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Abstract
Change-point detection in dynamic networks is a challenging task which is particularly due to the complex nature of tem-
poral graphs. Existing approaches are based on the extraction of a network’s information by the reduction to a model or to 
a single metric. Whereas the former one requires restrictive assumptions and has limited applicability for real-world social 
networks, the latter one may suffer from a huge information loss. We demonstrate that an extension to a well-balanced mul-
tivariate approach that uses multiple metrics jointly to cover the relevant network information can overcome both issues, 
since it is applicable to arbitrary network shapes and promises to strongly mitigate the information loss. In this context, 
we give guidelines on the crucial questions of how to properly choose a suitable multivariate metric set together with the 
choice of a meaningful parametric or nonparametric control chart and show that an improper application may easily lead to 
unsatisfying results. Furthermore, we identify a solution that achieves reasonable performances in flexible circumstances 
in order to give a reliably applicable approach for various types of social networks and application fields. Our findings are 
supported by the use of extensive simulation studies, and its applicability is demonstrated on two real-world data sets from 
economics and social sciences.

Keywords  Change-point detection · Multivariate control chart · Social network analysis · Statistical data analysis · 
Temporal graphs

1  Introduction

Dynamic networks play an important role in many different 
application fields nowadays, ranging from biological (Bas-
sett and Sporns 2017; Prill et al. 2005) and social sciences 
(Sarkar and Moore 2005; Carrington et al. 2005) to logistic 
and transportation processes (Lee and Dong 2009). Suppose 
we observe a dynamic network D = {Dt, t = 1,… , T} which 
is a sequence of snapshots of the network of interest at vari-
ous time points t. Each of these single networks Dt consists 
of a set of nodes Vt that may be connected through a set of 
links Et . Note that we do not only allow the number and 
positions of edges to differ between different time points, but 

also the number of nodes may change. It is often of inter-
est to decide whether there are differences in the (dynamic) 
stochastic network generating process between different 
time points, e.g., due to a changed consumer behavior in 
marketing networks, an increased communication in social 
networks, or a failure of a working machine in a manufactur-
ing process. Other scenarios involve financial market analy-
sis (Durante and Dunson 2014), network traffic monitoring 
(Sun et al. 2006), or connectomic applications (Durante et al. 
2017). Relevant statistical analysis procedures for such tasks 
are two-sample tests and change-point detection. Although 
our results can be employed for classical testing procedures 
as well, we focus on the latter one in our work.

The main purpose of change-point detection (Basseville 
and Nikiforov 1993; Montgomery 2012) is to identify time 
points at which the structure of a dynamic network changes 
in a meaningful way. Traditionally, there are two perspec-
tives toward this issue. One approach is to observe the whole 
sample D = {D1,… ,DT} of interest first and to decide after-
ward if one or more changes have happened (offline change-
point detection). Another approach is to monitor the process 
sequentially in real-time in order to make an immediate deci-
sion at each newly observed time point (online monitoring). 
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Our results hold for both scenarios, but for clarity of exposi-
tion we mainly focus on the usually more difficult and, in 
practice, often more relevant task of online monitoring in 
the following.

In classical data setups of statistical process control, a time 
series of scalar values is monitored which means that the 
detection is mostly limited to a shift of the mean or variance 
of the observed measurement. Statistical network data, how-
ever, covers a lot more information compared to classical data 
setups (relationships, intensities etc.). Dynamic networks even 
add another dimension by the consideration of the time com-
ponent. This has, on the one hand, the advantage of offering a 
more informative representation of an underlying system ena-
bling, e.g., a better interpretation of observed changes. On the 
other hand, the derivation of statistical inference approaches 
gets more challenging. For the task of online monitoring, 
there are two main issues in this context. First, it is not clear 
how a change might look like and, second, a direct transfer of 
traditional monitoring approaches to dynamic network data is 
hardly feasible as the process is described by a time series of 
networks and not by a time series of scalar values anymore. 
It is therefore crucial to a) be aware of possible changes in 
network data and b) construct monitoring strategies that are 
suitable for network data.

1.1 � Related work

Regarding a), it is not intuitively clear how a change may 
look like, since there is not only one but many, partly 
dependent, components which may trigger a change in net-
work structure. A straightforward definition is presented in 
Ranshous et al. (2015) by assigning a change to time point t, 
if |f (Dt) − f (Dt−1)| > c0 and |f (Dt) − f (Dt+1)| ≤ c0 for some 
scoring function f ∶ Dt ↦ ℝ and a threshold c0 . However, 
this approach is largely limited to the suitability of the 
applied scoring function as it addresses only those changes, 
for which f(.) is able to capture the relevant information. 
In a more comprehensive context, the need of categoriz-
ing network changes with respect to their structural levels 
including nodes, communities or subgraphs is mentioned in 
Hewapathirana (2019). Such a general categorization to han-
dle this issue is presented in Flossdorf and Jentsch (2021). It 
covers global as well as local changes of single components 
(e.g., nodes and links) and addresses their combinations such 
that more complex structural changes (e.g., in blockmodels) 
are also considered.

Regarding b), monitoring strategies for dynamic network 
data are typically based on a reduction of the complexity of 
the underlying time series of networks. There exist various 
methods to do so which can be subdivided in model-based, 
embedding-based and metric-based approaches. For the 
model-based methods, a dynamic network model is fitted 

and the specific parameters or residuals are then monitored 
with a traditional control chart. Examples are state space 
models (Zou and Li 2017), degree-corrected stochastic 
blockmodels (Wilson et al. 2019), temporal exponential 
random graph models (Malinovskaya and Otto 2021), or 
Poisson regression models (Farahani et al. 2017; Motalebi 
et al. 2021). However, the model-based approach commonly 
requires potentially restrictive assumptions like a fixed node 
set (same nodes for each time point, no node dynamics) 
or knowledge of the underlying network structure. These 
assumptions are often too strong, since they can only be used 
for a small field of applications. Furthermore, they allow 
to detect only a limited number of changes while ignoring 
those which does not affect the fitted model.

