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Abstract
Community deception is about protecting users of a community from being discovered by community detection algorithms.
This paper studies community deception in directed influence network (DIN). It aims to address the limitations of the state of
the art through a twofold strategy: introducing directed influence and considering the role of nodes in the deception strategy.
The study focuses on using modularity as the optimization function. It offers several contributions, including an upgraded
version of modularity that accommodates the concept of influence, edge-based, and node-based deception algorithms.. The
study concludes with a comparison of the proposed methods with the state of the art showing that not only influence is a
valuable ingredient to devising deception strategies but also that novel deception approaches centered on node operations can
be successfully devised.

Keywords Community Detection · Social Networks · Privacy

1 Introduction

Social network analysis has been an active area of research
thanks to the accelerating growth of social media platforms
with billions of users worldwide. A particular example is
community detection (Fortunato 2010), which is a relatively
well-established research problem. Community detection in
networks is a crucial task with wide-ranging applications in
diverse fields such as social media analysis, recommendation
systems (Rezaeimehr et al. 2018), fraud detection (Sarma
et al. 2020), biology, and transportation planning (Fortunato
2010). Identifying communities or clusters within a network
provides insights into its underlying structure of complex
systems and helps the understanding of interaction patterns
among its nodes. This information can subsequently be used
to develop targeted interventions to prevent the spread of dis-
eases, optimize transportation networks, identify influential
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individuals, and enhance the efficiency of communication
networks.

1.1 Motivations

However, detection algorithms may reveal sensitive infor-
mation about an individual’s social connections, affiliations,
or behaviors that can be used to infer personal information
about them. This raises subtle ethical dilemmas regarding
user privacy (Fionda and Pirrò 2018; Waniek et al. 2018),
freedom of speech, and security. For example, suppose a
detection algorithm identifies a group of nodes that fre-
quently interact with each other, such as membership in a
specific political group or religion. In that case, it may reveal
sensitive information about an individual’s beliefs or pref-
erences. On the other hand, identifying a cluster of nodes
that frequently interact with each other but also have a few
connections to nodes outside the cluster may inadvertently
disclose information about the activities of those outside
nodes. Such issues are amplified by the fact that social net-
working platforms, such as Facebook or Twitter, constitute
an essential application area for community detection, and
it is expected that such algorithms will play an increasingly
influential role in the lives of millions of users. Such con-
cerns ignited serious efforts toward designing algorithms that
enable communities of users to protect their privacy through
evading community detection algorithms. This new research
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field has been variously referred to as community decep-
tion (Fionda and Pirrò 2018), or community hiding (Waniek
et al. 2018), which aims at concealing a target community
C from community detection by rewiring connections inci-
dent to its nodes. Stated more formally, if we are given a
community structure C = {C1,C2, ...Ck} discovered by a
community detection algorithm Adet (which need not be
revealed) run over a network G, the goal is to find and per-
form a deception-wise set of edge updates such that when
Adet is rerun on the updated network G ′, it returns a new
community structure C = {C1,C2, ...Ck} with a better hid-
den C. Some quality scores (for example, deception score
(Fionda and Pirrò 2018)) have been defined to measure the
performance of deception strategies. However, the state of
the art has considered the problem from the perspective of
structural information centered on edge updates, disregard-
ing two crucial aspects in (social) networks: the variation of
influence that nodes exert on each other and strategies that
incorporate node operations for deception.

1.2 The importance of influence

Influence in social networks refers to individuals’ ability to
affect their peers’ attitudes, beliefs, or behaviors (Gubanov
et al. 2009). It is a crucial concept in understanding social
dynamics. One of the most widely used models of influence
is the cascade model (Wang et al. 2012), which assumes
that individuals’ behavior is influenced by their immediate
neighbors, and that influence propagates through the net-
work. This model has been used to study the spread of social
network innovations, opinions, and behaviors. Another influ-
ence model is the threshold model (Chen et al. 2010), which
assumes that individuals have a certain threshold for adopting
a new behavior or belief and aremore likely to adopt it if their
peers have already done so. Themodel has been used to study
the adoption of new technologies or products in social net-
works. In terms of definitions, influence can be measured in
various ways, such as the number of followers, the frequency
of interactions, or the degree of similarity between individ-
uals (Cheng et al. 2010). Some researchers also distinguish
between different types of influence, such as informational
influence (where individuals are influenced by the informa-
tion provided by their peers) and normative influence (where
social norms or expectations influence individuals). Hence,
since influence has an essential role in establishing connec-
tions and, as a by-product, communities, we contend that
considering or deriving influence (Kumar et al. 2016) in
social networks is vital for designing effective strategies to
promote behavior change by members of a community to
counteract community detection algorithms.

On the other hand, considering deception strategies that
are (also) node-based can accommodate the natural flow of
the community that wants to hide—C members can (strate-

gically) join or leave the network. It could be argued that
node-centered deception is encompassed by edge-centered
deception; however, this is inaccurate for two primary rea-
sons. Firstly, edge-centered deception does not account for
the possibility of nodes joining or leaving the targeted com-
munity C, which is a natural occurrence in a network; it is
unclear how to insert edges for a new node in a profitable
manner. Secondly, edge-centered methods do not examine
deception from the perspective of moving a particular node
from one community to another. These questions are only
resolved when edge operations are treated in the context of
nodes, that is, by incorporating the node role in the deception
optimization function.

This paper aims to fill these gaps in community decep-
tion literature by presenting a new theoretical framework that
accommodates the notion of influence and considers decep-
tion at the edge and node levels.

1.3 Contributions and outline

The aim of this work is to address all previous issues with a
twofold strategy: (i) incorporatingdirected influence as a vital
element in the deception process and (ii) examining the cru-
cial role of nodes in devising effective deception strategies.
We extensively investigate community deception in directed
influence network (DIN) from an edge- and node-centric
perspective. Given its wide acceptance in the community
detection field as a cluster quality function (Fortunato 2010),
we focus on optimizing deception using modularity as our
preferred function. To achieve these objectives, we offer the
following contributions:

1. Formalization: We formally introduce the concept of
community deception within the context of DIN, shed-
ding new light on this area. We present an upgraded
version of modularity that seamlessly incorporates the
notion of influence, enhancing the accuracy of our decep-
tion analysis.

2. Edge-deception:Our studydelves into edge-based decep-
tion in DIN, including a comprehensive theoretical
examination of the most advantageous edge updates
from a deception standpoint. We introduce an innovative
edge-centered deception algorithm called IDec offer-
ing a sophisticated solution for effective deception by
leveraging edge-based strategies’ complexity and unique
features.

3. Node-deception: We explore deception from the per-
spective of node updates, encompassing node additions,
deletions, and movements between communities, further
enhancing the versatility of our approach. We intro-
duce a second deception algorithm, INDec, combining
edge-centered and node-centered deception techniques,
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presenting a holistic solution to address various scenar-
ios.

4. Evaluation: We evaluate our approaches on diverse
datasets and perform a comprehensive comparison with
state-of-the-art methods, demonstrating the superiority
and effectiveness of our proposed strategies.

It is worth noting that this paper is an extension of our pre-
vious work published in CNA 2022 (Madi and Pirrò 2023).
However, this current paper significantly differs in several
key aspects.We have expanded the introduction to emphasize
the criticality of considering influence and node operations
in devising successful deception strategies. Additionally, we
introduce the novel problem of node-centric community
deception in Section. 5. Lastly, we have conducted a more
comprehensive experimental evaluation, including a broader
range of competitors, to provide a thorough and robust anal-
ysis of our proposed methods.

The remainder of the paper is organized as follows.
Section3 introduces the community deception problem.
Section4 introduces influence-based community deception
problem in directed networks and a greedy algorithm
called IDec. Section5 formalizes influence-based commu-
nity deception from the node perspective along with a greedy
algorithm called INDec to solve the optimization problem.
Section7 reports on an experimental evaluation.We conclude
in Section. 8.

2 Related work

Community detection plays a crucial role in network anal-
ysis as it unveils its members’ unique characteristics and
relationships, setting them apart from other communities
within the network. Traditional approaches (see (Fortunato
and Newman 2022) for a recent survey) have been widely
used. More recently, there has been notable progress in com-
munity detection by adopting deep learning techniques (Su
et al. 2022). These advanced methods offer distinct advan-
tages when dealing with complex networks characterized by
high-dimensional data. The usage of community detection
algorithms can pose privacy risks due to the nature of the
data being analyzed and the potential for information leak-
age. Among these, we mention: (i) membership disclosure
due to the fact that these algorithms can reveal the affiliations
and connections of individuals within a network, potentially
exposing sensitive information about their social, profes-
sional, or personal relationships; (ii) re-identification attacks:
If an adversary has access to auxiliary information or external
datasets, they can combine it with the community detection
results to re-identify individuals who were thought to be
anonymized; (iii) community detection can create profiles
of groups or communities, which might lead to stereotyp-

ing, bias, or unfair targeting of individuals based on their
group membership. This can have negative consequences in
various contexts, including employment, insurance, or law
enforcement.

