the total respondents, 219

indicated not having flown in 2015, and four respondents

did not answer whether they flew. Responses from rural

areas were proportionally larger, likely due to oversam-

pling in rural areas at the expense of under sampling in

urban areas. Responses from other urban areas were

proportional.

Half of the respondents were older than 58 years of age.

Respondents’ median personal income before taxes in 2015

was US$135 000 compared to the most recent statewide

median annual earnings of US$30 800 (Table 2) (U.S.

Census Bureau 2017). Pilots varied most in the number of

flight trips they took in 2015, on average between 30 and

40 flight trips over a roughly 100-day season. Table 2

presents additional respondent characteristics.

The annual average number of unique destinations to

which pilots flew from their home base was between four

and five, a limited number of destinations (Table 2). This

result likely suggests that familiarity with local conditions

is important to pilots flying in Alaska. Consequently, there

is also a limited number of substitute destinations to which

pilots prefer to fly. Only one pilot indicated to have

increased flights to one destination, with no change to

another, and decreasing or stopping flights to five remain-

ing destinations. This result supports our focus on existing

pre-invasion landing destinations rather than new substitute

destinations.

We did not conduct a non-response survey to address

specific selection bias. However, using a t-test and the most

recent American Community Survey’s 5-year estimates of

median household income and per capita income, we

showed that there are no statistically significant income

differences between Census-designated places with non-

respondents and Census-designated places with respon-

dents (t-test, p = 0.0008 and p = 0.004, respectively) (U.S.

Census Bureau 2017). Thus, the characteristics of the

Table 2 Respondent characteristics

Personal

incomea
2015 avg.#

passengers

2015 flight

tripsb
Pilot

age

Number of unique

destinations

Max. flight distance

(km)

Operating cost

(US$/km)c

Mean $137 786 1.41 36 58 4.23 257 $0.83

Median $135 846 1.00 25 58 3 222 $0.75

Mode $135 846 1.00 5 58 1 185 $0.78

SD $70 101 1.13 46 11 5 162 $0.51

CV 0.51 0.80 1.28 0.19 1.18 0.63 0.61

Minimum $25 000 0 5 26 1 3 $0.10

Maximum $300 000 6.00 88 94 55 1 000 $2.97

Respondent

count

157 213 229 183 229 211 173

aBefore taxes
bRespondents reported the number of trips using intervals from which the midpoint was taken for further analysis
cEstimated based on cruising speed of plane type and stated operating cost. Varies by respondent and aircraft type
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sample and the t-test suggest that based on income—an

important contributor to whether pilots are able to fly or

not—non-respondents are likely similar to respondents.

Half of the respondents stated that they would no longer

have flown to destinations they flew to in 2015 if dense

aquatic vegetation would have been in the landing zone

(Table 3). About 75 % of respondents had heard about

elodea and reported safety concerns flying to destinations

that were shallow and already required caution for landings

and take-offs. In follow-up phone interviews, pilots iden-

tified destinations by talking about individual lake char-

acteristics such as water depth and terrain features. For

example, some pilots considered continuing to land in

destinations with larger water depth because elodea inva-

sions would predominately occur in shallower parts of a

lake or waterbody. Pilots also mentioned that they would

have reduced or eliminated flying to destinations with

shallower water depth as these locations are more prone to

elodea infestations, and increase flying to deeper lakes with

less hazardous conditions.8 Consequently, contingent post-

invasion flying behavior could lead to a downward shift in

trip demand for some destinations while it could lead to an

upward shift in other destinations (Table 3). We estimated

that elodea invasions would reduce the total statewide

number of flight trips by two thirds, assuming no site

substitution.

Empirical results

We used maximum likelihood optimization to fit a Multi-

nomial logit (MNL) and multinomial probit (MNP) model.