A related approach is the usage of embedding techniques. 
In a nutshell, the main goal of network embedding is to 
learn a mapping function in order to map each single node 
to a lower-dimensional vector. This results in a latent lower-
dimensional feature representation of a graph that reduces 
noise and redudant information, but still aims to maintain 
important structural information (Cui et al. 2018). There 
exist various of these network representation methods such 
as node2vec (Grover and Leskovec 2016) and DeepWalk 
(Perozzi et al. 2014) that are developed based on random 
walks. Other approaches use matrix factorization (Belkin 
and Niyogi 2001; Ou et al. 2016). Whereas these are specifi-
cally designed for static networks, there also exist versions 
for dynamic networks like temporalnode2vec (Haddad et al. 
2020) and DynamicTriad (Zhou et al. 2018). A thorough 
analysis of the stability of such embedding approaches can 
be found in Gürsoy et al. (2021), where also the importance 
for ensuring alignment is stressed as misaligned embed-
dings might negatively impact the performance for dynamic 
network inference tasks such as change detection. For the 
usage of change detection, embedding methods are particu-
larly used to detect vertex-based changes in a time series 
of graphs like, e.g., detecting vandal users in online social 
networks using a vector autoregression approach (Li et al. 
2019). Moreover, Hewapathirana et al. (2020) propose a 
spectral embedding method that particularly addresses spar-
sity and degree heterogeneity. Lin et al. (2022) construct 
an embedding change detection approach with a focus on 
node coordinates in a latent space that are used to model 
edge dependencies. Further approaches involve Sun and Liu 
(2018), Grattarola et al. (2019), Duan et al. (2020), and Xie 
et al. (2023).

Lastly, metric-based approaches summarize the network 
information by assigning a single metric or a combination 
of different metrics to each Dt . Hence, they are more flexible 
as they can be applied to arbitrary types of networks. Excep-
tions are similarity measures like DeltaCon (Koutra et al. 
2016) or Graph Edit Distance (Bunke et al. 2007) which 
sequentially compare each Dt to a reference network. For 
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those approaches, a fixed node set is obviously required. 
This is not the case for any other network metric that is cal-
culated with the sole information of Dt . Recent works used 
centrality metrics (McCulloh and Carley 2011), matrix char-
acteristics (Barnett and Onnela 2016; Hazrati-Marangaloo 
and Noorossana 2021), scan statistics (Neil et al. 2013), or 
further network metrics like the clustering coefficient (Ken-
drick et al. 2018). The application under the consideration 
of time dependency is discussed in Ofori-Boateng et al. 
(2021). Obviously though, univariate metric-based meth-
ods tend to lead to flexibility issues. A single metric is only 
able to capture some, but not all information that might be 
relevant for change detection. Therefore, in Flossdorf and 
Jentsch (2021), such metrics are analyzed in dependent and 
independent setups and evaluated with respect to their indi-
vidual suitability in various situations. A multivariate usage 
of three network centrality metrics and the network density 
in a multivariate EWMA chart is studied in Salmasnia et al. 
(2020). However, a fixed node set as well as a Gaussian dis-
tribution for each involved metric is assumed which notice-
ably reduces the flexibility advantage that metric-based 
approaches have compared to the other mentioned categories 
of network change detection.

1.2 � Contribution

We expand on the univariate results of the metric-based 
approaches and study a monitoring method that uses a mul-
tivariate set of metrics. We illustrate that such a multivariate 
approach overcomes the mentioned issues of model-based 
and other metric-based methods, since it is ad hoc applicable 
without restrictive assumptions and provides flexibility gains 
as the relevant information is now simultaneously captured 
by multiple metrics of various types. We base our analysis 
on theoretical considerations, simulation-based evidences 
and practical applications. The need of such a multivariate 
analysis is mentioned in the univariate literature (McCulloh 
and Carley 2011; Flossdorf and Jentsch 2021). Contrary to 
the multivariate investigations in Salmasnia et al. (2020), 
we do not limit our analysis on a certain set of metrics or 
control chart and also allow for arbitrary network structures 
including a dynamic node set and a nonparametric setup. 
Our primary objective is to present a solution on how exactly 
a general multivariate procedure shall be implemented and 
performed. In this context, we identify three challenges that 
are crucial for a succesful application: a) a sound choice 
of a set of network metrics, b) their combination with a 
suitable choice of control charting procedures, and c) the 
final interpretation of the results. We introduce strategical 
guidelines to solve these challenges and demonstrate that 
ignoring them could easily lead to erroneous conclusions 
and unsatisfying results. We identify a balanced solution that 
achieves reliable performances in various situations as well 

as propose solutions that are specialized for more specific 
scenarios. To support the flexibility of this study, we study 
both distribution-free and parametric monitoring schemes.

The paper is organized as follows: Sect. 2 offers a short 
recap of the necessary theory regarding change detection in 
network data and multivariate control charts. In Sect. 3, we 
formulate the multivariate network change detection proce-
dure in details and study the suitability of different metric 
sets, various control charts, and the interaction of both. The 
results are supported by an extensive simulation study in 
Sect. 4 which confirms the reliability in various change situ-
ations and shows superior performance compared to univari-
ate approaches. In Sect. 5, the procedure is applied to two 
real-world social network data sets. Section 6 contains some 
concluding remarks.

2 � Existing foundations

In this section, we recap the existing concepts of change 
detection in network data as well as of traditional statistical 
process control that are necessary for the introduction of the 
methodology in Sect. 3.

2.1 � Changes in network data

The first challenge is to understand which types of changes 
may happen in network data. Because a dynamic network 
consists of various structural elements, a simple shift of 
location or scale parameters like in traditional scenarios 
does not exist. As explained above, we focus on a flexible 
setup and prefer general types of changes (Hewapathirana 
2019) rather than specialized changes and therefore follow 
the change definition of Flossdorf and Jentsch (2021). In this 
context, the idea is to consider the influence of each struc-
tural network element to obtain a thorough categorization of 
possible changes. These elements are a) links, b) nodes, and 
c) extra information that may be put on either nodes or links 
(i.e., covariates, attributes). Each element is assumed to be 
able to trigger a change either in a global or local manner. 
A short summary of all scenarios is listed below. Note that 
we do not consider changes caused by covariates here, since 
their type of occurrence is hugely dependent on the underly-
ing application field.

•	 Global Link Change (GLC): The change is triggered 
by a significantly increased or decreased link amount. 
This is assumed to happen globally, i.e., the changed link 
probability affects each node equally.

