
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2023) 13:91 
https://doi.org/10.1007/s13278-023-01092-x

ORIGINAL ARTICLE

Detecting rumor outbreaks in online social networks

Damian Frąszczak1

Received: 1 July 2022 / Revised: 29 March 2023 / Accepted: 3 May 2023 / Published online: 1 June 2023 
© The Author(s) 2023

Abstract
Social media platforms are broadly used to exchange information by milliards of people worldwide. Each day people share 
a lot of their updates and opinions on various types of topics. Moreover, politicians also use it to share their postulates and 
programs, shops to advertise their products, etc. Social media are so popular nowadays because of critical factors, including 
quick and accessible Internet communication, always available. These conditions make it easy to spread information from one 
user to another in close neighborhoods and around the whole social network located on the given platform. Unfortunately, it 
has recently been increasingly used for malicious purposes, e.g., rumor propagation. In most cases, the process starts from 
multiple nodes (users). There are numerous papers about detecting the real source with only one initiator. There is a lack of 
solutions dedicated to problems with multiple sources. Most solutions that meet those criteria need an accurate number of 
origins to detect them correctly, which is impossible to obtain in real-life usage. This paper analyzes the methods to detect 
rumor outbreaks in online social networks that can be used as an initial guess for the number of real propagation initiators.
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1  Introduction and research motivation

Nowadays, social media platforms displace traditional ways 
of communication and information exchange. This trend 
continues due to critical factors that online social media pro-
vide: no cost, easy access, and is always available. Moreover, 
they are in standby mode by default, bombing users with 
real-time notifications about online neighborhood updates. 
It makes users feel on time with all the information with-
out the necessity for searching for them as all the updates 
are given to them immediately. In one moment, people are 
bombed with news, pictures, videos, etc. They cannot cor-
rectly assess the content and verify if it is true or false. They 
make this decision based on their subjective feeling about 
processed information (Pennycook & Rand 2021). Having 
mentioned properties of social media platforms create an 
excellent opportunity to share information containing mali-
cious content. Recently, it has been observed that these inci-
dents are increasing and can affect different aspects of life, 
i.e., impacting the election results or financial and mental 
situations (Higdon 2020; Market chaos after fake Obama 

explosion tweet—ABC News (Australian Broadcasting 
Corporation), b.d.). Identifying the source of information 
is crucial as it can reduce disinformation and consequently 
avoid more severe problems (Frąszczak 2021a, 2022; Khan 
et al. 2021).

In most cases, fake news or rumors on social media plat-
forms are initiated by groups of users located in separate 
neighborhoods. Many of those users are not real, just com-
puter bots propagating appropriate messages easily attached 
or detached from the network. They are placed in differ-
ent parts of the network as the organization aims to make 
immense desolation among the users and wants to cover 
the network with rumor content as soon as possible. It is 
reported that people believe in information and share it faster 
when it can be confirmed from multiple sources (Higdon 
2020; Khan et al. 2021). Furthermore, it is harder to classify 
given content as fake when it is spread in numerous groups 
simultaneously than in one. Recently, it can be observed 
there have been developed multiple methods for identifying 
rumor sources in networks (Frąszczak 2021a; Jiang et al. 
2017; Shelke & Attar 2019). Most of them are usable for 
single-source detection problems. Only some of them can 
be used for multi-source tasks. Unfortunately, most of them 
need a valid number of sources, which is impossible in real-
life cases (Frąszczak 2021a; Shelke & Attar 2019). This 
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paper investigates the problem by analyzing the available 
community detection methods and evaluating their accu-
racy. Furthermore, it also validates the accuracy of the well-
known source detection problems over identifies outbreaks.

This paper is divided into six main parts. The first one 
introduces online social networks and their mathematical 
background. Furthermore, it also contains some essential 
information regarding rumor propagation and source detec-
tion. The second analyzes the techniques used for multi-
source detection problems and their approach to finding 
rumor outbreaks. The third one introduces the simulation 
environment used to carry out the analysis of current meth-
ods. The fourth contains the simulation conditions, and the 
fifth describes the performed examinations and presents the 
obtained results in the simulation environment. The last one 
concludes the paper, summarizes the problems, and indicates 
possible future development directions in that area.

2  Online social networks, rumor 
propagation, and source detection

Social media platforms are broadly used to exchange infor-
mation by milliards of people worldwide. Each day people 
share a lot of their updates and opinions on various types of 
topics. Their popularity is due to critical factors, including 
quick and accessible communication via the Internet, avail-
ability, or free. The number of active users is still growing. 
For Facebook, this number in the five years increased twice, 
giving in 2020 about 2740 mln active users using that plat-
form (Digital News Report, 2016, b.d.). These conditions 
make it easy to spread information from one user to another 
in close neighborhoods and around the whole social net-
work on the given platform (Frąszczak 2021b; Guille et al. 
2013; Mei Li et al. 2017). Unfortunately, it is reported that it 
has been recently increasingly used for malicious purposes, 
e.g., rumor propagation. As mentioned vicious incidents can 
impact different aspects of people’s lives, including election 
results, stock changes, or people’s lives (Higdon 2020). Iden-
tifying the source of malicious information is crucial as it 
can reduce disinformation and avoid more severe problems.