To mitigate these potential violations, community decep-
tion (Fionda and Pirrò 2018; Magelinski et al. 2021) or
community hiding (Waniek et al. 2018; Mittal et al. 2021)
is a relatively new research area. It is noteworthy that some
authors refer to deception as an attack (e.g., Chen et al.
(2019)), which reflects the perspective of the detector.

Table 1 compares IDec and INDecwith the state of the art.
Nagaraja (2010) studied how to hide a community by adding
additions toward nodes with high centrality. dice(Waniek
et al. 2018) and mod(Fionda and Pirrò 2018) are based on
the heuristic of deleting intra-community edges and adding
inter-community edges with the assumption that such edge
updates minimize modularity. saf(Fionda and Pirrò 2018)
is a deception approach based on node safeness, which has
been extended byChen et al. (2021).Mittal et al. (2021) intro-
duced the neuraldeception approach based on permanence
minimization. dsaf, dmod, and dperhave been proposed as
counterparts of saf, mod, and neuralin directed networks,
respectively (Fionda et al. 2022a).

Q- Attack (Chen et al. 2019), rem (Liu et al. 2019),
cgn (Liu et al. 2022), and prohico (Liu et al. 2021) are
approaches that hide the entire community structure. How-
ever, we believe it is not easy to perform such a task by
modifying the entire network; indeed, one cannot access the
whole network (e.g., Facebook).Moreover, these approaches
add and delete edges arbitrarily, which may not be possible;
for example, one cannot add an edge to Facebook, estab-
lishing a friendship without the consent of the two nodes
involved. Moreover, Q- Attack, due to the combinatorial
nature of genetic algorithms, does not scale (it was only
tested on nodes with approximately 100 nodes). The choice
of NMI as an optimization criterion in cgn(Liu et al. 2022)
approach depends on the output of a specific detection algo-
rithm. epa(Chen et al. 2020) is a genetic approach to hide
communities and individuals. However, epa did not scale
due to the combinatorial nature and was tested on relatively
small networks. Moreover, none of these approaches work
on directed graphs, which is more challenging, similar to
community detection in directed networks (Fortunato 2010).
Besides, none of the existing approaches consider deception
from the nodes’ perspective. Last but not least, previouswork
on deception algorithms overlooked an essential component
of social relationships, namely influence (Ghosh and Lerman
2008; Lu et al. 2014). Indeed, to the best of our knowledge,
all previous deception algorithms have been devised using
influence-less 0-1 edges. Such representation assumes that a
pair of nodes is either connected or not, ignoring the strength
of the influence a node exerts on its neighbors. We con-
sider this a severe drawback of state-of-the-art community
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deception for several reasons. First, real-world social rela-
tionships vary in their influence. For example, a person, say,
Bob, probably exerts significantly more influence on his son
than on his neighbor. Indeed, while it might be reasonable to
assume that some social connections share relatively similar
influences, it is certainly not a universal truth. So far, such
variation in influence has not been covered by the deception
literature. Secondly, influence has already been incorporated
as an essential component in several detection algorithms
(Ghosh and Lerman 2008; Lu et al. 2014; Wang and Street
2014;Ma et al. 2020). This necessarily leaves state-of-the-art
deception algorithms lagging behind, failing to account for
such influence-aware detection methods. Finally, and maybe
more importantly, deception algorithms canmakemuchmore
intelligent decisions when considering influence. Specifi-
cally, several previous deception algorithms have utilized an
edge modification budget, implying the desire to perform
deception with the least number of edge updates. By con-
sidering influence and direction, we can distinguish between
edges’ importance and carefully choose those which make
the most deceptive effect to be modified.

3 Background

Community deception seeks to develop algorithms that
enable a group of nodes to conceal their relationships from
community detection algorithms. This study specifically
investigates deception in the context of directed influence
networks (DIN).

Definition 1 (Directed influence network). A directed influ-
encenetwork (DIN) is a directedweightedgraphG=(V , E, I ),
where V is the set of vertices, E is the set of edges, and I
is a matrix that for each edge (u, v) ∈ E maintains a score
representing the influence that node u has on node v.

The network can be represented with an adjacency matrix
A = [Ii j ], where Ii j denotes the influence of node i (the
influencer) on node j (the influenced). It is important to note
that, in a directed network like G, the influence Ii j may not
be the same as I ji . Further details regarding influence are
provided in Sect. 3.1.

One significant task in social network analysis involves
identifying groups of nodes that form communities. Com-
munities have various applications, such as modeling social
circles and interactions among groups of proteins. The dis-
covery of communities enables a wide range of applications,
including drug interaction discovery and recommender sys-
tems. This paper focuses on community detection where
nodes belong to a single community. Specifically, we con-
sider a non-overlapping community detection algorithm
denoted as Adet that partitions V into a community struc-
ture C̄ = C1,C2, ...,Ck , whereCi ⊆ V andCi ∩C j = ∅ for
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Table 2 Notation Table Symbol Meaning Formula

E(C) The set of intra-community edges {(u, v)|u, v ∈ C}
in community C

Ẽ(C) The set of inter-community edges {(u, v)|u ∈ C ∨ v ∈ C}
having one side in community C

I↑
i Total influence outgoing from node i

∑
j Ii j

I↓
j Total influence received by node j

∑
i Ii j

I Total influence of the entire network
∑

i, j∈V Ii j

η Total intra-community influence
∑

C∈C̄
∑

i j∈C Ii j

of the network

θ total inter-community influence in network G I − η

C̄ ′ Community structure excluding community C , C̄ ′ = {C |C ∈ C̄ and

where (u, v) ∈ C is the edge to be modified u, v /∈ C}
C∗ The community for which an edge (u, v) C∗ = {C |C ∈ C̄ and

is added/deleted (u, v) ∈ E(C∗)}
I↑
C Let C ∈ C̄ I↑

C = ∑
i∈C I↑

i

I↓
C Let C ∈ C̄ I↓

C = ∑
i∈C I↓

i

all i, j ∈ 1, ..., k and i �= j . Moreover, we define two types
of edges: an edge (u, v) ∈ E within a community C ⊆ V is
referred to as an intra-community edge, while an edge (u, v)

is an inter-community edge if u ∈ C , v ∈ C ′, and C ′ �= C .
Table 2 summarizes the notation used throughout this paper.

3.1 Node and edge influence

Various methods have been proposed to measure node influ-
ence.Among thesemethods, degree centrality iswidely used,
quantifying a node’s influence by counting the number of
connections (edges) it has in the network. The underlying
assumption is that nodes with more connections are more
influential. Another commonly used method is eigenvector
centrality, which considers both the number of connections
a node has and the quality of those connections. However,
these methods primarily focus on assessing node influence.

In contrast, this paper aims to investigate edge influence,
specifically, the influence that a node s has on a node t . This
influence can be represented as a weight assigned to the edge
connecting them. Computing edge influence determines the
strength of an edge’s impact on the communication or inter-
action between two nodes.

Several methods exist to compute edge influence, includ-
ing: (i) Weighted edges: This method assigns weights to
edges based on their significance in facilitating communi-
cation or interaction between nodes. For example, in a social
network, the strength of a tie between two individuals could
be weighted by factors such as the frequency or intensity of
their communication or the closeness of their relationship;
(ii) Link prediction: The goal of this approach is to predict

the likelihood of future edges forming between nodes in a
network, based on the network’s structure and other factors
such as node attributes. The strength of an edge can be esti-
mated by considering its predicted probability of forming
or by analyzing the features that contribute to the prediction;
(iii) Influence propagation: Thismethod simulates the spread
of influence or information through a network and identifies
the edges that have a significant impact on this spread. For
instance, the Linear ThresholdModel assumes that nodes are
influenced by their neighbors if the total influence from their
neighbors exceeds a certain threshold. It identifies the edges
that contribute the most to the overall influence propagation
(Chen et al. 2010).

By exploring these methods, one can effectively cap-
ture and quantify the influence of edges within a network,
enabling a comprehensive analysis of edge-centric deception
strategies.

In this paper, we adopt the strategy to model influence
based on a combination of edge weights and link prediction
described in Kumar et al. (2016). This approach proposes
two novel measures of node behavior: the goodness of a
node intuitively captures howmuch this node is liked/trusted
by other nodes, while the fairness of a node captures how
fair the node is in rating other nodes’ likeability or trust
level. These two measures are then used to predict edge
weights, that model influence in our case, via a regression
model (see Kumar et al. (2016) for more details). The reason
for this choice is the complexity of the approach, which is
O(|E |), thus making the approach applicable even in large
networks.
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3.2 Community deception setting

This section provides an overview of the adversarial scenario
in which our proposed algorithm operates. The framework
of community deception on a network G involves three key
actors: a detectorAdet , a deceptorAdec, and a target commu-
nity C. The detector aims to uncover a community structure
that reflects genuine relationships within the network. How-
ever, this objective conflicts with the goals of the deceptor
Adec, which aims to conceal the relationship between a spe-
cific group of nodes known as the "target community" or C
for brevity. It is important to note that C represents a subset
of network nodes, which can be relatively small in size, but
not necessarily.

In this paper, we assume the role of the deceptor and
operate under a worst-case scenario. This implies that in the
current state of the network G, the target community C is
entirely discoverable by the detector Adet , i.e., C ∈ C̄ . Con-
sequently, we aim to introduce specific modifications to the
nodes or edges of G so that Adet can no longer detect C.