•	 Local Link Change (LLC): Similar to GLCs, but the 
changed link behavior only affects a few nodes which 
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either get more or less influence, i.e., the network struc-
ture changes to a more centralized or flat hierarchy.

•	 Global Node Change (GNC): The node amount 
increases or decreases significantly, because new nodes 
enter the network or existing ones leave it.

•	 Local Node Change (LNC): Only a few influential 
nodes enter or leave the network which results in a sig-
nificant impact on the network structure.

While all of these changes may occur individually, it 
is likely that some of them happen simultaneously, e.g., 
a global increase of links may be the consequence of the 
entry of new nodes in the network. This is referred to as 
mixed-type changes (MTC), which also enables capturing 
more complex change scenarios like those in blockmod-
els or subgraphs. A real-world social network example 
for MTCs is depicted in Fig. 1. It shows the e-mail com-
munication between employees of the former US com-
pany Enron. It is quite obvious that the overall structure 
of the network has not changed drastically between the 
both observed time points. Hence, we have no hint to local 
changes. However, we can observe a clearly reduced node 
and link amount in Fig. 1 compared to Fig. 1. The network 
hence got more sparse both in terms of nodes and links 
which hints to a mixed-type change of GLC and GNC. 
Further typical examples and relevant application scenar-
ios for the different types of change are given in Table 1.

2.2 � Metric‑based network monitoring

We already briefly discussed possible complexity reduction 
procedures in order to monitor a temporal series of graphs 
which involves model-based and metric-based approaches. 
The former one is quite restrictive and not applicable ad hoc, 
e.g., parametric assumptions have to be met. This also affects 
that only a few model-specific change types can be detected, 
e.g., LNCs and GNCs are ignored due to the common assump-
tion of a fixed node set. Those restrictions are especially unfa-
vorable, if the structure and behavior of the network of interest 
is not explicitly known beforehand. Dynamic networks are 
commonly quite prone to this issue due to their high dimen-
sionality and potentially high dynamics.

The complexity reduction step of the metric-based pro-
cedure is even more radical, but those approaches provide 

(a) network before change (b) network after change

Fig. 1   Real-world example for a mixed-type change (MTC): Enron E-mail communication

Table 1   Examples and application scenarios

Type Examples

GLC Increased/decreased communication in communication 
networks

Changed activity in cyber networks (e.g., due to malware)
LLC Formation of new hotspots in disease networks

Changed route layout in transportation networks
GNC New advertising strategy in customer networks

Addition of new destinations in tourism networks
LNC Restructuring of supply chains in logistics networks

Creation of new leading positions in profession networks
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a more flexible monitoring tool without restrictions for a 
broad application field. Consider that each network Dt of 
the dynamic network D is reduced to a scalar f (Dt) = st . 
Thus, the vector s = (s1,… , sT ) contains the captured infor-
mation of the applied metric to D . Below, we give a sum-
mary of typical metrics that are common choices when deal-
ing with network monitoring. For instance, the Frobenius 
norm is studied in Barnett and Onnela (2016), the Spectral 
norm in Chen et al. (2021) and as it is equal to the largest 
eigenvalue for undirected networks also in parts in Hazrati-
Marangaloo and Noorossana (2021), the centrality metrics 
in McCulloh and Carley (2011), Salmasnia et al. (2020), and 
Ofori-Boateng et al. (2021). Note that the matrix norms are 
calculated based on the temporal series of adjacency matri-
ces At ∈ ℝ

nt×nt of the networks Dt , where nt is the number of 
nodes at time point t. For the sake of simplicity, we mainly 
focus on undirected and unweighted networks which means 
that a matrix entry at,ij = 1 , if a link between nodes i and j 
exists, and at,ij = 0 otherwise.

•	 Frobenius norm (F): 

�
nt∑
i=1

nt∑
j=1

a2
t,ij

.

•	 Spectral norm (S): max
‖x‖2=1

��Atx
��2.

•	 Closeness centrality (C): cC
i
= (

1

n−1

∑
j∈V

d(i, j))−1.

•	 Degree centrality (D): cD
i
=

nt∑
j=1

at,ij.

•	 Betweenness centrality (B): cB
i
=

∑
i≠j≠l

�jl(i)

�jl

.

•	 Eigenvector centrality (E): cE
i
=

1

�

nt∑
j=1

at,ijc
E
j
.

In this context, d(i, j) denotes the shortest path between two 
nodes i and j, �jl(i) the number of shortest path between two 
nodes j and l (that pass through node i), and � the largest 
eigenvalue of At.

Whereas the matrix norms are global metrics for the 
whole network Dt , the centrality scores are locally defined 
for each node. To transform them into a global network 
metric, we consider two approaches. On the one hand, this 
involves the average score over all nodes, i.e.,

On the other hand, we can use a scale metric by taking the 
deviation to the largest observed score

We specify the used version in the following by noting 
an m or d index (e.g., Cm for mean Closeness and C d for 

cavg =
1

n

∑

i∈V

ci.

cdev =
∑

i∈V

(max
j∈V

(cj) − ci).

Closeness deviation). Note that for the eigenvector centrality, 
both versions are affine linear transformations to each other 
and therefore achieve equal monitoring performances. It is 
possible to use any other network metric as well, e.g., the 
Average Path Length or the Clustering Coefficient like in 
Kendrick et al. (2018), but many are strongly related to the 
presented ones and do not contribute added value (Flossdorf 
and Jentsch 2021).

2.3 � General online monitoring procedure

The main goal of online monitoring is to detect anomalies 
in a process as soon as possible after their occurrence. Typi-
cally, the process of interest is subdivided into two phases. 
In Phase I, it is assumed that the process is somewhat stable 
and reliably represents the typical state of the underlying 
system without meaningful deviations. The system is then 
called to be in-control. In Phase II, the actual monitoring 
takes place by deciding if an incoming signal sufficiently 
matches the in-control state. An alarm is triggered if this 
is not the case and the signal is classified as out-of-control 
(Basseville and Nikiforov 1993).

Consider {Yt, t = 1,… , T} to be a sequence of a 
random variable of interest with conditional density 
P
�
(Yt ∣ Yt−1, ..., Y1) and � to be the unknown change time. 