Online social networks are represented with the graph 
theory. Its structure is defined by the graph G = (V ,E) , 
where V  represents a countably infinite set of nodes (users) 
and E is a set of edges (relations between them) connected 
via an adjacency matrix. In most cases, the particular 
cells of this matrix contain “1” as a value for connected 
nodes “0” is used otherwise. The edges can represent the 
one-directional relationship between nodes representing 
an independent relationship, i.e., Twitter following the 
relation between two users (Raj et al. 2018). This type of 

association is called “directed.” In contrast, the two-direc-
tional relationship between nodes is called “undirected” 
and is used to model mutual relationships, i.e., Facebook 
friendship (Frąszczak 2021a).

Malicious information in online social networks can be 
initiated from a single or set of nodes, the rumor sources 
v ⊆ G . These nodes are called active or susceptible 
(Frąszczak 2021b; Mei Li et al. 2017; Rossetti et al. 2019; 
Tarapata & Kasprzyk 2010) and actively participate in a 
rumor-spreading process. It is achieved by passing informa-
tion to its neighbors and encouraging them to participate in 
this action. Each user (node) that has started giving informa-
tion further in a network becomes an active node, moving 
forward an information propagation process. An infection 
graph is created as time passes and more nodes become 
infected.GI is a subgraph of G and consists of infected nodes 
VI which have taken part in information propagation via 
edges EI[4], [7], [8]. The task of source detection methods 
is to find original rumor sources based on a given infected 
graph GI(Frąszczak 2021a; Jiang et al. 2017; Shelke & Attar 
2019). For problems dedicated to single sources, the whole 
infection graph is analyzed. For the multi-source ones, the 
number of sources is provided as input parameters or is esti-
mated with community detection methods able to identify 
the number of them based on some metrics. Then the infec-
tion graph is either divided into smaller areas where each 
contains one source or is analyzed as one part, and estimated 
sources with the most considerable value are considered real 
ones (Shelke & Attar 2019; Zang et al. 2015). In this paper, 
the first approach is analyzed.

Multiple approaches exist to detect rumor sources and 
identify outbreaks based on the given infection graph. 
The most popular in recent research are maximum likeli-
hood (ML) and maximum posteriori (MAP) estimations 
(Frąszczak 2021a; Shelke & Attar 2019). This paper ana-
lyzes the accuracy of those methods based on the identified 
outbreaks. One of the most straightforward and most used 
ML estimations to detect rumor sources is centrality meas-
ures broadly used to assess nodes in a network based on its 
structure (Ali et al. 2020; Das et al. 2018; Das & Kumar 
Sinha 2018). There is an assumption that information should 
be initiated from the most valuable nodes to reach as big 
as possible network coverage in the shortest time. There-
fore new centrality metrics are still discovered and used for 
various problems (Chebotarev & Gubanov 2020). The most 
famous six in rumor source detection are used for this paper 
and introduced in Table 1. The usefulness of well-known 
single-source detection methods such as NetSleuth (Prakash 
et al. 2012), Rumor Center (Dong et al. 2013; Shah & Zaman 
2010, 2011), and Jordan Center (Zhu & Ying 2013) applied 
with the divide and conquered approach is also analyzed.
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3  Current solutions for multi‑source 
detection problems

The main research interest for source detection problems is 
focused on single-source issues. Unfortunately, fake news 
propagation in real-world situations is initiated by multiple 
sources (Jiang et al. 2017; Nguyen et al. 2016; Zang et al. 
2014). The multi-source detection problem is more complex 
than the single one because the node evaluation must be 
computed for all possible subsets of infected nodes. The 
complexity of generating all possible subsets of possible 

source nodes assumes that source nodes are equal to 
( ||VI

||
m

)

 . 

When there are many infected nodes, VI = O(n) there would 
be O(mn) possible source subsets. This fact makes the multi-
source detection problem computationally hard for large 
networks, even for small values m . Most of the available 
solutions for multi-source detection techniques utilize the 
divide and conquer approach to divide multi-source detec-
tion problems into a single source and then evaluate well-
known methods for single-source detection. This division is 
obtained via network partitioning or community detection 
algorithms (Luo et al. 2014; Zang et al. 2014). Moreover, 
most cases use network partitioning or community detection 
methods that require an expected number of partitions, mak-
ing the solution not usable for real-life problems where it is 

not known. Some solutions utilize different approaches to 
introduced ones: ranking and approximation based. More 
details about them can be found in (Choi et al. 2020a, b; 
Shelke & Attar 2019; Zhang et al. 2017).

The main task for both community detection and network 
partitioning methods is to find groups (clusters/communi-
ties) in the network, so each node belongs to one group. 
Desirable groups are densely connected to the nodes in the 
same group and sparsely connected to nodes in others. Soci-
ology researchers noticed that individuals in the same com-
munity share similarities, such as gender, age, common 
interests, professional activity [32]. Therefore, the main aim 
of those methods is to detect groups of nodes that share 
similar properties and differ from other nodes concerning 
certain criteria. Those criteria are different for both 
approaches, as they emerge from different origins. Network 
partitioning techniques are based on graph theory, whereas 
community detection where developed based on sociology. 
Mathematically, network partitioning and community detec-
tion methods aim to divide G into q disjoint sub-graphs 

Ci = (Vi,Ei) , in which ∀i ≠ j ∶ Ci ∩ Cj = � and 
k⋃

i=1

Ci = V  . 