The effectiveness of deception, or the extent to which
C remains hidden from Adet , is generally quantified by a
deception score (Fionda and Pirrò 2018;Waniek et al. 2018),
which the deceptorAdec aims to maximize. In this paper, we
indirectly achieve this goal by minimizing modularity (QG)
(Girvan and Newman 2002), which is commonly utilized as
a quality function for community detection. Formally, the
deceptor Adec achieves deception by modifying the origi-
nal network G to create a new network G ′. If we denote
the modularity of G and G ′ as QG and QG ′ , respectively,
the deceptor’s objective is to maximize the "modularity loss"
�Q = QG − QG ′ .

In its original form, the modularity of an undirected and
unweighted network with m edges can be expressed by
the following equation, borrowed from Leicht and Newman
(2008):

Q = 1

2m

∑

i j

[

Ai j − ki k j
2m

]

δci ,c j (1)

where Ai j is value of edge i j in the adjacency matrix, ki is
the degree of node i , δi j is Kronecker delta, and ci is the label
of the community containing node i .

There are two main reasons for selecting modularity as
the basis for our deception strategies. Firstly, modularity is
widely utilized as a function for community detection (For-
tunato 2010) and offers an intuitive criterion for defining a
community: a group of nodes with more internal than exter-
nal edges.

It is important to note that the deception score is a heuristic
measurement subjectively defined by the deceptor based on
their own perception ofwhat constitutes "good" deception. In
contrast, modularity is a more objective measure of effective

network partitioning, enhancing our techniques’ applicabil-
ity.

4 Edge-based deception in DIN

This section presents IDec, the pioneering influence-based
deception approach designed specifically for directed net-
works with a focus on edge updates. Our approach, IDec,
is built upon modularity. The choice of modularity is driven
by its intuitive nature, as it effectively captures our under-
standing of what constitutes a community: a cohesive group
characterized by stronger connections among its members
compared to connections with individuals outside the group.
This intuitive appeal is crucial because we view modular-
ity as a clustering metric rather than an objective function.
Consequently, we contend that employing our deception
mechanism can generally enhance the concealment level of
a target community, even if the detector employs alternative
clustering metrics.

4.1 Problem statement

In the context of edge-based deception, the objective of the
deceptor is to introduce modifications to the edges that result
in the maximum modularity loss. By doing so, the goal is
to render it infeasible for the detector, Adet , to include the
target community Ct in the community structure C̄ . Mathe-
matically, this can be formulated as an optimization problem
with the following formulation:

argmax
G ′

�Q(G,G ′,C)

where G ′ = (V , E ′)
E ′ = (E ∪ E+)\E−

E+ ⊆ {(u, v)|u ∈ C ∨ v ∈ C, (u, v) /∈ E}
E− ⊆ {(u, v)|u ∈ C ∨ v ∈ C, (u, v) ∈ E}
|E−| + |E+| ≤ β

(2)

where�Q ismodularity loss described earlier,β is the budget
of edge updates. The initial step is to integrate influence into
directed modularity to address community deception while
incorporating influence. This involves modifying the modu-
larity metric to account for the influence between nodes in a
directed network. By incorporating influence, we aim to cap-
ture the impact of node interactions on community structure
more accurately.

Once the influence-based directed modularity is estab-
lished, the next focus is exploring edgemodifications’ effects
within and between communities. These edge modifications
serve as the toolbox for our deception strategy. We analyze
the impact of altering intra-community and inter-community
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edges to determine how they can be strategicallymanipulated
to achieve effective community concealment.

4.2 Modularity in DIN

Modularity for a directed network can be expressed as in Eq.
(3), which is a slightly modified version of the one described
by Leicht and Newman (2008):

Q = 1

m

∑

C∈C̄

∑

i j∈C
Ii j − douti dinj

m
(3)

where douti and dinj are the out/in degrees of nodes i , j , respec-
tively. However, since we are considering a DIN, we further
modify the preceding function:

Q = 1

I
∑

C∈C̄

∑

i j∈C
Ii j − I↑

i I↓
j

I (4)

Now, we consider the effect of edge modifications on �Q .
We can simplify Eq. (4) as follows:

Q = 1

I
∑

C∈C̄

∑

i j∈C
Ii j − I↑

i I↓
j

I = η

I − 1

I2

∑

C∈C̄

∑

i j∈C
I↑
i I↓

j

= η

I − 1

I2

∑

C∈C̄

∑

i∈C
I↑
i

∑

j∈C
I↓
j = η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C

(5)

With the established formulationofmodularity for directed
influence network (DIN), we can now study edge updates’
impact. Specifically, we focus on understanding how differ-
ent edgemodifications influence themodularity loss, denoted
as �Q . The modularity loss plays a crucial role as the main
component of the objective function presented in Eq. (2).

By investigating the effect of edge updates on modularity
loss, we aim to gain insights into the most effective strategies
for manipulating edges to maximize the concealment of the
target community. This analysis will inform the development
of our deception algorithm and guide the selection of edge
modifications that lead to significant reductions inmodularity
and enhance deception effectiveness.

4.3 Effect of edge updates on themodularity loss

This section establishes the theoretical basis of IDec. We
formally show the effect of edge deletion and addition on
�Q , considering both intra-community and inter-community
edges.

4.3.1 Intra-community edges

Suppose an arbitrary intra-community edge (u, v) is deleted
from a community C∗ ∈ C̄ ; Theorem 2 shows the necessary
condition for this operation to cause modularity loss:

Theorem 2 Deleting an intra-community edge results in
modularity loss, �Q > 0, if and only if the following condi-
tion holds:

ηIuv

I + θ + 2I − Iuv

I2

∑

C∈C̄
I↑
CI↓

C > I↑
C∗ + I↓

C∗ (6)

Proof First, note that the modularity before modification can
be expressed as:

QG = η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C = η

I − 1

I2

(

I↑
C∗I↓

C∗ +
∑

C∈C̄ ′
I↑
CI↓

C

)

(7)

With slight modification of Eq. (7), we obtain modularity
after intra-community edge deletion:

QG ′ = η − Iuv

I − Iuv

− 1

(I − Iuv)2(

(I↑
C∗ − Iuv)(I↓

C∗ − Iuv) +
∑

C∈C̄ ′
I↑
CI↓

C

)

(8)

With Eqs. (7) and (8), we obtain:

�Q =QG − QG ′

=
[

η

I − 1

I2

(

I↑
C∗I↓

C∗ +
∑

C∈C̄ ′
I↑
CI↓

C

)]

−
[

η − Iuv

I − Iuv

−

1

(I − Iuv)2

(

(I↑
C∗ − Iuv)(I↓

C∗ − Iuv) +
∑

C∈C̄ ′
I↑
CI↓

C

)]

= Iuv(I − η)

I(I − Iuv)
+ Iuv

I2(I − Iuv)2

[(

(2I − Iuv)
∑

C∈C̄
I↑
CI↓

C

)

−
(

I2
(
I↑
C∗ + I↓

C∗ − Iuv

))]

(9)

With basic algebraic operations, we get to:

�Q = Iuv

(I − Iuv)2

[

I − η + ηIuv

I − I↑
C∗ − I↓

C∗

+ (2I − Iuv)

I2

∑

C∈C̄
I↑
CI↓

C

]

(10)

Equation (10) shows that the sign of�Q depends on the term
between square brackets, which is positive if and only if:

ηIuv

I + θ + 2I − Iuv

I2

∑

C∈C̄
I↑
CI↓

C > I↑
C∗ + I↓

C∗ (11)

��
The condition presented in inequality (6) has two impor-

tant implications. Firstly, deleting an intra-community edge
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will likely result inmodularity loss. This is primarily because,
in most real-world networks, the total influence of the tar-
get community (θ ) is greater than the sum of the external
influence flowing into and out of the target community
(I↑

C∗ + I↓
C∗ ). This inequality holds true, especially when

the target community is smaller than the overall network.
Hence, removing intra-community edges often leads to a
decrease in modularity. Secondly, the left side of inequal-
ity (6) increases with higher values of Iuv . This implies that
selecting edges with a higher influence for deletion is pre-
ferred tomaximize thepotentialmodularity loss.Considering
this, IDec incorporates intra-community edge deletion as a
potential operation at each algorithm iteration. Now, we pro-
ceed to the next theorem, which addresses the addition of
intra-community edges and its implications.