If 𝜏 > t , then the conditional density parameter � is con-
stant with � = �1 . For � ≤ t , it applies � = �2 . The goal is to 
detect the anomaly as soon as possible with a fixed rate of 
false alarms before � . An estimation of �1 and �2 is often not 
necessary, but might be useful for interpretation purposes 
regarding possible reasons for a change.

In terms of the practical usage, control charts are applied. 
First, a metric xt is chosen which a) can be calculated for 
each time point t, b) covers and represents most relevant 
aspects of the behavior of the system (i.e., Yt ), and c) is able 
to identify all considered changes by a sensitive reaction 
to them. This metric serves as the main input for the con-
trol statistic zt which is calculated for the process at each 
time point t. Depending on the setup, zt can be the metric 
itself (e.g., in memory-free Shewhart charts) or some sort 
of transformation zt = g(xt) (e.g., in memory-based EWMA 
or CUSUM charts). In Phase I, zt is expected to represent 
the in-control state of the system and, hence, to be a stable 
process without meaningful deviations. This information 
is used to define the upper and lower control limits hu and 
hl . Those limits are chosen under the consideration of the 
desired rate of false alarms and can be derived by parametric 
or distribution-free procedures. In Phase II, if we observe 
hl ≤ zt ≤ hu , the process is deemed in-control. Otherwise an 
alarm is triggered at time point t to signal a detected change.
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2.4 � Control charts for traditional multivariate data

In practice, it is customary to improve the monitoring pro-
cedure by taking more process metrics into account. Their 
independent usage in a univariate manner is possible but not 
recommended, since it is inefficient and may result in errone-
ous conclusions Montgomery (2012). Hence, the construc-
tion of multivariate control charts, which consider the metrics 
jointly, is of interest.

In this context, the most basic multivariate chart is 
the Hotelling T2 chart. Suppose we observe a vector 
�
�
= (xt1, ..., xtp) of p different process metrics at each time 

point t, then the corresponding control statistic is calculated by

where 𝐱̄ and S are the sample mean vector and covariance 
matrix of the underlying observations. Since zt mainly takes 
the squared deviation to the sample mean into account, it is 
non-negative and we expect values near zero if the process 
is in-control. Therefore, only an upper control limit has to 
be derived. This can be done under parametric assumptions 
with an approximation via the F-distribution which yields

where n is the number of observations in Phase I and � the 
desired false alarm rate.

In many practical applications, the met distributional 
assumption might not be justified which can have a strong 
negative impact on the monitoring performance. To avoid such 
issues, the usage of nonparametric techniques seems prom-
ising. In this context, a bootstrap approach was proposed in 
Phaladiganon et al. (2011), which is able to efficiently han-
dle the monitoring process, even if the observed data is non-
Gaussian or unknown. It works as follows. First, the statistic zt 
is calculated for all T observations of Phase I as before, which 
yields the vector z = (z1, ..., zT ) . Subsequently, B Bootstrap 
samples with sample size T are drawn from z and for each of 
those samples the (1 − �)-quantile is calculated. The upper 
control limit hu is then determined by taking the average over 
those values.

The Hotelling T2 charts are multivariate extensions of a 
univariate Shewhart-type control chart, because they only 
use information of the current observation which makes them 
rather insensitive to small shifts. Memory-based control charts 
like exponential weighted moving average charts (EWMA) 
overcome this issue, the control statistic of a multivariate ver-
sion (MEWMA) (Lowry et al. 1992) is defined as

where �
�
 is recursively defined as

zt = (𝐱
𝐭
− 𝐱̄)�S−1(𝐱

𝐭
− 𝐱̄),

hu =
p(n + 1)(n − 1)

n2 − np
F
�,p,n−p,

zt = m
�
t
�
�

−1
mt,

The estimation of the covariance matrix is given by

where S is the estimated covariance matrix given all observa-
tions from Phase I. While the formula of the control statistic 
is quite similar to the Hotelling T2 chart, the main difference 
lies in the intermediate step of calculating mt , where the 
smoothing parameter � ∈ [0, 1] serves as a factor for provid-
ing weights to past observations and the current one. For 
� = 1 , the MEWMA setup corresponds to the Hotelling T2 
chart. Optimal control limits depending on � , the number of 
variables p and the desired false alarm rate can be found in 
several works (Prabhu and Runger 1997; Knoth 2017). In 
general, MEWMA charts with small values of � are rather 
robust to the normal assumption yielding satisfying results 
for different distributions of the underlying data (Montgom-
ery 2012).

3 � Multivariate metric‑based monitoring 
solutions

After the recap of the theoretical background of the exist-
ing foundations in Sect. 2, we now move on to the practical 
implementation of a monitoring setup for network data by 
combining and adapting multivariate control chart schemes 
with an intelligent choice of a set of network metrics. Mak-
ing use of network metrics for the monitoring of networks, 
first, the practitioner has to choose the (multivariate) set of 
metrics in conjunction with a suitable control chart pro-
cedure. While there is a whole variety of (and even more 
combinations of) networks metrics that could be used, it is 
generally unclear which combination of such network met-
rics should be used in which dynamic network scenario to 
detect deviations from the control state as reliable as pos-
sible. As the further steps are rather straightforward, that 
is, the calculation of the corresponding control statistic and 
control limits (Phase I), the monitoring of new observa-
tions (Phase II) and how to stop at a detected change, the 
interpretation of the change is also not straightforward. In 
this context, note that this work aims to present a general 
procedure and particularly focuses on developing an ad hoc 
solution that is applicable to arbitrary network shapes and 
application fields and enables a reliable change analysis in 
various situations. Therefore, we present general guidelines 
for different categories of application scenarios and iden-
tify the most flexible solution that performs reliably even in 
unknown circumstances.

mt = �(xt − 𝐱̄) + (1 − �)mt−1.

St =
�

2 − �
[1 − (1 − �)2t]S,
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3.1 � Selection of a suitable set of metrics

We use the metrics that were presented in Sect. 2.2 as these 
are the common choices for extracting the information of a 
network (McCulloh and Carley 2011; Hazrati-Marangaloo 
and Noorossana 2021; Chen et al. 2021; Barnett and Onnela 
2016; Salmasnia et al. 2020; Ofori-Boateng et al. 2021). 
Because the information of a network gets reduced to a sin-
gle scalar value, the resulting information loss is typically 
quite large. It is therefore crucial to be aware of the informa-
tion a metric is able to capture in order to understand which 
type of change it is able to detect which was discussed in 
Flossdorf and Jentsch (2021). See Table 2 for a short sum-
mary of the individual suitability of the considered metrics 
in the presented change scenarios.