The evaluated communities are then estimated with quality 
functions. All evaluation metrics used to assess the obtained 
communities are introduced in Table 2. Those problems are 
NP-complete problems (Fortunato 2010) as there are an 

Table 1  Most famous centrality metrics used in rumor source detection research

Centrality measure/time complex-
ity

Formula Analysis Application area

Degree centrality O(m) CD(x) = dx Counts edges incident to a node Determining popular users
Closeness centrality O(n3) CC(x) =

1
∑

y∈N d(x,y)
 where d(x, y) is 

the geodesic distance between 
the nodes x and y

Distance from one node to others Determining a location that can 
spread information fast

Eccentricity/Jordan/Radius cen-
trality O(mn)

CEC(x)
1

maxy∈N d(x,y)
Maximum distance between nodes Determining a location that can 

spread information fast
Betweenness centrality O(n3) CB(x) =

∑

y≠z∈N

�st(x)

�st

�st number of all shortest paths 
between s and t in the network

�st(x) - number of all shortest paths 
between s and t in the network 
including x

Counts the number of the shortest 
paths passing through the node

Determining the node that controls 
the information among other 
nodes

Eigenvector centrality
O(n2)

Ax = �x, �xi =
n∑

j

aijxj

aij the cell in adjacency matrix A

Counts important links Finding nodes connected with 
many high-scoring nodes. 
Determining the location of the 
emergency facility

Rumor centrality
O(n3)

R(i,G) =
∏

u∈G

N!

Tv
u

where u is a node of G  and Tv
u
 

is the number of nodes in the 
subtree rooted at u with v as the 
source

Counts the number of possible 
propagation permutations from 
node

Determining rumor source
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exponential number of various alternative partitions. Moreo-
ver, not all community detection methods can be used in all 
cases, as some are only dedicated to undirected and 
unweighted structures, while having such a complex input 
network structure is not recommended to abandon such 
detail, leading to inappropriate results.

The method presented in (Luo & Tay 2012) utilized the 
Voronoi partitioning method to divide a network into multi-
ple partitions, whereas the classical rumor center detection 
method is used to find a single source. In (Jiang et al. 2015) 
Capacity Constrained Network-Voronoi Diagram (CCNVD) 
(Yang et al. 2013) network partitioning method, together 
with a new metric of effective distance (Brockmann & Hel-
bing 2013), was used for identifying multiple sources. Zang 
et al. (2014) used three different network division meth-
ods to detect numerous sources: leading eigenvector-based 
approach, edge betweenness, and mixed membership block 
model methods. The leading eigenvector-based method 
divides nodes into groups that satisfy two characteris-
tics: sparse edges between different groups and abundant 
edges within the same group. This approach is also called 
a modularity-based one. Network partition utilizing edge 
betweenness divides nodes into groups by focusing on the 
boundaries of communities instead of their cores. The mixed 
membership block model divides nodes into groups because 
nodes infected by the same source are more likely to link, 
while nodes infected by different sources have less contact. 
An extension of the leading eigenvector-based method with 
modularity metrics was presented in (Zang et al. 2015). This 
paper also introduced a heuristic algorithm for estimating 
the number of sources utilizing the community detection 
algorithm.

Besides the methods used in the current research, some 
more community detection and network partitioning meth-
ods can be used to detect rumor outbreaks without the neces-
sity of an expected number of groups. The following tech-
niques can be modularity-based like the Louvain method 
(Blondel et al. 2008), label propagation (Cordasco & Gar-
gano 2011), Clauset–Newman–Moore (Clauset et al. 2004) 
or Girvan-Newman (Girvan & Newman 2002), and much 
more (Frąszczak 2022). All used methods in the analysis are 
introduced further in the article.

Clauset–Newman–Moore’s (CNM) (Clauset et al. 2004) 
method utilizes both modularity and hierarchical agglomera-
tive approaches. It is also called the fast greedy one due to a 
standard greedy way and is significantly quicker than other 
algorithms. It starts with each node in its community and 
joins the communities that introduce the most significant 
modularity increase at each step. The procedure is repeated 
until no such pair exists.

The Girvan–Newman (GN) (Girvan & Newman 2002) 
method identifies communities by iteratively removing 
edges from the original graph. It takes an edge based on its 

score that, in most cases, the edge with the most significant 
betweenness centrality value is taken at each step.

Louvain's (LV) (Blondel et al. 2008) method maximizes a 
modularity score for each community. It is done in two steps: 
local nodes moving and network aggregation. Each node is 
transferred to the community that yields the most significant 
impact on the quality function. Afterward, an aggregated 
network is created utilizing the partitions computed in the 
first step. Each community in this partition becomes a node 
in the aggregate network. The procedure is finished when the 
quality function (modularity) cannot be further improved.

The Leiden (LN) (Traag et  al. 2019) method is an 
improvement of the Louvain algorithm. It consists of three 
phases: local moving of nodes, partition refinement, and 
network aggregation based on the refined partitions. The 
non-refined division is used to create an initial partition for 
the aggregate network.

The label propagation (LP) (Cordasco & Gargano 2011) 
method identifies node groups utilizing only the network 
structure. It does not need a pre-defined objective function 
or prior information about the communities. According to 
the following flow, communities are discovered: Each node 
gets a unique label—some identifier; then, the simulation is 
carried out. Each node updates its label to the most popular 
among the neighbors at each iteration. The procedure stops 
when each node has the majority label of its neighbors. It is 
not as deterministic as each time and can provide different 
results. Multiple simulations should be done, and the most 
popular division should be used.

Walktrap (WP) (Pons & Latapy 2005) utilizes random 
walks to detect communities in a network. It is based on 
the idea that the walks are more likely to stay within the 
same community because only a few edges lead outside a 
given community. It conducts short random walks and uses a 
hierarchical agglomerative approach to merge separate com-
munities bottom-up.