Theorem 3 Adding an intra-community edge results in mod-
ularity loss, �Q > 0, if and only if the following condition
holds:

ηIuv

I + I↑
C∗ + I↓

C∗ > θ + (2I + Iuv)

I2

∑

C∈C̄
I↑
CI↓

C (12)

Proof Modularity after intra-community edge addition can
be expressed as:

QG∗ = η + Iuv

I + Iuv

− 1

(I + Iuv)2

(

(I↑
C∗ + Iuv)(I↓

C∗ + Iuv)

+
∑

C∈C̄ ′
I↑
CI↓

C

)

(13)

Using equation (13) we can compute �Q :

�Q = QG − QG∗

=
[

η

I − 1

I2

(

I↑
C∗I↓

C∗ +
∑

C∈C̄ ′
I↑
CI↓

C

)]

−
[

η + Iuv

I + Iuv

− 1

(I + Iuv)2

(

(I↑
C∗ + Iuv)(I↓

C∗ + Iuv)

+
∑

C∈C̄ ′
I↑
CI↓

C

)]

(14)

With basic algebraic operations, we get to:

�Q = Iuv

(I + Iuv)2

[
η(I + Iuv)

I − I + I↑
C∗ + I↓

C∗

− (2I + Iuv)

I2

∑

C∈C̄
I↑
CI↓

C

]

(15)

Equation (15) shows that the sign of�Q depends on the term
between square brackets, which is positive if and only if:

η(I + Iuv)

I − I + I↑
C∗ + I↓

C∗ − (2I + Iuv)

I2

∑

C∈C̄
I↑
CI↓

C > 0

(16)

which can be reduced to:

ηIuv

I + I↑
C∗ + I↓

C∗ > θ + (2I + Iuv)

I2

∑

C∈C̄
I↑
CI↓

C (17)

��
Theorem 3 demonstrates that adding an intra-community

edge is unlikely to result in modularity loss; instead, it is
more likely to increasemodularity. This conclusion is derived
through a similar argument as with intra-community edge
deletion.Consequently, tomaximize the potentialmodularity
loss, IDec does not consider the addition of intra-community
edges as part of its operations.

4.3.2 Inter-community edges

Let Cu,Cv ∈ C̄ be two arbitrary communities, then con-
sider a inter-community edge (u, v), where u ∈ Cu and
v ∈ Cv . This section studies how the deletion/addition of
(u, v) affects �Q .

Theorem 4 Deleting an inter-community edge will increase
modularity if and only if:

ηI Iuv + (2I − Iuv)
∑

C∈C̄
I↑
CI↓

C > I2
(

η − I↓
Cu − I↑

Cv

)

(18)

Proof Note that the modularity before edge modification can
be expressed as:

QG = η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C

= η

I − 1

I2

(
(I↑

CuI↓
Cu

) + (I↑
CvI↓

Cv

) +
∑

C∈C̄ ′
I↑
CI↓

C

)(19)

Modularity after inter-community edge deletion can be
expressed as:

QG∗ = η

I − Iuv

− 1

(I − Iuv)2
(

(
(I↑

Cu − Iuv)I↓
Cu

) + (I↑
Cv (I↓

Cv − Iuv)
) +

∑

C∈C̄ ′
I↑
CI↓

C )

) (20)
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Then we consider �Q :

�Q = QG − QG∗

= η

I − 1

I2

(
(I↑

CuI↓
Cu

) + (I↑
CvI↓

Cv

) +
∑

C∈C̄ ′
I↑
CI↓

C

)

−
[

η

I − Iuv

− 1

(I − Iuv)2

(
(
(I↑

Cu − Iuv)I↓
Cu

) + (I↑
Cv (I↓

Cv − Iuv)
)

+
∑

C∈C̄ ′
I↑
CI↓

C )

)]

(21)

With further algebraic manipulation, equation (21) can be
reduced to:

�Q = Iuv

I2(I − Iuv)2

[

ηI Iuv − I2
(

η − I↓
Cu − I↑

Cv

)

+(2I − Iuv)
∑

C∈C̄
I↑
CI↓

C

]

(22)

Note that the sign of �Q depends on the term inside square
brackets. Specifically, inter-community edge deletion will
cause modularity loss (i.e., �Q > 0) if and only if:

ηI Iuv + (2I − Iuv)
∑

C∈C̄
I↑
CI↓

C > I2
(

η − I↓
Cu − I↑

Cv

)

(23)

��
Theorem 4 demonstrates that deleting an inter-community

edge will generally increase modularity in practical sce-
narios. This is because removing inter-community edges
strengthens the existing community structure, possibly expos-
ing the target communityC.As a result, IDecdoes not include
the operation of deleting inter-community edges in its strat-
egy.

Theorem 5 Adding an inter-community edge results in mod-
ularity loss, �Q > 0, if and only if:

ηI Iuv + I2
(

η + I↓
Cu + I↑

Cv

)

> (2I + Iuv)
∑

C∈C̄
I↑
CI↓

C

(24)

Proof Modularity before node addition�Q is again expressed
by (11). Now, modularity after inter-community edge addi-
tion can be expressed as:

QG∗ = η

I + Iuv

− 1

(I + Iuv)2

(
(
(I↑

Cu + Iuv)I↓
Cu

) + (I↑
Cv (I↓

Cv + Iuv)
) +

∑

C∈C̄ ′
I↑
CI↓

C )

)

(25)

We now consider �Q :

�Q = QG − QG∗

= η

I − 1

I2

(
(I↑

CuI↓
Cu

) + (I↑
CvI↓

Cv

) +
∑

C∈C̄ ′
I↑
CI↓

C

)

−
[

η

I + Iuv

− 1

(I + Iuv)2

(
(
(I↑

Cu + Iuv)I↓
Cu

) + (I↑
Cv (I↓

Cv + Iuv)
)

+
∑

C∈C̄ ′
I↑
CI↓

C )

)]

(26)

This can be reduced to:

�Q = ηIuv

I(I + Iuv)
− 1

I2

(
(I↑

CuI↓
Cu

) + (I↑
CvI↓

Cv

)

+
∑

C∈C̄ ′
I↑
CI↓

C

)

+ 1

(I + Iuv)2

(
(
(I↑

Cu + Iuv)I↓
Cu

) + (I↑
Cv (I↓

Cv + Iuv)
)

+
∑

C∈C̄ ′
I↑
CI↓

C )

)

(27)

And finally, we reach:

�Q = Iuv

I2(I + Iuv)2

[

ηI Iuv + I2
(

η + I↓
Cu + I↑

Cv

)

−(2I + Iuv)
∑

C∈C̄
I↑
CI↓

C

]

(28)

Again,we note that the sign of�Q depends on the term inside
square brackets. Specifically, inter-community edge addition
will result in modularity loss (i.e., �Q > 0) if and only if:

ηI Iuv + I2
(

η + I↓
Cu + I↑

Cv

)

> (2I + Iuv)
∑

C∈C̄
I↑
CI↓

C

(29)

��
Theorem 5 establishes that adding an inter-community edge
in a network with sufficiently large I and η will likely result
in modularity loss. Furthermore, inequality 24 suggests that
selecting a higher influence edge increases the probability of
modularity loss.
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Fig. 1 Using edge deletion/addition to hiding a target community. Yellow nodes are members of the target community C

It is important to note that the previous four theorems align
with the intuition of modularity, emphasizing strong internal
connections within communities and weak external connec-
tions. Deleting an intra-community edge naturally leads to
modularity loss since it weakens the internal connections
within the community. Similar reasoning canbe applied to the
addition of inter-community edges. Overall, these theorems
provide insights into the effects of different edge modifica-
tions on modularity, supporting the decision-making process
of IDec in its deception strategy.

4.3.3 Running example

We provide a toy example (Fig. 1) to illustrate the three main
stages of community deception through edge modifications.
In the initial network state (leftmost side), the target commu-
nity is completely discoverable byAdet , indicated by C ∈ C̄ .
In the next stage (center),Adec applies a series of edge dele-
tions and additions within the target community, resulting in
amodified networkG ′. Finally, whenAdet is applied toG ′, it
no longer assigns all target community members to a single
community. The dispersion of target community members
across different communities is desirable from a deception
perspective and leads to a higher score. This example visually
demonstrates the process of community deception through
edge modifications and highlights the objective of dispers-
ing target community members to increase concealment.

5 Node-based deception in DIN

We introduce our novel node-based community deception
framework for DIN, utilizing the concept of modularity.
Node-based operations are a higher-level deception mode
that complements the previously discussed lower-level edge
operations. The inclusion of node-based operations is crucial
for effective community deception. The target community

C is a dynamic entity that undergoes continuous changes,
including adding or removing members. It is essential for C
to accurately assess the impact of such changes on its con-
cealment level, as reflected by the deception score. Existing
deception algorithms primarily focus on edge modifications
while keeping nodes intact. However, we argue that node-
based operations are necessary to accommodate the inclusion
or departure of new nodes in C. By considering node-based
operations, we can develop more comprehensive deception
strategies that leverage the full range of possible modifica-
tions within the network.

5.1 Problem statement

As in edge-based deception, we now establish the theoreti-
cal basis for designing our node-based deception algorithm.
Specifically, we describe the deceptor’s goal with an opti-
mization problem:

argmax
G ′

�Q(G,G ′,C)

where G ′ = (V ′, E ′)
V ′ = (V ∪ V+)\V−

V+ ⊂ {v|v /∈ V }
V− ⊂ C

E ′ = (E ∪ E+)\E−

E− = {(u, v)|u ∈ V− ∨ v ∈ V−, (u, v) ∈ E}
E+ ⊆ {(u, v)|u ∈ V+ ∨ v ∈ V+, (u, v) /∈ E}
|E−| + |E+| ≤ β

(30)

It is important to note the distinction between edge-based
and node-based deception regarding the optimization prob-
lems and the underlying mechanisms involved. In Problem
(2), which represents edge-based deception, the focus is on
directlymodifying the edge set of the network to find the opti-
mal modified network G ′. This involves adding or removing
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edges to achieve the desired deception objective. On the other
hand, in Problem (30), which represents node-based decep-
tion, the optimization problem incorporates node operations,
reflected in updates to the node set V . However, it is crucial
to highlight that the mechanism of edge updates in node-
based deception differs from that in edge-based deception.
In node-based deception, edge updates occur indirectly due
to node updates. In other words, adding or removing nodes
indirectly leads to corresponding changes in the edge set.