The signs were as expected for the estimated coefficients

explaining the choice of destination alternative. All pre-

dictor variables were statistically significant with p values

less than alpha set at 0.05. The negative coefficients for the

elodea invasion and cost variables allowed for the calcu-

lation of lost flight trip value (Table 4). This model result

indicated that destinations infested with elodea are more

expensive to travel to and are avoided while lakes with

hunting opportunities are preferred (Table 4). This empir-

ical result was supported by more than three quarters of

respondents indicating that prior to the survey they had

heard about the spread of elodea and were aware of the

floatplane safety risk it poses. Not surprising were the

coefficients for hunting quality, considering that Alaska has

the highest participation rate in wildlife-related recreation

by state residents among U.S. states (U.S. Fish and Wild-

life Service and U.S. Census Bureau 2013). The positive

coefficient on the age variable was expected and reflects

that flying is an expensive hobby reserved for those with

time and sufficient disposable income to pursue the activ-

ity. The income variable was not included in the model due

to correlation with trip cost and trip frequency.

The coefficients for the MNL and the MNP models were

comparable in sign and magnitude with similar high pre-

cision, yet the MNP offered better fit compared to the MNL

as shown by the smaller Bayesian information criterion

(BIC) value. The mean lost flight trip value estimated by

the MNL was - $178 (95 % CI - $205, - $151) and by

the MNP equaled - $185 (95 % CI - $211, - $157).

The similarity among model parameters and WTP may

suggest that the IIA assumption had little consequence as

long as sufficient data quality minimized the amount of

unobserved heterogeneity (Hensher et al. 2005). Addi-

tionally, a null model was estimated for both MNL and

MNP. In both cases the AIC was equal to 1.14 suggesting

that inclusion of the covariates results in a better model.

DISCUSSION

Invasive species management is one example where

resource managers often face decisions requiring rapid

response to avoid ecosystem damages but lack adequate

information to support their decisions (Liu et al. 2012). In

this study, we showed that combining data on stated

recreation site visits contingent on the presence of an

invasive species with data on site quality can be used

to estimate potential invasion-driven changes in cultural

Table 3 Recreational pilots’ stated change in flight behavior due to invasion, n = 229

Continue flying Stop flying

To all their destinations Only to some destinations

with flight trip reductions
Flight trip increases

to some

destinationsa

No change Flight trip reductions

to some destinations

Pilot count (%) 4 (2 %) 39 (17 %) 36 (16 %) 35 (15 %) 115 (50 %)

Mean % change in annual flight trips ? 120 % 0 % - 40 % - 58 % - 100 %

aFlight trip increases to some destinations are due to flight trip decreases in other destinations suggesting some degree of substitution

8 In addition, weather conditions, pilot skills, and plane models are

significant drivers determining access which were not incorporated

into the model for reasons discussed earlier.
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ecosystem services through diminished recreation access.

In other words, we estimated the potential change in non-

market value that aviation-based recreationists would lose

given a biological invasion occurred in a preferred recre-

ation site. Such empirical evidence can feed into structured

decision-making models for managers to weigh the cost of

response with its quantified benefits—the avoided loss to

recreationists (Liu et al. 2012; Estévez et al. 2014; Young

et al. 2016).

Our contributions are twofold. We filled an important

knowledge gap about aviation-based long-range transmis-

sion of AIS and associated recreation-based ecosystem

service loss. Key data gaps remain related to incentivizing

and changing human behavior and quantifying ecosystem

service impacts (Epanchin-Niell 2017). We illuminated

hidden non-market economic impacts accruing to actors

responsible for AIS spread enabling targeted nudges and

incentives for those actors to change their behavior and

reduce transmission risk (Bhargava and Loewenstein

2015). Our study also contributes to the monetary value-

domains that are increasingly important for decision mak-

ing based on more complex social–ecological systems

analysis (Martı́n-López et al. 2014). Quantifying potential

changes in ecosystem services accruing directly to stake-

holders feeds into quantitative risk and decision models

that are increasingly part of structured decision making in

resource management (Suedel et al. 2007; Gregory and

Long 2009; Liu et al. 2012).