The belief propagation (BF) (Zhang & Moore 2014) com-
munity detection method tries to obtain a consensus of many 
high-modularity partitions. It is achieved by utilizing a scal-
able message-passing algorithm based on the modularity 
metrics treated as a Hamiltonian and applying the cavity 
method.

Infomap (IP) (Rosvall & Bergstrom 2008) is based on 
information theory. It uses the random walk probability flow 
on a network as a proxy for information flows in the real 
system. That information divides the network into modules, 
compressing the probability flow description.

GA (Pizzuti 2008) is a genetic-based method to find com-
munities in networks. It detects communities by structure, 
classifying densely connected nodes into a group. It opti-
mizes a productive but straightforward fitness function to 
identify densely connected groups of nodes with sparse con-
nections between groups.
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Gemsec (GM) (Rozemberczki et al. 2019) is based on a 
graph embedding algorithm that learns a clustering of the 
nodes simultaneously with computing their embedding. It 
places nodes in an abstract feature space where the vertex 
features minimize the negative log-likelihood of preserv-
ing sampled vertex neighborhoods. It also incorporates 
known social network properties through a machine learn-
ing regularization.

Kcut (Ruan & Zhang 2007) is a spectral-based algorithm 
for community detection. It is helpful for undirected and 
non-overlapping social networks. It provides a unique com-
bination of recursive partitioning and direct k-way methods, 
guaranteeing the efficiency of a recursive approach while 
also having the same accuracy as a direct k-way method.

The Markov clustering algorithm (MCL) (Enright 2002) 
utilizes simulation stochastic-based flow in graphs. It discov-
ers clusters with a mathematical bootstrapping procedure. 
It computes random walk probabilities through the network 
and merges them using two transforming operations: expan-
sion and inflation. It is achieved utilizing Markov (stochas-
tic) matrices that contain the mathematical concept of ran-
dom walks on a graph.

Paris (PS) (Bonald et al. 2018) is a hierarchical graph 
clustering algorithm inspired by modularity-based cluster-
ing techniques. It uses a distance between clusters induced 
by the probability of sampling node pairs to follow up the 
agglomerative approach to merge communities. The algo-
rithm's output is a regular dendrogram, which reveals the 
multi-scale structure of the graph.

Spinglass (SPS) (Reichardt & Bornholdt 2006) relies 
on an analogy between Potts spin glass’s viral statistical 
mechanic model and the community structure. The net-
work’s community structure is interpreted as the spin con-
figuration that minimizes the energy of the spin glass, with 
the spin states being the community indices. It applies the 
simulated annealing optimization technique to optimize the 
modularity.

Surprise (SRC) (Traag et al. 2015) method to discover 
communities is based on a dedicated metric to evaluate them 
called a surprise. This quality metric assumes that edges 
between vertices emerge randomly according to a hypergeo-
metric distribution. Partitions get a better score if it is less 
likely to result from a random realization.

Scalable Community Detection (SCD) (Prat-Pérez et al. 
2014) is a disjoint community detection algorithm combin-
ing different strategies. It partitions the graph by maximiz-
ing the Weighted Community Clustering (WCC). Firstly, 
clusters are built around highly clustered nodes, and then 
the initial partition is refined using the approximate WCC.

SBM DL (SBM) (Peixoto 2014) extends the stochastic 
block model (SBM) approach to finding communities. It 

utilizes Monte Carlo and the greedy heuristic to infer the 
stochastic block model. It fits the non-overlapping stochas-
tic block model by description length minimization with an 
agglomerative heuristic.

4  Simulation environment

The presented research has been carried out with RPaSDT 
(Rumour Propagation and Source Detection Toolkit) 
(Frąszczak 2022). It is an open-source toolkit available with 
an MIT license that simulates and analyzes the accuracy of 
the most common source detection methods. It is based on 
Python and well-known computing libraries. It provides a 
highly configurable, easily reusable, and user-friendly GUI-
based application to simulate and analyze real scenarios for 
source detection problems. It allows the preparation of a 
rumor propagation experiment under any network topology, 
along with the well-known literature diffusion models, and 
identifies potential diffusion sources based on the propaga-
tion graph. It is worth mentioning that the described toolkit 
provides a set of additional tools to perform sophisticated 
network analyses to select different sources and verify how 
the diffusion under a given topology and origins set could 
behave. The software can also simulate propagation and 
source detection for other domains like epidemics or virus 
detection. This propagation can be manufactured with avail-
able models in the toolkit and the source identification pro-
cess with known methods. It is worth mentioning that a set 
of auxiliary graph analysis tools includes various available 
community detection methods. The said properties make 
it easy to simulate and analyze the wide range of source 
detection methods utilizing different community detection 
methods under other conditions.

The simulation environment has been implemented in a 
window-based approach to visualize and manage different 
analysis aspects simultaneously. Each window contains a 
separate model, which does not affect the others. It means 
that the user can run multiple separate analyses experi-
ments on the initial network structure and compare them, 
as presented in Fig. 1. All windows can be rearranged any 
way, making the analysis easier. Each window has a sepa-
rate toolbar that provides different operations to carry out 
dedicated functions for the window context. In the presented 
example the software displays three windows: the initial net-
work structure, degree analysis, and performed community 
detection with Louvain algorithms. The presented scenario 
is the basic step in the classical network analysis task. Fig. 2 
presents further analysis of the introduced network. On the 
right side, the result of the four community detection meth-
ods is presented, whereas the left one presents the results of 
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the simulation of the rumor propagation initiated by nodes 
‘0’ and ‘33.’