Although the edge updates in Problem (30) are a con-
sequence of node operations, it is important to recognize
that edge and node operations can be translated into each
other regarding the budget β. Node operations can be seen as
performing multiple edge changes simultaneously, and thus,
the budget β represents the overall limit on the number of
edge modifications regardless of whether they are achieved
through direct edge updates or indirect node updates. There-
fore, while the optimization problems and the mechanisms
involved differ between edge-based and node-based decep-
tion, both approaches aim to achieve the desired deception
objective within the given budget of edge modifications.

5.2 Effect of node updates on themodularity loss

In the remaining part of this section, we conduct an analysis
of the impact of node deletions, additions, and movements
on modularity loss, focusing on the general effect rather than
relying on any particular community detection algorithm.

5.2.1 Node deletions

Let u be an arbitrary node to be deleted from some commu-
nity C∗ ∈ C̄ . The following Theorem shows modularity loss
caused by this operation in the context of DIN.

Theorem 6 Deleting a node u ∈ C∗, where C∗ ∈ C̄, results
in the following modularity loss:

�−
Q = η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C

−
[
η − IC∗

u

I − Iu
− 1

(I − Iu)2
∑

C∈C̄ ′
I↑
CI↓

C

]

(31)

where C̄ ′ is the community structure after deleting u.

Proof The post-deletion modularity of G can be expressed
as:

QG ′ = η − IC∗
u

I − Iu
− 1

(I − Iu)2
∑

C∈C̄ ′
I↑
CI↓

C (32)

whereIC∗
u is the influence of u intra-C∗. Now,we can express

modularity loss �−
Q as:

�−
Q = QG − QG ′

= η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C

−
[
η − IC∗

u

I − Iu
− 1

(I − Iu)2
∑

C∈C̄ ′
I↑
CI↓

C

]
(33)

which means that �−
Q > 0 if and only if:

η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C

︸ ︷︷ ︸
a

>
η − IC∗

u

I − Iu
− 1

(I − Iu)2
∑

C∈C̄ ′
I↑
CI↓

C

︸ ︷︷ ︸
b

(34)

��
Inequality (34) sets the condition u must meet to pro-

mote deception. Satisfying this condition depends on several
factors, including the network total influence I and the
intra/inter influence ratio of node u. Therefore, the deceptor’s
goal would be to choose a deletion candidate that minimizes
part b in (34). As the inequality shows, the best bet would be
to choose a node with a high intra to inter-community influ-
ence ratio, as this will decrease the first term of b. This result
conforms with the idea presented in Sect. 6.2, which says
that deleting intra-community edges has a high potential to
cause modularity loss. However, this puts forward a trade-off
between maintaining connectivity among community mem-
bers and achieving maximum deception. While Theorem 6
applies to any community in C̄ , the deceptor controls only
C members. Therefore, node deletion should be generally
avoided unless the gain in terms of deception outweighs the
loss of connectivity within C.

5.2.2 Node additions

Let u be a new node added to some community C∗ ∈ C̄ , to
obtain an updated community C∗

u = C∗ ∪ {u}. This addition
results in a modified network G ′, and a modified community
structure C̄ ′ = {C̄∪C∗

u }\{C∗}. The following theorem shows
this addition’s necessary condition to cause DIN modularity
loss.

Theorem 7 Adding a node u /∈ V to a community C∗ ∈ C̄
results in the following modularity loss:

�+
Q = η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C
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−
[
η + IC∗

u

I + Iu
− 1

(I + Iu)2
∑

C∈C̄ ′
I↑
CI↓

C

]

(35)

Proof The post-addition modularity of G can be expressed
as:

QG ′ = η + IC∗
u

I + Iu
− 1

(I + Iu)2
∑

C∈C̄ ′
I↑
CI↓

C (36)

whereIC∗
u is the total influence of u connectedwithC∗. Now,

we can express modularity loss �+
Q as:

�+
Q = QG − QG ′

= η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C

−
[
η + IC∗

u

I + Iu
− 1

(I + Iu)2
∑

C∈C̄ ′
I↑
CI↓

C

]
(37)

this shows that �+
Q > 0 if and only if:

η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C

︸ ︷︷ ︸
a

>
η + IC∗

u

I + Iu
− 1

(I + Iu)2
∑

C∈C̄ ′
I↑
CI↓

C

︸ ︷︷ ︸
b

(38)

��
As observed earlier, the deceptor aims to minimize part b

in the above-mentioned inequality. Therefore, it is preferable
for the new node to have minimal connections with members
of theC∗. This preference aligns with the idea of minimizing
intra-community edges within the target community, as dis-
cussed previously.While node deletions are typically focused
on target community members, adding new nodes theoreti-
cally allows for flexibility in terms of deception. However,
there are practical considerations and potential limitations to
be aware of. Firstly, adding new nodes to any community
without restrictions is often impractical in real-world sce-
narios due to the requirement of global network knowledge
on the deceptor’s part. Secondly, even in rare cases where
the deceptor possesses such knowledge, adding new nodes
to communities unrelated to the target community (C) will
not significantly impact its intra-/inter-edge density ratio, and
thus, it will not effectively improve its deception score. As
an alternative approach, we can heuristically define two rules
inspired by the definition of modularity, which states that
a community should be densely connected internally and
sparsely connected externally. By considering Theorems 5
to 7, we can enhance the effectiveness of node addition in
concealing the target community. These rules can guide the

deceptor’s decisions regarding which communities to add
new nodes to, considering the desired deception objectives
and leveraging the insights gained from the analysis.

• The new node, say u, shall be added to a community C∗
with highest mutual influence with C.

• u shall have maximum inter-community edges with C.

The first rule focuses on selecting destination communi-
ties for node addition that already have relatively high
inter-community edges connecting them to the target com-
munity (C). According to the definition of modularity, the
intra/inter-edge density ratio between these communities is
not as high as with neighboring communities. By adding new
edges between them, the node u will have better chances of
influencing and potentially changing its community struc-
ture. This rule aims to exploit the connections between the
target community and the chosen destination community
to enhance deception. The second rule further emphasizes
increasing the chances of modifying the community struc-
ture. It suggests selecting a destination community with a
higher overall inter-community edge density, making it more
susceptible to changes and alterations caused by node addi-
tions.

A toy example is presented in Fig. 2 to provide a clearer
understanding of community deception through node addi-
tion. The initial network state on the left shows two com-
munities, C1 and C, discovered by the detection algorithm
(Adet ). This represents a worst-case scenario where the tar-
get community (yellow nodes) is completely detectable.
Next, the deceptor algorithm (Adec) is applied, and two
new nodes with additional edges (green) are strategically
added, as shown in the middle part. The selection of new
edges follows the heuristics described earlier to reinforce the
connection between certain target community nodes and an
external community (e.g., node 1 in the example). Finally, the
rightmost part of Fig. 2 illustrates the modified community
structure detected by Adet after the network modifications.
It can be observed that node 1 is now assigned to community
1, effectively separated from the target community, result-
ing in a higher deception score. This example illustrates how
node addition, guided by the defined rules and heuristics, can
impact the community structure and improve the conceal-
ment of the target community, leading to a higher deception
score.

5.3 Nodemovements

Node movement is the third type of node-based operation
considered in community deception. Unlike node deletion
and addition, which affect both the set of nodes V and the
set of edges E , node movement only involves modifying
the edges. It is important to differentiate node movement
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Fig. 2 Using node addition to hide a target community. On the left side, we can see the initial state of the network—G, where C is completely
visible to Adet . The deceptor adding two new nodes (in green) Adet misidentifies node 1 and separates it from the rest of C

from edge-based operations discussed earlier. Although only
the edges are modified, the goal is to move a specific node,
denoted as u, from a source community Ci to a destination
communityC j while altering only the edges adjacent to node
u. Theorem 8 provides a quantitative analysis of the effect
of node movement on network modularity. It establishes the
condition underwhich nodemovement does not cause amod-
ularity loss. The theorem provides valuable insights into the
potential consequences of node movement and guides the
deceptor in making informed decisions during the deception
process.

Theorem 8 The network’s modularity after moving a node u
from its community of origin Ci ∈ C̄ to a destination com-
munity C j ∈ C̄ equals:

Qm
G ′ = η − ICi

u + IC j
u

I − Iu + I ∗
u

− 1

(I − Iu + I ∗
u )2

∑

C∈C̄m

I↑
CI↓

C (39)

where ICu
u and IC j

u denote intra-community influence of u
within origin and destination communities, respectively.

Equation (39) hints at how and which properties of the
moved node affect the network’smodularity after movement.
For example, (39) shows that increasing the node mutual

influence with its destination community IC j
u , increases the

new modularity Qm
G ′ , meaning the new positioning of the

node is enforced. However, at the same time, we must con-
sider that adding more edges to the destination is costly in
terms of the budget β.