Due to the described information loss, it is not too sur-
prising that no single metric is able to perform well in all 
scenarios. However, for each type of change, there exist mul-
tiple metrics that work reasonably well. Hence, it is a natural 
approach to use multiple metrics jointly in order to capture 
various pieces of information to mitigate the loss. Formally, 
for each Dt , a vector st = (st1, ..., stp) of p different scores is 
calculated at each time point t. In this work, we mainly focus 
on sets with p = 3.

In this context, the main challenge is the choice of a suit-
able set of metrics. The main statement of Table 2 is that 
most metrics either perform reasonably well in change situa-
tions that affect either the network globally (i.e., GLC, GNC) 
or in local change scenarios (i.e., LLC, LNC). Based on this, 
we may classify most metrics into two different performance 
groups A = {S, C m , D m , B m }, which perform well in global 
change scenarios, and group B = {Cd , D d , D b } that perform 
superior in local setups. Remaining are the Frobenius norm, 
which can handle link changes but ignores node changes, 
and average Eigenvector Centrality that is theoretically 
affected by all change types but sometimes to a lesser extent.

The final choice of a suitable set of metrics is dependent 
on the goal and the expectations of the application. Based on 
the described univariate behavior of the presented metrics, 
we propose to consider the following multivariate monitor-
ing strategies.

•	 I - Balanced Setups: This category represents the most 
flexible monitoring strategy. The goal is to achieve a reli-
able performance for as many as possible change types. 
Particularly, changes of moderate to high intensity should 
be detected. Corresponding sets include one metric from 
each of the performance groups A and B. The third met-
ric is the average eigenvector centrality. This balanced 
setup is a promising candidate for ad hoc applications 
in which users do not know what to expect and how a 
change might look like (e.g., networks with high dynam-
ics like social networks). Example setup: SBdE.

•	 IIa - Balanced Setups with a focus on global changes: 
In this category, it is still of interest to be sensitive to as 
many change types as possible, but with a clear focus on 
the detection of global changes. This category involves 
all 2 vs. 1 combinations (i.e., two metrics out of group A 
and one out of group B). Example setup: SDmCd.

•	 IIb - Balanced Setups with a focus on local changes: The 
same as IIa, just with a major focus on local changes 
(i.e., one metric out of group A and two out of group B). 
Example setup: B dDdS.

•	 IIIa - Unbalanced setups for global changes: It is only 
of interest to detect global changes in the network - even 
those which are characterized by a small change inten-
sity. The detection of other change types is not relevant. 
The corresponding metric sets are constructed with three 
metrics out of group A. Example setup: C mDmS.

•	 IIIb - Unbalanced setups for local changes: The same 
as IIIa, just for local changes. The metric sets are con-
structed with three metrics out of group B. Example 
setup:CdDdBd.

•	 IV - Setups with a particular focus on link changes: This 
category represents all metric sets in which the Frobenius 
norm is part of, since this metric is specialized to detect 
link changes. Changes purely triggered by nodes can also 
be emphasized by combining the Frobenius norm with 
other metrics that are sensitive to it. Example setup: FSBd

.

In a nutshell, the idea behind Category I is to use one met-
ric out of both classes A and B, in order to capture various 
types of information. The usage of the average eigenvector 
then provides some neutral perspective. This balanced setup 

Table 2   Performances of the 
metrics in various situations

++ = suitable, + = mostly suitable, o = moderate performance/dependent on other circumstances, − = 
rather not suitable, − = not suitable

Change type F S Cm C
d

Dm D
d

Bm B
d

E

GLC ++ ++ + − ++ − + − o
LLC + o − + o + o + ++

GNC − ++ + − + − + − o
LNC − − o + − + − + ++
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seems to be a promising candidate for an ad hoc applica-
tion in which users do not know what to expect and how a 
change might look like (e.g., networks with high dynam-
ics like social networks). The other Categories offer some 
more unbalanced setups by 2 vs. 1 and 3 vs. 0 combinations. 
These are constructed for more specialized cases where the 
user might be interested in detecting some particular changes 
which frequently occur in the corresponding application (see 
examples in Table 1). Finally, Category VI emphasizes link 
changes more by taking the Fobenius norm into account.

As mentioned, we used p = 3 as the number of considered 
metrics for the development of the categorization scheme 
above. The usage of other values is of course possible. How-
ever, we would like to note that a higher value of p is in the-
ory helpful for capturing more information, but is also prone 
to more uncertainty picked up by the monitoring procedure, 
which might result in power losses. Moreover, some of the 
metrics might be highly correlated due to a similar definition 
which would make the monitoring procedure less efficient 
for higher p and might even lead to erroneous conclusions. 
Moreover, values of p > 3 do likely not contribute added 
value as there are the two explained performance groups. 
Considering this, p = 3 seems to be a good trade-off between 
information capturing and maintaining flexibility. This is 
also validated by our simulation study in Sect. 4.

A particular metric set with a value of p = 4 is consid-
ered in Salmasnia et al. (2020). For the remainder of this 
paper, we denote this set by SAL. The included metrics are 
deviation metrics for the Betweenness, Degree, and Close-
ness centralities with a similar definition to B d , D d , and C d . 
Additionally, the network density is used as a fourth metric. 
Overall, this metric set can be classified in our Category 
IIIb as it uses three metrics that are specifically sensitive 
to detect local changes. As we will see in the simulation 
study, the additional consideration of the density does not 
change much compared to the B dDdCd set as these metrics 
are highly correlated and quite dominant in their multivari-
ate combination.