Advantages of the modeling approach, beyond the

combination of actual pre- and contingent post-invasion

behavior, are centered upon integrating existing place-

specific data to describe how the destinations vary. The

integration of such stated and revealed preference data

avoids potential biased welfare estimates that are a concern

in stated preference techniques (Crastes dit Sourd et al.

2018). Our approach also reduces the response burden by

eliminating additional survey questions that would be

necessary to directly link motivational decision variables to

destination choice. Since our approach does not establish

this link, location-specific data quality are important and

the reason why we relied on reported hunting success.

The inclusion of hunting quality could explain inelastic

trip demand for destinations where hunting quality was

high and floatplane access limited as often is the case for

sheep hunting (Miller and McCollum 1994). In other

words, the pilot would have continued to fly to the desti-

nation despite an elodea invasion and may have been

willing to take more risk during landing or take-off in order

to pursue what they perceive as a high-quality hunt. While

successful hunter ratios are a good indicator of hunting and

wildlife viewing quality and one potentially motivating

factor for flying, there are unknown motivational drivers

such as solitude or flightseeing the model did not capture.

Due to the very limited literature on aviation-based

recreation (Carey et al. 2016) and lack of economic valu-

ation for personal aviation-based recreation, the study’s

welfare estimates cannot be directly compared to studies

similar in scope and geography. However, since we

included site quality variables related to hunting quality,

we were able to validate the model’s welfare changes for

hunting quality (Table 4). Consumer surplus values have

recently been estimated for hunting and wildlife viewing in

Table 4 Estimated coefficients explaining choice of destination alternative and estimated change in consumer welfare per flight trip

Coefficient MNL MNP

Mean (robust SE) 95 % Confidence interval Mean (robust SE) 95 % Confidence interval

Elodea invasion - 0.296 (0.02)* - 0.337 - 0.256 - 0.183 (0.01)* - 0.206 - 0.159

Cost - 0.002 (0.00)* - 0.002 - 0.002 - 0.001 (0.00)* - 0.001 - 0.001

Moose hunting quality 1.431 (0.13)* 1.183 1.679 0.836 (0.07)* 0.695 0.977

Sheep hunting quality 2.270 (0.08)* 2.117 2.424 1.279 (0.05)* 1.190 1.369

Age 0.010 (0.00)* 0.009 0.011 0.006 (0.00)* 0.005 0.007

Constant 0.398 (0.05)* 0.306 0.490 0.266 (0.03)* 0.211 0.321

AIC (deviation) 1.085 1.085

BIC - 1 018 526 - 1 018 552

Log ps likelihood - 53 109 - 53 096

Welfare change

Elodea invasion - $178 - $205 - $151 - $185 - $157 - $211

Moose hunting quality $861 $736 $981 $848 $726 $965

Sheep hunting quality $1 366 $1 215 $1 531 $1 298 $1 162 $1 447

*Coefficients are statistically significant as their p values are less than alpha set at 0.05
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Alaska where per trip mean estimates ranged between

US$438 (US$268) per resident hunter (viewer) and

US$765 (USD$858) per visiting hunter (viewer) (Buckley

2014). This study’s higher estimates of US$861 for moose

and $1366 for sheep hunting quality are comparable con-

sidering that floatplanes are the most expensive trans-

portation mode and the previous study measured per-

person values. Considering an average of one to two pas-

sengers per flight trip (Table 2), previous studies confirm

our hunting-related welfare estimates and validate our

model (Table 4).