5.3.1 Running example

Wegive another toy example of how nodemovement can fos-
ter community deception. Figure3 shows how a given node
(node 2) moves from its original community to a destination
community. The leftmost part of the figure shows the net-
work’s initial state, where the detection algorithm Adet can
identify the target communityC as a single community. Then,

going to the right, we see that the deceptorAdec moves node
2 by altering its connections: deleting two internal edges and
adding two new edges with community C2. Finally, when
Adet is applied to the modified network G ′, it assigns node
2 to the community C2.

Apart from hiding a target community, node movement
can also help hide an individual node. Indeed, referring to
Fig. 3 once again, we see that we achieved both goals: the
target C became dispersed among two communities, and a
single node (e.g., node 2) became effectively disassociated
with the target community. Moreover, since node movement
involves changing only edges incident to a single node, such
operations can be performed individually by the node itself.
This can be of practical value if, for example, some node
would like to disassociate itself from a given community.

6 Community deception algorithms

In this section, we present two algorithms for community
deception: IDec, an edge-based algorithm, and INDec, a
node-based algorithm. These algorithms address the edge-
based andnode-based community deceptionproblems, respec-
tively. The IDec algorithm utilizes Theorems 2-5 to guide
the selection of edge operations. It focuses on achieving
community deception through individual edgemodifications,
considering one edge operation at each iteration. By lever-
aging these theorems, IDec maximizes the potential for
modularity loss in the target community. On the other hand,
the INDec algorithm is a novel node-based algorithm that
operates at a higher level of deception. It performs node-
by-node operations, causing multiple edge modifications in
each iteration. The algorithm takes advantage of the insights
provided by Theorems 6-8 to determine the most effective
node-based operations for achieving community deception.
It is worth noting that while IDec focuses on micro-level
deception through individual edge modifications, INDec
operates at a macro level, considering node movements and
their resulting edge modifications. By combining edge and
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Fig. 3 Moving node 2 from community C0 to C2 by modifying its edges

node operations, both algorithms provide comprehensive
strategies for community deception. Furthermore, a detailed
complexity analysis is provided for each algorithm, ensur-
ing an understanding of their computational efficiency and
feasibility in practical applications.

6.1 Summary of the results

Before describing the algorithms,we summarize the edge/node
operations with the highest potential to causemodularity loss
according to the earlier theoretical analysis. Our proposed
algorithms IDec and INDec use some or all these opera-
tions to enhance deception performance. Table 3 shows each
operation, pointing to the theorem that justifies it and the
algorithm where it has been employed.

6.2 Edge-based deception via IDEC

Wenow introduce our first contributed algorithm: IDec. This
edge-based greedy algorithm uses the results obtained in
Theorems 2-5. First, we emphasize that IDec allows edge
modifications only by target community members. We can
divide the algorithm into three main stages: finding can-
didate edges (lines 2-4), computing modularity loss (lines
5-7), and choosing the best edge operation (lines 8-18). As
shown in Table 3, the most profitable edge operations are
intra-community edge deletion and inter-community edge
addition. Thus, IDec considers only these operations to
increase the likelihood of inflicting modularity loss and
reduce the search space.

First, the procedure in line 3 selects one intra-community
edge from the target community C as a deletion candidate. It
takes the highest influence edge to maximize the possibility
of causing modularity loss. Next, lines 3 and 4 select two
inter-community edges for addition. The first edge is incom-
ing, and the second is outgoing. As Algorithm 1 indicates,

Algorithm 1 The IDec deception algorithm.

Input: Network G, target community C ⊂ V , community structure C̄ .
Parameters: Edge budget β
Output:Network G ′ = (V , E ′)
1: do
2: intraEdg ← getHighestIntra(C)
3: select(nu, nv) /∈ E, nu ∈ Ci , nv ∈ C ∩ C j ,Ci ∈

argmax(I↓
Ci

),C j ∈ argmax(I↑
C j

)

4: select(n p, nt ) /∈ E, n p ∈ Cl ∩ C, nt ∈ Cm ,Cl ∈
argmax(I↓

Cl
),Cm ∈ argmax(I↑

Cm
)

5: MLdel ← getDelLoss(intraEdg, C̄,G)

6: ML↑
add ← getAddLoss((n p, nt ), C̄,G)

7: ML↓
add ← getAddLoss((nu , nv), C̄,G)

8: if MLdel ≥ max(ML↑
add ,ML↓

add ) and MLdel > 0 then
9: G ← (V , E\{intraEdg})
10: else
11: if ML↑

add ≥ ML↓
add and ML↑

add > 0 then
12: G ← (V , E ∪ {(n p, nt )})
13: else
14: if ML↓

add > 0 then
15: G ← (V , E ∪ {(nu , nv)})
16: end if
17: end if
18: end if
19: β ← β − 1
20: while β > 0 and (ML↑

add > 0 or ML↓
add > 0 or MLdel > 0)

they are selected based on their respective communities’ vol-
ume.

Secondly, lines 5-7 compute the modularity loss of the
candidate edges based on Eqs. (10) and (28). Finally, the
remaining part of the algorithm performs the update, yield-
ing the highest modularity loss. Theorem 9 gives a detailed
complexity analysis of IDec:

Theorem 9 Given a community structure C̄ with k commu-
nities, and an edge budget β, algorithm 1 runs in O(|E | +
β(|EC|+k)

)
, where EC is the number intra-community edges

in C.
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Table 3 A summary of most
profitable edge and node
operations

Level Type Operation Relevant theorem Algorithm

Edge Intra-community deletion Theorem 2 IDec & INDec

Inter-community addition Theorem 5

Node member of C deletion Theorem 6 INDec

a new node u /∈ V addition Theorem 7

member of C movement Theorem 8

Proof Notice that in the initialization phase of algorithm 1,
we precompute I (total influence of the network), η (total
influence only considering the intra-community edges), and θ

(total influence only considering the inter-community edges.
Moreover, to select inter-community edges (lines 3 and4),we
construct two lists, each containing the volume of each com-
munity considering incoming (resp. outgoing) edges. Thus,
the initialization phase requiresO(|E |) to compute I, η, and
θ and O(|V |) to compute the volumes.

Those values and data structures are computed only once
and updated after each edge operation, which can be per-
formed in constant time.

Choosing the best intra-community edge for deletion (line
2) needs to choose the edge with the biggest influence in C,
and this runs inO(|EC|), which is needed to loop over intra-
community. Alternatively, one can consider a data structure
like a heap and access the best edge in constant time. Notice
here that computing modularity loss can be done in constant
time after deleting the selected edge.

Next, we move to the procedure for selecting each new
inter-community edge (lines 3 and 4); finding the maximum
in the lists keeping in and out volumes requires O(k) where
k is the number of communities; even in this case, one can
use a priority queue or a heap. Overall, performing β edge
updates requires O(|E | + β(|EC| + k)

) ��

6.3 Node-based deception via INDEC

We present a new greedy algorithm called INDec, incorpo-
rating all three node operations presented so far. The primary
purpose of this algorithm is to show how different node oper-
ations can work in tandem, augmenting edge operations as
well. Algorithm 2 works initially by selecting three candi-
date nodes: a node to delete (line 2), to add (line 3), and
to move (line 4). Along with each selected node, the corre-
sponding function returns the edge set of the affected node,
and the modularity loss (�−,�+, and �m) that results if the
operation is eventually performed. Besides each function, we
indicate the Theorem used in computing the candidate node.
Notice that we follow the node-adding heuristic described
earlier in Sect. 5.2.2. Finally, the algorithm chooses the best
operation based on the expected modularity loss, prioritiz-
ing node movement (line 5), which only requires modifying

edges. If it’s not beneficial (deception-wise), node addition is
tested, and if also unsuccessful, node deletion is performed
as a last resort.

Algorithm 2 The INDec algorithm.

Input: Network G, target community C ⊂ V , community structure C̄ .
Parameters: Edge budget β, and a set of addition candidates N .
Output:Network G ′ = (V ′, E ′)
1: do
2: (x, E−

x ,�−) ← selectBestDelNode(C)/*Thm. 6*/
3: (y, E+

y ,�+) ← selectBestAddNode(N )/*Thm. 7*/

4: (E−
z , E+

z ,�m) ← selectBestMoveNode(C, C̄)/*Thm. 8*/
5: if �m > 0 then
6: G ′ ← (V , {E ∪ E+

z }\E−
z )

7: β ← β − |E+
z | − |E−

z |
8: else
9: if �+ > �− and �+ > 0 then
10: G ′ ← (V ∪ {y}, E ∪ E+

y )
11: β ← β − |E+

y |
12: else
13: if �− > 0 then
14: G ′ ← (V \{x}, E\Ex)
15: β ← β − |Ex|
16: end if
17: end if
18: end if
19: while β > 0 and (�+ > 0 or �− > 0 or �m > 0)

The cost of this algorithm arises from lines (2-4) which
find the candidate nodes and their associated data. In Theo-
rem10,weprovide a detailed complexity analysis accounting
for data initialization and each of the three functions.