3.2 � Selection of a suitable multivariate control 
chart

The choice of a suitable control chart setup is as important 
as the choice of a metric set. The monitoring performance of 
the parametric Hotelling T2 chart is dependent on the qual-
ity of the fit of the applied F-distribution. To the best of our 
knowledge, no complete asymptotic inference has yet been 
derived for the considered network metrics due to their com-
plex nature. Consequently, putting parametric assumptions on 
their joint distribution seems rather implausible. The para-
metric Hotelling T2 chart is known to react rather sensitively 
to violations of its distributional assumption (Stoumbos and 
Sullivan 2002) and might suffer from reliability issues in this 

context. We expect that this is especially the case for rather 
unbalanced multivariate sets of metrics, since their marginal 
distributions tend to be more similar to each other and are 
sensitive to the same impact factors, which may result in a 
more skewed joint distribution. This behavior can particu-
larly be observed for sets of Categories IIIa and IIIb and 
also for the presented one of Salmasnia et al. (2020). For 
more balanced setups, this effect is likely to be weakened, 
because different sensitivities are involved. Furthermore, we 
expect a worse performance of the Hotelling T2 chart for 
lower false alarm rates � , because the corresponding con-
trol limit hu depends on the (1 − �)-quantile of the applied 
distributional assumption. Higher quantiles are likely to be 
bad approximations for the corresponding quantiles of the 
empirical distribution, which is---for very low �---sensitive 
to the observed extreme values that might especially play 
a role for rather unstable and high-dynamic processes like 
networks. Overall, this effect tends to be less pronounced for 
larger values of � as the quantile of interest is shifted more 
toward the center of the distribution. The explained impacts 
affect the MEWMA chart as well, but to a lesser extent. Due 
to the smoothing of the control statistic that involves the con-
sideration of past observations, the chart is noticeably more 
robust against non-Gaussian behavior. This is particularly 
the case for lower values of the smoothing parameter � which 
weakens the individual influence of the current observation. 
However, note that inertia issues might be a consequence of 
this (Lowry et al. 1992).

Finally, the nonparametric Hotelling T2 chart might be 
the safest choice for a reliably constructed control chart 
when using the considered metric sets. As the bootstrap 
procedure is directly dependent on the empirical distribu-
tions, we expect the chart to be more robust against various 
types of metric sets, i.e., to perform on a similar level for 
all sets. Obviously, its quality increases for larger sample 
sizes (i.e., longer in-control phase), and the bootstrap pro-
cedure ensures that it works reasonably in most cases of 
lower sample sizes as well. However, in the latter cases, its 
performance might not be superior to the parametric candi-
dates anymore as we will see in Sect. 4.

3.3 � Interpretation of the results and further 
analyses

To conclude, we recommend using a balanced metric set like 
SBd E together with the nonparametric Hotellings T2 chart 
for the most reliable solution in flexible scenarios. Regard-
ing the interpretation of the monitoring results, note that we 
monitor a temporal series of networks D = {Dt, t = 1,… , T} 
instead of a simple process variable Yt . Hence, the change 
parameter � gets more complex (see Sect. 2.3) making its 
interpretation in a change situation all the more impor-
tant. This especially concerns the purpose of maintaining 
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transparency and reliability of the monitoring tool. In prac-
tice, we propose to stop after a detected change and to ana-
lyze the corresponding network Dt carefully. This can be 
handily done by descriptively analyzing the univariate val-
ues of the used metrics and applying their interpretations 
given in Table 2 in order to identify the underlying change 
type. Precise intepretation examples are given in Sect. 5.

While focussing on temporally independent setups and 
the related challenges in this paper, the presented procedure 
can be handily extended to allow also for time dependency. 
For instance, this can be done by fitting an ARIMA model 
to the multivariate series of metrics in order to monitor its 
residuals similar to Ofori-Boateng et al. (2021); Flossdorf 
and Jentsch (2021); Pincombe (2005).

4 � Simulation study

To underline our findings, we execute an extensive simula-
tion study in the following. We generate numerous example 
situations of each described change type and analyze the 
performances of the proposed multivariate metric strategies 
in combination with the described control chart procedures. 
Additionally, we compare their results with the correspond-
ing univariate metric performances as studied in McCulloh 
and Carley (2011), Ofori-Boateng et al. (2021), or Barnett 
and Onnela (2016) and with the multivariate approach SAL 
of Salmasnia et al. (2020). Recall that a comparison with 
typical model-based and embedding-based approaches is not 
feasible here in a meaningful way, as our study is designed 
to detect flexible changes without imposing any high-level 
assumptions on the network structure (e.g., fixed node set, 
model assumptions). In a second part, we extend the study 
by analyzing more practical relevant mixed-type changes in 
different situations of stochastic blockmodels. The code for 
the simulation study can be found in a GitHub repository1 
created by the authors. 

4.1 � Setup

We generate sampling data for each of the four described 
change types of Sect. 2.1 (GLC, LLC, GNC, and LNC). For 
each of those, we execute three sub-situations with varying 
change intensities (small, moderate, and heavy). This results 
in 12 scenarios in total, which are repeated 1000 times to 
obtain a reliable performance analysis. The data generating 
processes as well as their different parameter setups to con-
trol the intensity are given in Tables 3 and 4.

For each situation, we simulate dynamic networks of 
length T = 1400 and use the first 1000 observations as Phase 

I in order to reliably calibrate the control chart. The change 
time is set to happen at time point � = 1050 . The control 
limits of the control charts are set with a false alarm rate of 
� = 1% . While the rather large number of observations in 
Phase I is interesting to obtain meaningful findings about 
the theoretical performances and the suitability of the metric 
sets, we are aware that, from a practical point of view, those 
numbers are usually hard to provide in real-world applica-
tions. To this purpose, we examine the performances in 

Table 3   Data generation processes using Erdös-Renyi (ER) graphs

In-Control: Setup for the in-control behavior of the dynamic network 
(Phase I)
Out of Control: Setup for the out of control behavior of the dynamic 
network (Phase II)

Type Data generation

GLC In-Control: ER graph with probability p and n nodes
Out of Control: ER graph with probability p̃ and n nodes

LLC In-Control: ER graph with probability p and n nodes
Out of Control: heterogenous ER graph with a changed
probability p̃ for k central nodes

GNC In-Control: ER graph with at each time point a randomly
chosen node size in [n − n ⋅ d, n + n ⋅ d] and a randomly
chosen link amount in [m − m ⋅ d,m + m ⋅ d].
Out of Control: ER graph with at each time point a
randomly chosen node size in [ñ − ñ ⋅ d, ñ + ñ ⋅ d] and a
randomly chosen link amount in [m − m ⋅ d,m + m ⋅ d].