The welfare losses estimated here are at best lower

bounds to the actual economic losses and do not account

for the wider more complex interactions within social–

ecological systems that influence human wellbeing (Reyers

et al. 2013). First, the study’s focus on recreational pilots

leaves out potential production loss in the commercial

sector. Second, the preferences and economic values of

passengers were not considered. Third, this analysis con-

centrates on travel cost using operating cost as a proxy,

ignoring pilots’ opportunity cost of time, even though one

could argue that recreation has little to do with labor supply

decisions. Fourth, the estimates do not capture ecosystem

services provided by the water bodies and influenced by

potential elodea infestations, such as sport fishing, hiking,

hunting, and other local amenities that depend on viable

floatplane access. Finally, non-use values may be held by

society and future generations for waterbodies with eco-

logical and cultural significance, thus existence and bequest

values are not included.

The fielded survey was not designed to capture the full

suite of contingent behavior reflected in all substitution

sites. The reason for this approach was simplicity and a

focus on destination information with high data quality that

kept attrition to a minimum. Despite this drawback, we

were able to account for substitution between landing

destinations each pilot was familiar with. Even though the

survey instrument did not specifically ask for a second-best

destination, assuming the pilot’s existing landing destina-

tion becomes invaded, the approach was able to estimate

the change in trip demand among the pilot’s existing set of

destinations.9

The study also finds that the average Alaska floatplane

pilot flies to fewer than five destinations, which suggests

that pilots prefer a limited number of locations. More than

three quarters of all surveyed pilots would either stop flying

or reduce flights to destinations that have dense vegetation

in the landing zone. Risk aversion may reduce site sub-

stitution behavior since exploring unknown destinations

presents a risk for pilots not familiar with water depth and

other localized conditions important to flight safety. Alas-

ka’s very remote landscape and often severe weather may

also play a role. Therefore, the pattern of substitution

favors each pilot’s existing (pre-invasion) set of locations.

This fact helps to underscore why the survey focused on

collecting data on preferred destinations over hypothetical

alternates. Avoiding questions about hypothetical alternate

destinations may have also helped to reduce the potential

for hypothetical bias. With the data at hand, however, there

is no way to test for this possibility but it is one aspect

where the research could be expanded.

The geographic scale of Alaska along with the large

number of identified floatplane destinations introduces data

complexities that are more readily addressed by the data

collection and modeling approach presented such as those

that combine stated and revealed preference data (von

Haefen and Phaneuf 2008; Abildtrup et al. 2015). Specif-

ically, a nested model would have served as a good alter-

native addressing a complex decision process related to

destination choice. While a nesting structure would have

relaxed the IIA property and allowed for the estimation of

region-specific inclusive values, the demands on data

quality are higher. In addition, the nested model could fail

to be implemented as it requires inclusive value coeffi-

cients to be smaller than one, often necessitating re-spec-

ification of the nesting structure which does not always

guarantee successful estimation (Hausman et al. 1995).

Poisson or negative binomial specifications are alterna-

tive distributional assumptions that could be made in this

instance. Even though these models are used for estimating

recreation demand, their application to this damage

assessment is limited as their distributional assumptions are

often violated resulting in biased welfare estimates.

Therefore they were not considered for this study (Blaine

et al. 2015). Lastly, an alternative-specific conditional logit

model was specified but was not implemented due to poor

fit (McFadden 1973).10

CONCLUSIONS

We demonstrated that a survey primarily aimed at col-

lecting information on invasive species’ pathways can also

be used to estimate changes in pathway-related ecosystem

services. We used an innovative approach to ecosystem

service valuation that combined spatial data elicited

through an online survey with available site quality data to

estimate a recreation demand model. The approach is not

only applicable for informing social–ecological models

related to AIS management but can be used to elicit

9 Also, the aggregation of destinations into regions for model

estimation limits substitutability options.

10 The aggregated data and small sample did perhaps not offer

enough variance to estimate coefficients specific to each region.
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resource users more broadly about their change in use

patterns and associated change in ecosystem services

related to expected future environmental change. As such,

the approach informs adaptive management by illuminat-

ing potential loss in ecosystem services that managers can

account for when pre-emptively managing ecosystems to

minimize long-term risk to resource users.
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