Theorem 10 Given a community structure C̄ with k commu-
nities, and an edge budget β, algorithm 2 runs in O(|E | +
β
γ
(|V | + k)

)
, where γ is the average edge operations per

node operation.

Proof Similar to algorithm 1, we note that several values
and data structures are computed in the initialization phase.
In particular, we precompute I (total influence in the net-
work) andη (total intra-community influence in the network).
Moreover, we construct a list of each community’s mutual
influence with the target community C; which is needed to
perform the node addition (line 3). Thus, the initialization
phase of INDec requires O(|E |) to compute I and η, and
requiresO(|V |) to compute the list of mutual influences. As
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in our edge-based algorithm, we emphasize here that these
values are precomputed once, and maintaining them after
each node operation can be performed in constant time.

Now, we analyze the three operations (lines 2, 3, and 4).
Notice that the procedure for node deletion in line 2 con-
siders each member of C with complexity O(|V |); which
occurs in a worst-case scenario |C| ≈ |V |. On the other
hand, node addition (line 3) involves two steps described
in section 5.2.2: choosing a destination community for the
new node and adding its new edges. Both steps require
O(k), thanks to the preconstructed list of inter-community
influences constructed at the initialization phase, consider-
ing that adding new edges would have the same cost as
that described in IDec. Finally, the node movement proce-
dure (line 4) considers each node in the target community,
requiring O(|V |). Therefore, assuming each node operation
adds/deletes γ edges, the overall complexity of INDec is
O(|E | + β

γ
(|V | + k)

)
, where β is edge budget. ��

7 Experimental evaluation

In this section, we present a comprehensive experimental
evaluation of both edge-based and node-based deception.
The following experiments aim at illustrating the following
points:

• E1: Compare our algorithms for deception in DIN with
the state of the art (Sect. 7.4).

• E2: Measuring the impact of both edge and node-based
deception on the community structure (Sect. 7.5).

• E3: Measure the efficiency of our algorithms in terms
of execution time, and compare it with state-of-the-art
competitors (Sect. 7.6).

7.1 Experimental setting

Weperformed the experiments in the following setting: given
a network G, a community structure C = {C1,C2, ...Ck},
found by some community detection algorithm Adet , a tar-
get community C that we want to hide, and a budget of edge
updates β, we apply a deception algorithmAdec to obtain an
updated network G ′. Then, we ran the same Adet on G ′ to
obtain another community structure C ′ where we can mea-
sure whether the level of hiding of C in C ′ is higher than
in C . Following are descriptions of detectors, deceptors, and
datasets used in the experiments.

7.1.1 Detectors

We selected community detection algorithms that can be
used on DIN, our targeted environment. Following is a brief

description of each algorithm used.We utilized cdlib library1

for implementing those detectors.

• Leiden Traag et al. (2019) (leiden) came as a response
to a defect in the Louvain algorithm, which has shown a
tendency to yield weakly connected communities.

• Directed modularity (Leicht and Newman 2008) (dm):
a modularity maximizing algorithm that works with
directed networks (Newman Jun 2004).

• Surprise community (surprise) An algorithm based
on the notion of asymptotic surprise (Traag et al. 2015).

• Gemsec (Rozemberczki et al. 2019) (gemsec): an
approach that leverages randomwalks to approximate the
point-wise mutual information matrix obtained by pool-
ing normalized adjacency matrix powers. This matrix is
decomposed by an approximate factorization technique
which is combined with a k-means-like clustering cost.

• Infomap (Rosvall and Bergstrom 2008) (infomap):
Infomap is a network clustering algorithm based on the
Map Equation (Rosvall and Bergstrom 2008). The idea is
that networks have aflow that can bemodeled via theMap
Equation, which defines an information-theoretic encod-
ing of the network, and is used to simplify the network
structure regarding this flow.

7.1.2 Deceptors

We considered the following deceptors:

• Delete Internal Connect External (Waniek et al. 2018)
(dice): this is a simple deception heuristic that aims
at minimizing modularity by deleting intra-community
edges and adding inter-community edges.

• ModularityMinimization (Fionda andPirrò 2018) (mod):
this approach improves on dice by considering commu-
nity degrees while selecting edges for addition/deletion.

• Safeness-based deception (Fionda and Pirrò 2018) (saf):
an approach for deception by maximizing community
safeness. One strength of saf is that it does not require
complete knowledge of the community structure before-
hand.

• Permanence-based deception (Mittal et al. 2021) (neu):
another approach based onmaximizing permanence loss,
which is computed over individual nodes.

• We considered the variants of saf, mod, and neu for
directed networks introduce in Fionda et al. (2022b)
called dmod, dsaf, and dper, respectively.

• Random node/edge updates (rnd): randomly selecting
nodes/edges for deletion or addition.

1 https://cdlib.readthedocs.io.
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Table 4 Datasets and
communities found by the
detectors considered

Network |V | |E | Number of communities
leiden dm surprise infomap gemsec

Freeman ∼50 ∼500 5 5 7 6 5

Email ∼1K ∼25K 28 32 21 12 16

AnyBeat ∼12K ∼67K 129 81 143 156 112

WikiVote ∼7K ∼103K 30 34 43 51 49

Facebook-like ∼900 ∼142K 6 5 6 7 5

Epinions ∼75K ∼508K 795 986 – – –

Slashdot ∼77K ∼905K 825 1115 – – –

SocialNet ∼82K ∼1M 841 1120 – –

Academia ∼200K ∼1.4M 89 93 – – –

GooglePlus ∼211K ∼1.5M 2105 – – – –

7.2 Datasets

Sincewe focus on community deception inDIN,weused sev-
eral directed datasets for experiments. These are of varying
sizes and represent different domains to ensure the generality
of results. As previously mentioned, we computed the influ-
ence between nodes as an edge weight using the approach
described by Kumar et al. (2016). All datasets we used are
available online2.34 Table 4 gives an overview of the net-
works considered. The table also reports, for each network,
the number of communities found by the detectors consid-
ered. In some of the more extensive networks, the number of
found communities has been omitted (and substituted by a -)
because the detector couldn’t complete community detection
after a timeout of 3h.

7.3 Evaluationmethodology

To present a comprehensive experimental evaluation, we
apply several metrics to compare the performance of our
algorithms with state-of-the-art competitors. Each of the
following measurements captures a different facet of the
community deception performance:

• Deception Score) (Hs) (Fionda and Pirrò 2018): a
numeric value in the range [0, 1] that quantifies hidden-
ness of the target community. Specifically, it measures
several desiderata: reachability preservation, community
spread, and community hiding. A higher DS corresponds
with better deception. DS is expressed with the equation:

2 https://data4goodlab.github.io/dataset.html.
3 https://snap.stanford.edu/.
4 https://toreopsahl.com/datasets.

(

1-
|S(C)|-1

|C|-1
)

×
(
1

2
(1- max

Ci∈C
{R(Ci ,C)}) + 1

2
(1-

∑
Ci∩C �=∅ P(Ci ,C)

|Ci ∩ C �= ∅| )

)

(40)

where |S(C)| is the number of connected components in
the subgraph induced by nodes in C.R andP refer to the
recall and precision of the detection algorithm, which is
described in detail in Fionda and Pirrò (2018).

• Normalized mutual information (NMI): another popular
metric for measuring the deception quality is the normal-
izedmutual information (NMI) (Danon et al. 2005). NMI
quantifies the amount of standard information between
two random variables, i.e., given two random variables,
how much can we infer about one given the other?
In the context of community deception, NMI measures
how much a post-deception community structure reveals
about the original one.

• Delta Communities (�): we also measure the difference
between the number of discovered communities before
and after deception.

• Running time:we compare the running time of our decep-
tion algorithms with other competitors, measuring only
the time required for performing deception, excluding
other common preprocessing tasks, such as initial com-
munity detection.

We performed the experiments on a server with a 6x 3.0
GHz (4 cores) CPU and 64 GB of RAM. The reported results
are the average (95% confidence interval) of 10 runs. For all
experiments, we set the budget β=0.6*|E(C)|; we noticed
this was the best value balancing deception and detection.
The codeof the influence-baseddeceptors is available online5

5 https://tinyurl.com/DiNDec.
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7.4 E1: deception score comparison

We begin our evaluation with the deception score. Figure4
shows a deception score comparison of ten deceptors, includ-
ing our novel IDec and INDec across five small networks.
Similarly, Fig. 5 also depicts deception score performance
but for much larger networks to give better insight into how
our proposed methods would scale with higher network vol-
umes compared to the state of the art. Note that, as for large
networks, we could only obtain results against leiden and
dm, since for other detectors, the execution time limit (3h)
has been exceeded. As described earlier, a higher deception
score correlates with three desiderata: reachability, commu-
nity spread, and community hiding.

First, to allow for a better appreciation of the deception
scores shown in the Figures, we have to keep in mind that we
start from aworst-case scenario, where the target community
is completely revealed C ∈ C̄ , which means that the decep-
tion score is initially 0. Thus, even less than 0.5 deception
scores may represent a reasonable improvement in the goal
of hiding the target community.