LNC In-Control: ER graph with probability p and at each time
point a random node size nflex ∈ [n − n ⋅ d, n + n ⋅ d].
Out of Control: heterogenous ER graph with at each time
point a random node size ñflex ∈ [ñ − ñ ⋅ d, ñ + ñ ⋅ d]

and changed probability p̃ for k central nodes and a

probability of pnflex−p̃k
ñflex−k

 for all other nodes.

Table 4   Parameter setup for each situation according to Table 3 with 
n = 50

Type Intensity Parameter setup

GLC Small p = 0.4 , p̃ = 0.43

Moderate p = 0.4 , p̃ = 0.45

Heavy p = 0.4 , p̃ = 0.5

LLC Small p = 0.35 , p̃ = 0.45 , k = 5

Moderate p = 0.4 , p̃ = 0.6 , k = 2

Heavy p = 0.35 , p̃ = 0.65 , k = 1

GNC Small d = 0.05 , m = 800 , ñ = 55

Moderate d = 0.05 , m = 800 , ñ = 60

Heavy d = 0.05 , m = 800 , ñ = 75

LNC Small d = 0.15 , p = 0.4 , ñ = 54 , p̃ = 0.6 , k = 4

Moderate d = 0.15 , p = 0.4 , ñ = 52 , p̃ = 0.7, k = 2

Heavy d = 0.15 , p = 0.4 , ñ = 51 , p̃ = 0.8 , k = 1

1  https://github.com/jonathanFlossdorf/NetworkMonitoring
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practically more relevant simulation settings in Sect. 4.4 
and analyze real-world networks in Sect. 5.

For all scenarios, we evaluate the performances of all 
triple combinations of the presented metrics and particu-
larly focus on the results of the multivariate metric set cat-
egories that were derived in Sect. 3.1. We evaluate their 
performance in combination with all three presented control 
chart procedures and compare the results with the univariate 
approaches. As performance measures, we use ARL0 and 
ARL1 . The ARL0 is defined as the in-control average run 
length which can reach an optimal value of 1

�
= 100 in our 

setup. On the other hand, ARL1 calculates the post-change 
average run length which measures the delay to detection, 
i.e., the number of time points an alarm is sent after the 
actual change has occurred.

To maintain comparability across the univariate and 
multivariate setups, we compare memory-free settings and 
memory-based procedures separately. Hence, the parametric 
and nonparametric Hotellings T2 charts are compared with 
the Shewhart chart and the MEWMA chart with the EWMA 
procedure. For the latter ones, we try different smoothing 
parameters � ∈ {0.1, 0.2, ..., 0.7} and report the ones with 
the best results.

4.2 � Phase I performances

We begin with the evaluation of the in-control state. Figure 2 
illustrates the empirical false alarm rates for all considered 
multivariate control charts in each of the 72 examined sce-
narios for all three applied control chart types.

The results largely meet our expectations as the paramet-
ric Hotelling T2 procedure tends to yield relatively low con-
trol limits. This particularly seems to be the case for more 
unbalanced setups (e.g., CmDm S, B dCdDd , SAL) which tend 
to generate more skewed joint distributions as explained in 
Sect. 3.2. Overall, however, the desired fit is not reached 
for more balanced sets as well, since their false alarm rates 
lie above the desired � and above the ones of the other two 
procedures.

See Fig. 3 for an example of the quality of the fit where 
the deviation of the empirical distribution to the assumed F 
assumption is clearly visible, particularly at the tails of the 
distribution. Regarding the other control charts, the results 
support the statement that MEWMA is more robust against 
possible parametric violations. However, the nonparametric 
bootstrap approach clearly yields the most reliable in-control 
results for the rather long in-control phase and the small 
value of �.

4.3 � Phase II performances

We saw that the charts produce quite different ARL0 val-
ues, although they were designed to hold a common fixed 
false alarm rate. Obviously, charts with a lower ARL0 will 
produce lower values of ARL1 on the same data set, since 
the control limit hu is lower. Hence, the ARL1 results should 
only be compared between the same applied control chart 
type. As the bootstrap chart achieved the most reliable Phase 
I performances, we therefore report the Phase II results only 
for the bootstrap chart and concentrate on the performance 
differences of the applied metric sets. See Table 5 for an 

Fig. 2   Average empirical false alarm rates for all simulated situations. 
The desired value for � is 0.01

Fig. 3   Example situation for a comparison of the simulated empirical 
distribution with the corresponding F-approximation of the paramet-
ric Hotelling T2 chart
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overview of the results for the univariate procedure and 
the representatives of the multivariate monitoring strate-
gies. The results for all 84 triple combinations are given in 
Tables 8, 9, 10, 11, 12, 13 and 14 in the Appendix.

Overall, the results meet our expectations. The univari-
ate metrics might perform reasonably in special scenarios, 
but show clear weaknesses in others. The multivariate pro-
cedures, on the other hand, perform clearly more reliable 
over all situations and are more robust to the underlying 
change type which underlines the improved flexibility 
compared to the univariate approach. On a further note, 
the results are handily interpretable and are aligned with 
the statements of our derived categorization of Sect. 3.1. 
We can, e.g., take a closer look at the performance of a 
representative of Category I, i.e., the balanced set SBd E 
(consisting of S, B d , and E). Regarding the involved uni-
variate performances, S is able to handle global changes, 
but has problems with LLCs and especially LNCs. For 
B d , the behavior is vice versa. Their joint monitoring, 

however, leads to promising results for all scenarios, since 
their effects are combined. The additional consideration of 
E, which is in theory sensitive to all types, but to a lesser 
extent, serves slightly supportive to all impacts and as an 
overall smoothing factor. The behavior for more unbal-
anced multivariate setups of Categories IIa, IIb, IIIa, IIIb 
is similar as they provide more flexibility overall com-
pared to the involved univariate candidates. Particularly, 
the ARL1 for the “non-specialized" cases (i.e., the cases, 
for which all involved metrics are not really suitable) 
improved as the small sensitivities of the single metrics 
have a larger impact if they are considered jointly, see, 
e.g., the B dCdDd performance for GNCs or the C mDm S 
performance for LLCs. Despite the improved performance 
compared to the univariate metrics, the values are obvi-
ously higher than those of more balanced setups in these 
situations. Moreover, it is somewhat surprising that they 
also do not clearly outperform the more balanced sets in 
“specialized" cases, for which they are mainly constructed.