5  Simulation conditions

Simulation experiments were conducted to assess the accu-
racy of the well-known community detection methods in 

Fig. 1  RPaSDT use case—network analysis: initial network structure, degree centrality, and Louvain communities analysis

Fig. 2  RPaSDT—visualization of different community detection methods for the given infection graph
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the literature that have not been applied yet to find rumor 
outbreaks in online social networks. This issue is essential 
due to the possibility of using the divide and conquer rule 
to divide the task of finding multiple sources in the network. 
As presented in the previous sections, this area of interest 
has not been well studied yet. The simulation case study 
has been carried out with multiple scenarios. The simple 
one is described in detail, and only simulation results are 
presented graphically with RPaSDT. The sources are chosen 
according to their centrality metrics that indicate the most 
valuable nodes in information propagation (Britt et al. 2021; 
Das & Kumar Sinha 2018; Frąszczak 2021b). For all cases, 
the node betweenness centrality metric is used.

The dataset used in the analysis includes both synthetical 
and real-world networks. Synthetical ones have been gener-
ated according to some scheme. The most popular social 
network analyses are small-world (SW), scale-free (SF), 
including Barabasi–Albert (BA) and Watts–Strogatz (WA), 
and Erdos–Renyi (ER) (Frąszczak 2021a; Shelke & Attar 
2019). The graphical representation of the mentioned net-
works presents Fig. 3. Moreover, tree-based networks are 
also used for the rumor source detection problem. For the 
simulation, SW and BA networks are used, sequentially rep-
resenting uniform and non-uniform networks, where nodes 
represent the real individuals, and the edges represent the 
connection between them in the network. The networks are 

generated based on the (Ju et al. 2022) used for COVID-19 
rumor propagation. WS is generated with p = 0.4 and k = 10, 
whereas BA with k = 10, m = 5.

Real-world datasets have been built upon real social net-
work analysis. A dedicated tool was often prepared to get all 
the necessary data from the most popular social platforms. 
Real-world datasets mainly come from Twitter, Facebook, 
Wiki-vote, Chinese microblogging, Sina Weibo, and Enrol 
Email for rumor source detection. The datasets described 
below were used (Ryan & Nesreen 2015; Shu et al. 2019; 
Stanford Large Network Dataset Collection, b.d.). The 
research was conducted for different types of networks to 
determine their pros and cons based on network structural 
properties. The properties of the networks used in the study 
are presented in Table 3.

Rumor diffusion in social media platforms can propagate 
in various ways, but this process’s aim is always the same: 
to cover as many nodes of the networks as soon as possible. 
The researchers have developed various models to simulate 
different behaviors by utilizing the gathered data and ana-
lyzing past events. Nowadays, the most famous and willing 
applied for multiple domains are epidemic models. They 
have been developed based on an epidemic spread analysis 
in society. They utilize compartments, mutually exclusive 
groups based on their disease status. Each individual is 
located in one compartment at a given time but can move to 

(a) random tree 
network

(b)  regular d-tree 
(d=2)

(c) small-world 
network

(d) scale-free 
network

Fig. 3  Different network topologies: a random tree, b regular d-tree, c small-world, d scale-free network

Table 3  Networks and their 
analysis used in the study

Network Nodes Edges Density Assortativity Avg. clustering 
coefficient

Degree (min/avg/max)

Karate 34 78 0.1390 − 0.4756 0.5706 1/4/17
Football 115 613 0.0935 0.1624 0.4032 7/10/12
SF-1 500 2475 0.0198 − 0.0966 0.0659 5/9.9/69
SM-1 500 2500 0.0200 − 0.0244 0.1640 5/10.0/16
SF-2 1000 4975 0.0100 − 0.0613 0.0423 5/9.95/126
SM-2 1000 5000 0.0100 − 0.0061 0.1478 5/10.0/16
Facebook 4039 88,234 0.0108 0.0636 0.6055 1/44/1045
Social 12,600 671,000 0.0008 − 0.1219 0.2275 1/10/8700
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another depending on the model parameters. There are two 
main hypotheses around this approach: Each node can be 
classified into a distinct state (compartment), and each indi-
vidual has the same opportunity to meet an infected node. It 
is proven that information spread via online social networks 
can follow the same rules. The simulation propagation is 
conducted with the SIR model as it better imitates the rumor 
diffusion in online social networks. This approach allows 
nodes to get “healed” and stop the propagation after real-
izing that passed information is malicious. A summary of 
the most popular ones is presented in Fig. 4 (Cheng et al. 
2013; Kasprzyk et al. 2011; Kasprzyk & Najgebauer 2021; 
Mei Li et al. 2017).

The SIR model has been used for the simulation with the 
configuration presented in (Ju et al. 2022). This configu-
ration was used for rumor propagation of COVID-19 fake 
information. As introduced in that paper, such a model is 
still eligible to simulate rumor diffusion in social networks. 
The probability of the node getting “infected” (transition 
from S to I state) is 0.1, and the likelihood of the node stop-
ping propagation (transition from I to R state) is 0.05 too. 
The primary purpose of this research is to measure the accu-
racy of the network partitioning methods to identify rumor 
outbreaks. The infection graph should be connected, which 

would be hard to achieve considering only currently infected 
nodes. The infection graph is computed on nodes either in 
the infected or recovered state.