The results for smaller networks in Fig. 4 show that our
proposed algorithms IDec and INDec outperform other
competitors in most datasets and against different detection
algorithms.However, their performance seems slightly lower
against leiden, particularly on the Facebook dataset. This
might be because, although we applied it to directed net-
works, leiden is initially designed for undirected (Traag
et al. 2019). Figure5 shows that in larger scale networks,
IDec and INDecmaintain their advantage over competitors,
with more robust performance against dm.

We also observe a small but constant advantage of apply-
ing INDec over IDec. This can probably be attributed to the
fact that INDec gives more flexibility in terms of the possi-
ble operations—node movement, for instance, can select a
specific node and move it toward a specific destination com-
munity.

Combining the results from both Figures reveals an inter-
esting observation: IDec and INDec are more robust to the
change in network size compared to other directed com-
petitors: dsaf, dmod, and dper. Indeed, we can see that
our proposed methods maintain relatively good performance
over small and large networks. Other directed deceptors are
more well-suited to higher-volume networks than smaller
ones.

7.5 E2: Effects of deception on detection

The effects of deception algorithms on community detection
are observed using two metrics we present shortly: normal-
izedmutual information (NMI) and the change in the number
of detected communities before and after deception occurs
(referred to as �). Higher NMI values signify less change in

the community structure (and hence to the number of com-
munities.).

7.5.1 Normalized mutual information (NMI)

Now, we compare the effect of our novel algorithms with
other state-of-the-art directed deceptors. First, we use NMI
(described in Sect. 7.3) to measure the degree to which each
of the competing deceptors affects the original community
structure found byAdet . Figure6 shows NMI values (y-axis)
plotted for different detectors (colored bars), using different
networks (x-axis). Each subplot of Fig. 6 shows the results
for one of the directed deceptors.

We can observe that all deceptors produce comparable
NMI values, nearly in the range [0.7−0.9]. Meaning they
can generally preserve much of the community structure
after deception. Notably, however, the dper algorithm seems
to cause a more significant change in the communities, as
reflected by the lower NMI. One of the lowest NMI values
computed is dper against surprise, using Email network.
As Fig. 6 shows, the NMI value for this value is close to 0.5,
indicating a substantial disruption in the community struc-
ture. This fact can be reinforced by the results of � in Fig. 8,
which shows for the same combination (dper, surprise,
Email) significant negative change in the number of commu-
nities after deception is performed.

As for detection algorithms, NMI appears lowest for
leiden across all deception algorithms shown in Fig. 6.
Stated differently, leiden appears to be the most sensitive
of the five detection algorithms to modifications by decep-
tors. On the other hand, community structures detected by
gemsec seem the most robust to edge modifications.

Figure7 also measures NMI values for much larger net-
works. The NMI measurements here are taken against two
detection algorithms: leiden and dm. A noticeable trend
we find here is that in most instances, dm has lower NMI than
leiden and hence is more sensitive to deceptors. This trend
was not found in the case of small networks (Fig. 6) showing
that dm seems more affected by the change of the network
scale.

7.5.2 Change in the number of communities

We proceed now to evaluate the change in the number of
communities discovered by various detectors before and after
deception (�). Generally, high values of�might correspond
to more community spread, which in turn, positively affects
the deception score.Butweneed to stress here the fact that the
deception score measures other desiderata as well, meaning
its correlation with� is not straightforward. Again, we show
results for smaller and larger scale networks because as we
have already seen in the last section, network size can have a
significant effect on theperformanceof different competitors.
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Fig. 4 Deception score
comparison on small networks

Fig. 5 Deception score
comparison on large networks

Fig. 6 NMI values comparing
communities before and after
deception on small networks
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Fig. 7 NMI values comparing
communities before and after
deception on large networks

Figure8 plots changes in the numbers of communities �

on thevertical axis, against several small-size networks on the
horizontal axis. Since both IDec and INDec accommodate
directed influence for the first time, we considered several
state-of-the-art deceptors (Fionda et al. 2022a) thatwork only
with directed networks (although they ignore influence). In
the vast majority of cases, both of our novel deceptors IDec
and INDec resulted in an increase in the number of commu-
nities, and this agrees with their relatively higher deception
scores shown previously in Fig. 4.

We can point to the variation between different detec-
tors in terms of their robustness to deception algorithms.
For instance,surprise shows high sensitivity to deception
algorithms, and particularly in this case, we can see that both
IDec and INDec perform comparably well by adding more
communities after deception, compared to other deceptors.
Furthermore, the noticeably higher magnitude of � using
Anybeat network can be explained with the help of Table
4, which shows a significantly greater network volume and
significantly more initial communities.

Next, we consider the group of larger networks in Fig. 9.
The first observation that arises is that most deceptors have
a negative effect on communities detected by leiden, and
connecting this with the same results for small networks,
we find that � seems to decrease as the network volume
increases. Again, lower � for leiden explains its lower
deception score on large networks shown in Fig. 5. On the
contrary, compared to smaller networks, deceptors are now
able to make higher positive changes against dm.

Combining Figs. 8 and 9 can give us an impression of the
relation between � and network size. More specifically, the
relative magnitude of � gets smaller for very large networks
like SocialNet, Academia, and GooglePlus. Indeed, for the

latter three networks, changing β edges seems unlikely to
cause a significant disruption in the community structure in
a network with a million-plus edge. A second observation is
a deceptor like dper cannot make noticeable changes in �,
in most cases.

7.6 E3: Running time

Our final evaluation metric is running time. Figure10 shows
(on a log-scale) a comparison of running time for all ten
deceptors using different small networks against each detec-
tion algorithm. The Figure shows that IDec and INDec
perform comparably well to other directed deceptors and
slightly slower than dsaf. This fact can be attributed to the
minor cost of computing the safeness loss compared to mod-
ularity loss since safeness is computed only over the target
community (Fionda and Pirrò 2018), not the entire commu-
nity structure.

Additionally, it is possible to infer some correlation from
Fig. 10 between the initial number of communities found by
the detection algorithm and computation time. Specifically,
for most deceptors, and against all tested detectors, the exe-
cution time for Freeman and Facebook is much lower
than in other networks. Indeed, by referring to Table 4, we
find that both networks are split into 5-7 communities by all
considered detectors.

We can also observe an irregularly slow performance of
mod in Email network. One hypothesis to explain this behav-
ior is that mod, which partly relies on deleting intra-edges
from the target community, consumes more time in finding
a non-bridge edge for deletion, especially since it does not
consider directions. Similar behavior of mod in this partic-
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Fig. 8 � on the number of
communities for small networks

Fig. 9 � on the number of
communities for large networks

ular network has been also mentioned by Fionda and Pirrò
(2018); Fionda et al. (2022b).

We also consider time efficiency on much larger net-
works, as shown in Fig. 11. Notice that we consider only
two detectors since other detectors could not produce a com-
munity structure within the set time limit (see section 7.2).
As in the case of small networks, IDec, and INDec perform
faster than other directed competitors, except dsaf which,
aswe indicated earlier, uses community-centric computation.
Interestingly, over all networks, INDec is faster than IDec;
this is more evident in Fig. 11 with extra large networks. This
is probably an advantage of the node-based approach taken
by INDec. Specifically, each node operation INDec modi-
fies a group of edges at once, subsequently consuming the
edge budget faster than IDec. This result also conforms with
the complexity analysis outlined in Sect. 6.

We can also observe a trend of generally increasing exe-
cution time as the network volume increases going from

Epinions toGooglePlus, which is expected given the increase
in edge and node count as shown in Table 4.

8 Concluding remarks and future work

Community detection algorithms are used to identify groups
of nodes or individuals in a network that share common fea-
tures or characteristics. These algorithms are widely used in
various fields, including social network analysis, biology, and
computer science.However, using these tools canharmusers’
privacy in different ways, from revealing group member-
ship to exposing personal behaviors. This paper introduced
the novel problem of influence-based community deception,
which is about hiding a target community C from community
detection algorithms in a setting where edges carry informa-
tion about the mutual influence of nodes. We developed a
twofold strategy of introducing directed influence and con-
sidering the role of nodes in the deception process. Our
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Fig. 10 Running time
(log-scale) for small networks

Fig. 11 Running time
(log-scale) for large networks

study is more comprehensive than the state of the art since
it includes aspects related to modifying the topology of a
network by adding or removing edges and using adversarial
node operations that, if carefully used, can disrupt the net-
work’s community structure, making it harder for detection
algorithms to the target community. We believe the present
paper provides valuable insights into community deception,
and the proposed methods can be used in various applica-
tions, such as social network analysis and cybersecurity. We
showed that while community detection algorithms are valu-
able tools for identifying communities in networks, they are
not immune to countermeasures.

This paper has highlighted a vulnerability of commu-
nity detection algorithms to community deception. While
we considered deception as a tool to preserve user privacy,
we cannot ignore the possibility of misusing them to hide

unlawful groups. Therefore, as a future direction, we plan to
investigate possible defense techniques against community
deception, such as designing detection algorithms based on
more robust quality functions. Indeed, as we showed in the
experiments, some detectors were more sensitive to decep-
tion than others, this opens interesting research questions
on the specific characteristics that make them so amenable
to attacks. Moreover, another line of future research is to
tackle deception when considering approaches that compute
communities based on embeddings. Here, two interesting
challenges are how to measure the contribution of edge mod-
ifications toward deception and how to define an effective
deception optimization function.
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