6  Simulation

Rumor propagation simulation has been conducted with 
data sources described in Table 3 with the SIR model. The 
infection graph GI is computed based on both recovered and 
infected nodes. The simulation is examined for the number 
of source nodes representing 0.1%, 1%, and 10% of all nodes 
in the network, respectively. The node betweenness central-
ity metric indicates the best ones (Şen et al. 2016), and 50 
iterations simulate the process. That number can be excep-
tionally increased to obtain an infected-connected graph. 
The detection process could be disturbed if some commu-
nities were disconnected and initially indicated. The case 
with 100% network coverage is omitted as it would make 
it harder to identify real sources in the given network, as 
the whole network would be analyzed. This approach has 
some real-case scenario premises, as in general, fake news 
is not propagated across the entire network, only it’s part. 
After simulating the expected number of rumor diffusion 

Fig. 4  Epidemic models in 
information spread context

Table 4  Metrics used for the evaluation of rumor outbreaks detection

Name Formula Analysis

Average detec-
tion error 
(ADE)

ADE =
∑i=1

N
ABS(�{retrieved outbreaksi}�−�{true outbreaksi}�)

N

where
N - the number of experiments

The ADE is an average ratio of the difference between the number of 
detected and true rumor outbreaks

Precision Precision =
|{retrieved outbreaks}∩{true outbreaks}|

|{retrieved outbreaks}|
Precision is the ratio of the number of correctly identified outbreaks and 

overall retrieved outbreaks
Recall Recall =

|{retrieved outbreaks}∩{true outbreaks}|
|{true outbreaks}|

Recall is the ratio of the number of correctly identified outbreaks over the 
real true outbreaks

F-measure F −measure =
2×precision×recall

precision+recall
F-measure is the ratio of correctly found outbreaks to the sum of all testing 

outbreaks
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interactions, community detection, and network partition-
ing algorithms are applied to the given GI . Their accuracy 
is evaluated, and then utilization of the well-known source 
detection methods is also verified (Table 4).

In the simplest case, the Karate club network is analyzed 
and visualized. Only the simulation results are presented 
for the other scenarios, as for most networks, it is hard to 

picture them due to their size. It is a social network of a uni-
versity Karate club. More about that network can be found 
in Table 3. Firstly, the expected number of sources with the 
selected method is selected, e.t. nodes 2 and 33. Then the 
rumor propagation process is simulated by the expected 
number of iterations with the SIR model. The obtained 
infection graph GI is then analyzed with rumor outbreak 

Fig. 5  Initial network with selected sources and rumor propagation over it

Fig. 6  Visualization of the rumor outbreak detection based on infection graph with different methods
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detection methods. The described flow is presented in Figs. 5 
and 6. The first one presents the initial structure—the right 
part and the situation after simulating the propagation 
from the source nodes, whereas Fig. 6 presents the results 
of the outbreak detection methods. It can be noticed that 
the visual analysis for all the methods can be performed 
simultaneously.

Tables 5, 6, 7, 8 present the results of each algorithm 
execution under different networks. The summary shows the 
detected communities, their size, and computational time. 
The table contains data averaged over ten experiments per 
case to remove a random bias. The simulation was per-
formed with Intel Core i7-10,700 CPU 2.90 GHz, supported 
by 64 GB RAM and SSD disk running on the Linux Ubuntu 
platform. The analysis was performed on the host machine 
with the runnable package of RPaSDT (Frąszczak 2022). 
It also provides a Docker-based runtime environment, but 
the standalone package dedicated to the Linux platform was 
used to omit any redundant load. Computational time was 
rounded up to a decimal part of the second. The results for 
the algorithms, which took over 120 s, are omitted as they 
would not be a good fit to solve such problems for much big-
ger networks containing billions of nodes. Moreover, they 
could be ineffective for processing networks in real time 
(Table 9).

The evaluation of the accuracy of the well-known net-
work partitioning and community methods in identifying 

rumor outbreaks has been performed with metrics specific 
to community partitioning introduced in Table 1. They were 
extended with classification-based methods presented in 
Table 4 to provide a better evaluation for rumor outbreak 
identification. For the assessment, the information about 
propagation and source infection was used to define ground-
truth communities used by metrics.

Based on obtained coverage results, it can be observed 
that analyzed networks can be divided into two groups 
based on their topology. Scale-Free (Facebook, Social, SF-1, 
SF-2) for which even a few sources (but very important) can 
reach a great network coverage. Adding new rumor sources 
for such networks does not improve the diffusion process. 
Small-world (Karate, Football, SM-1, SM-2) like adding 
more rumor sources makes a difference in the context of 
better network coverage in a shorter time.

Unfortunately, not all examined methods could detect out-
breaks in the maximum expected time (the ‘N\A’ value pro-
vided in the table), so they were removed from further analy-
sis. The visual representation of the completed detections is 
presented in Fig. 7. Including them during the research could 
lead to incorrect conclusions. Moreover, they are not eligible 
for big networks. Methods removed from the further analysis 
are SPS, Kcut, BF, GA, and SPL.

In the case of the average detection error presented in 
Fig. 8, three methods delivered worse results than others, 
and in the case of the SRC, this difference was significant. 

Table 5  Simulation results for Karate and Football real social networks

Karate Football

Method Sources

0.01%—2, |IG|= 13, 
Cov = 36%

0.1%—3, |IG|= 17, 
Cov = 50%

1%—4, |IG|= 23, 
Cov = 68%

0.01%—2, |IG|= 30, 
Cov = 26%

0.1%—6, |IG|= 72, 
Cov = 62%

1%—12, |IG|= 23, 
Cov = 92%

Detected outbreaks/min | avg | max outbreak size/computation time(s)

LV 3 4|8|11 0.1 3 4|6|7 0.1 3 2|4|6 0.1 5 3|6|9 0.1 9 5|8|11 0.1 9 7|12|22 0.1
BF 8 1|3|8 8.6 6 1|3|4 8.3 5 1|2|5 8.2 2 12|15|18 7.8 4 13|18|27 2 6 8|18|24 3
LN 3 4|8|11 0.1 3 4|6|7 0.1 3 2|4|6 0.1 5 3|6|9 0.1 9 5|8|11 0.1 10 7|10|14 0.1
LP 3 2|8|18 0.1 2 2|8|15 0.1 1 12|12|12 0.1 6 3|5|9 0.1 10 3|7|20 0.1 10 4|10|22 0.1
CNM 3 4|8|11 0.1 3 4|6|7 0.1 3 2|4|6 0.1 5 3|6|9 0.1 7 6|10|17 0.1 5 18|21|25 0.1
GN 2 10|12|13 0.1 2 8|8|9 0.1 3 2|4|6 0.1 6 3|5|8 0.1 5 7|14|26 0.1 7 10|15|30 0.1
GA 3 5|12|16 3.6 5 2|3|6 3 2 10|11|12 2.8 7 3|4|7 4.1 7 6|10|19 7.3 13 2|8|19 10.2
IP 3 4|8|11 0.1 2 7|8|10 0.1 1 12|12|12 0.1 7 2|4|7 0.1 8 5|9|12 0.1 9 8|12|15 0.1
Kcut 3 1|8|21 0.1 4 1|4|14 0.2 2 1|6|11 0.1 7 1|4|24 0.2 5 1|14|68 0.9 8 1|13|98 1.3
MCL 2 9|12|14 0.1 2 7|8|10 0.1 1 12|12|12 0.1 7 2|4|7 0.1 12 1|6|11 0.1 12 5|9|13 0.1
PS 2 8|12|15 0.1 2 6|8|11 0.1 4 2|3|4 0.1 6 3|5|7 0.1 6 6|12|17 0.1 2 51|52|54 0.1
SPS 4 3|6|8 0.1 3 4|6|7 0.1 4 2|3|4 0.1 6 3|5|7 0.1 12 1|6|11 0.2 11 6|10|14 0.2
SRC 8 1|3|6 0.1 5 1|3|6 0.1 6 1|2|3 0.1 7 2|4|7 0.1 12 2|6|10 0.1 12 5|9|13 0.1
WP 3 5|8|13 0.1 2 7|8|10 0.1 3 1|4|6 0.1 6 3|5|8 0.1 10 4|7|11 0.1 10 7|10|14 0.1
SCD 2 7|12|16 0.8 2 7|8|10 0.4 3 2|4|5 0.2 2 13|15|17 0.7 2 29|36|43 3.9 2 44|52|61 22.4
SBM 1 23|23|23 0.1 1 17|17|17 0.1 1 12|12|12 0.1 2 12|15|18 0.1 8 6|9|12 0.1 10 7|10|14 0.1
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The NMI metric for evaluated methods is similar and close 
to 0.3, but SRC and MCL have more than 0.4 surpassing 
other approaches. Based on that it looks like only about 30% 
of all nodes are correctly assigned to a correct outbreak for 

most of the tested methods. In the context of the rumor 
source identification, this value is too low as it can lead 
to inappropriate results or make it harder for such analy-
sis because nodes are assigned to different outbreaks than 
they belong to. It is also worth mentioning that SRC, MCL, 
and WP, which are the best in the NMI benchmark, are the 
worst in ADE—Fig. 8. It means they were better at assigning 
nodes to correct outbreaks but not so precise in estimating 
the correct number of them. It can be observed in the above 
tables that they provided much more groups that are less 
numerous than other methods causing their NMI to be higher 
but increasing the error. That thesis is confirmed in Fig. 9 
where the SRC method found the biggest number of empty 
(without the real source) outbreaks which is not good. The 
best in that metric is PS, although also GN, LV, LN, CNM, 
SBM, and LP received good results. The well-performed 
outbreak detection method should have that value as low as 
possible allowing a reduction in the number of false posi-
tives (Fig. 10).

In most cases, the tested techniques overestimate the 
total number. This trend can be better noticed by removing 
the biggest outbreaks number from the evaluated dataset. 

Table 9  Outbreak detection 
methods summary ranking

Method Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 7 Ex. 8 Ex. 9 Ex. 10 Rank all Rank SD

LN 1 1 2 5 1 2 2 6 1 21 11
GN 1 7 1 7 1 1 1 3 2 24 7
LV 1 5 2 8 1 4 3 7 4 35 18
CNM 1 1 2 8 6 3 4 8 3 36 18
LP 1 1 2 10 6 6 6 2 6 40 20
IP 1 1 7 4 6 5 8 5 5 42 23
SRC 1 10 8 1 1 8 5 1 8 43 22
WP 1 8 6 3 1 7 7 4 7 44 25

Fig. 7  Ex. 1 Completed outbreaks (communities) detection experi-
ments per outbreak detection method (more is better)

Fig. 8  Ex. 2 Average detection error per method (less is better)

Fig. 9  Ex. 3 Average number of identified empty outbreaks per 
method (less is better)
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This assumption is confirmed in real-life cases as fake news 
sources work in small and separate groups (Jin & Wu 2021; 
Li et al. 2019; Shelke & Attar 2019). What is also worthy 
of mentioning is that the outcome of correctly identifying 
the rumor outbreak number is rare and happens mostly for 
small networks.

For all algorithms, the size of the identified outbreaks 
varies greatly, often leaving several-node groups with multi-
node. Moreover, the difference between the average outbreak 
size and its outliers is significant.

This feature is not expected as it automatically can lead to 
incorrect results in the context of the rumor source identifi-
cation. It is unlikely that fake news sources in real scenario 
started propagating malicious content from an isolated group 
of users. They aim to reach as many users as possible in the 
shortest time. In the rumor source identification process, 

merging such groups with the biggest ones is recommended 
as it can provide better information context for the detection 
method. Unfortunately, none of the examined methods has 
provided results containing outbreaks of similar size. The 
confirmation of the above thesis will be presented with the 
effects on the effectiveness of identifying sources further in 
this paper. Figure 11 illustrates the number of completed 
source detection tasks per outbreak detection method. It can 
be observed that only some of them were able to process 
detection in the expected execution time, which again was 
set to 120 s. Only some combination of the presented meth-
ods can be used to resolve real scenarios with bigger net-
works. Methods like LP, IP, or CNM could almost perform 
the expected number of detection besides the ones for the 
biggest ones. Methods considered for further analysis are 
SRC, WP, LV, LN, GN, LP, IP, and CNM. The method “C” 
marked on the figures refers to standard betweenness cen-
trality, “UC” unbiased version, “CM” traditional between-
ness centrality based on outbreaks, and “UCM” unbiased 
version based on outbreaks. Based on the results presented 
in Fig. 12, it can be noticed that each source detection algo-
rithm has been evaluated with a different number of suc-
cesses, so further evaluation is conducted per source detec-
tion method. Moreover, it can be observed that providing the 
rumor outbreaks detection part to source detection based on 
the centralities makes such methods faster as they were able 
to perform more experiments.

The results illustrated in Figs. 13, 14, 15, 16 present the 
examined source detection methods working on outbreaks 
identified by different techniques. The results are sorted 
decreasingly based on the F-score being a harmonic mean 
of the precision and recall. Each graph's last column—
“REAL”—contains the source detection results found on 
the real outbreak. The best results are obtained by source 

Fig. 10  Ex. 4 Average NMI per method (more is better)

Fig. 11  Ex. 5 Completed source detection experiments in identified 
outbreaks per outbreak detection method (more is better)

Fig. 12  Ex. 6 Completed source detection experiments in outbreaks 
per source detection method (more is better)
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detection based on betweenness centrality, as this metric 
was used to select propagation origins. A simple ranking 
has been used to find the best method for detecting correct 
outbreaks. The rank is the position sum of the technique 
in the analyzed metrics, and the method with the lowest 
ranking value is considered the best one. In other words, 
this measure shows how many given algorithm has been 
the best among the others. Based on the introduced metric, 
the Leiden algorithm was the best based on all analyses, but 
GN was the best for the only source detection experiments. 
Summarizing both LN and GN methods overperformed the 
other methods and should be taken into further analysis and 
used as the reference for the new methods.

7  Conclusions

Social media platforms are broadly used to exchange infor-
mation by milliards of people worldwide. Unfortunately, 
they are increasingly used with malicious intent. Finding a 
rumor source is a crucial attempt at controlling, preventing, 
and learning about the propagation of falsified information 
in networks. Unfortunately, the networks' size and complex 
structure make the problem of correctly identifying real 
sources harder. The current research in rumor source detec-
tion methods is mostly oriented toward single-source issues, 
which is inappropriate for real-life scenarios. Most available 
multi-source detection approaches require the exact number, 
whereas such information is not generally known a priori. 
To alleviate the mentioned problem, the presented paper 
has been introduced. To the best of our knowledge, this is 
the first comprehensive survey and analysis that focuses on 
the techniques of seeking propagation outbreaks in various 
networks without the exact number of them. It presents a 
variety of well-known network partitioning and community 

Fig. 13  Ex. 7 Source detection evaluation based on Rumor Center 
with outbreak detection methods

Fig. 14  Ex. 8 Source detection evaluation based on Jordan Center 
with outbreak detection methods

Fig. 15  Ex. 9 Source detection evaluation based on NetSleuth with 
outbreak detection methods

Fig. 16  Ex. 10 Source detection evaluation based on betweenness 
centrality with outbreak detection methods
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detection methods applied in a simulation case study to iden-
tify the best ones and provide their drawbacks and guidelines 
for new ways straightly oriented toward rumor multi-source 
identification problem.

The presented results highlight the issue of the lack 
of methods that can estimate the real number of sources 
correctly. All of the techniques were designed to use in 
another context than rumor source detection, with specific 
conditions. Moreover, the NMI metrics results indicate 
that only a small part of nodes are correctly assigned to a 
correct outbreak. Most of the presented methods share the 
same trend—they overestimate the total number of poten-
tial sources, leaving small groups of nodes with huge ones 
that strongly impact the accuracy of the source detection 
methods. Another drawback of them is the fact of detect-
ing “empty” outbreaks that do not contain the real source. 
Moreover, evaluating the source detection methods applied 
to over-identified outbreaks confirmed the assumption that 
correct outbreak detection is crucial in finding many sources. 
The accuracy of all examined source detection methods 
increased significantly after applying them to the actual 
propagation outbreaks. However, the various network par-
titioning approaches gave a great overview, indicating the 
best ones that should be used in future research. Detecting 
fake news outbreaks has different properties than network 
partitioning and requires reliable methods to improve the 
accuracy of the current procedures. It should be able to rec-
ognize the most significant areas of propagation that should 
be consumed by detection methods to improve their accu-
racy. Moreover, it should be characterized by short compu-
tation time and be eligible for use in real-life scenarios for 
networks with huge nodes.
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