Table 5   ARL
1
 for the studied change types. Best ARL

1
 for each scenario across all setups (univariate and multivariate) is printed in bold

(a) Univariate setup performances

Type Intensity F S Cm C
d

Dm D
d

Bm B
d

E

GLC small 3.12 3.24 3.03 94.78 3.12 109.89 3.17 55.63 50.61
moderate 1.22 1.20 1.20 68.86 1.23 86.83 1.22 16.89 19.82
heavy 1.00 1.00 1.00 45.02 1.00 102.13 1.00 4.71 9.82

LLC small 9.19 7.70 8.40 25.22 9.19 27.44 9.53 60.99 36.00
moderate 14.57 9.97 12.14 3.14 14.57 3.45 14.57 6.04 4.43
heavy 22.52 11.60 17.67 1.41 32.52 1.46 21.72 2.27 1.81

GNC small 144.02 2.19 1.41 45.33 2.17 78.00 1.34 8.16 11.98
moderate 142.55 1.01 1.00 9.82 1.01 73.06 1.00 2.02 3.03
heavy 135.90 1.00 1.00 1.47 1.00 61.49 1.00 1.34 1.06

LNC small 93.22 39.53 1.06 1.16 9.01 1.07 1.80 1.07 1.00
moderate 90.57 95.01 4.45 1.02 38.66 1.00 4.46 1.07 1.00
heavy 88.24 93.16 23.84 1.01 62.04 1.01 13.16 1.02 1.01

(b) Multivariate setup performances

Type Intensity SB
d
E SDmC

d
B
d
D

d
S CmDmS B

d
C
d
D

d
FSB

d
SAL

GLC small 20.56 15.63 19.00 8.90 25.31 23.52 41.34
moderate 2.22 1.82 2.25 1.66 6.28 2.39 10.61
heavy 1.00 1.00 1.00 1.00 1.04 1.00 1.06

LLC small 27.72 18.47 25.47 68.36 22.07 29.05 23.56
moderate 4.66 3.49 4.07 13.81 2.92 4.76 2.94
heavy 1.86 1.60 1.76 17.27 1.52 2.04 1.51

GNC small 7.49 12.38 6.87 6.06 8.88 23.94 7.09
moderate 1.48 1.50 1.34 1.17 1.61 5.04 1.44
heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LNC small 1.02 1.03 1.03 1.00 1.02 1.50 1.11
moderate 1.02 1.05 1.04 1.11 1.13 1.81 1.10
heavy 1.01 1.01 1.01 2.00 1.01 1.01 1.01
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Lastly, the results for the performance of SAL under-
line our previous interpretations as this metric set achieves 
reasonable results for local changes, but struggles more in 
global change cases compared to other multivariate sets. 
This behavior underlines our classification into Category 
IIIb of Sect. 3.1. Furthermore, the additional consideration 
of the network density as a fourth metric compared to the 
set B dCdDd seems to not contribute relevant added value 
as the performances are quite similar.

4.4 � Extension to mixed‑type changes

While this examination under rather rigid settings gave 
us crucial insights on the theoretical performance limits 
of the considered monitoring applications, we now exam-
ine if the studied behaviors still hold in practically more 
relevant application examples. For this purpose, we con-
sider mixed-type changes (MTC) in the popular scenario 
of community changes in stochastic blockmodels (SBM) 
(Holland et al. 1983). The explicit setups can be found in 
Table 6, where K represents the number of communities, pi 
the intra-group link probability of group i ∈ {1, ...,K} , pij 
the inter-group link probability between groups i and j, and 
ni the number of nodes in group i. Furthermore, we reduce 
the length of the in-control phase to 100 in order to exam-
ine the performance of the charts in more data-restrictive 
circumstances. Due to the shorter in-control length, we set 
the false alarm rate to � = 5%.

The in-control results shown in Fig. 4 are different to 
those before. Whereas the nonparametric version clearly 
outperformed the parametric control charts in Sect. 4.2, 
the performances are more equal now. The nonparametric 

approach suffers from the shorter in-control length, 
because the estimation of the theoretical distribution 
becomes more unreliable by applying a smaller data sam-
ple to the bootstrap procedure. However, the chart still 
performs reasonably as it only lies approx. 0.5% above 
the desired � . Another advantage is the robustness against 
different metric sets. Overall, the parametric control charts 
perform better than before and reach similar performances 
for more balanced metric sets to the nonparametric candi-
date. An explanation is the higher value of � , for which the 
charts are designed, as explained in Sect. 3.2. However, 
the sensitivity to the applied metric set still holds as the 
performance gets quite unstable for unbalanced sets.

The ARL1 results in Table 7 can be interpreted similarly 
as before. Situation 1 describes a change with an increased 
popularity of the whole network with an increased inter- 
and intra-communication (link amount) and the arrival of 
new members which can be seen as a MTC of GNC and 
GLC. Apart from some univariate deviation centralities, 
all considered metric sets perform well. The second sce-
nario addresses changes, where the importance between 
two groups is shifted, which results in an increased com-
munication of one group and a decreased communication 
in the other. While most univariate metrics are not able 
to handle this change type as their ARL1 does match their 
set ARL0 , the multivariate sets perform reasonably, par-
ticularly the more balanced ones. The last two situations 
address changes in the number of communities, e.g., a split 
of one group into two different ones. For the third situa-
tion, the link probability in both new groups stays the same 

Table 6   SBM parameter setups for the community changes

No. In-Control Changes

1 K = 3, p1 = 0.7, p2 = 0.6, p1 = 0.9, p2 = 0.7,

p3 = 0.8, pij = 0.1, p3 = 0.9, pij = 0.2,

n1 = n2 = 33, n3 = 34 n1 = n2 = n3 = 40

2 K = 3, p1 = 0.7, p2 = 0.6,

p3 = 0.8, pij = 0.1, p1 = 0.4, p2 = 0.9

n1 = n2 = 33, n3 = 34

3 K = 3, p1 = 0.7, p2 = 0.6,

p3 = 0.3, pij = 0.1, K = 4, p4 = 0.3,

n1 = 30, n2 = 20, n3 = 30, n4 = 20

n3 = 50

4 K = 3, p1 = 0.7, p2 = 0.6,

p3 = 0.3, pij = 0.1, K = 4, p3 = p4 = 0.49

n1 = 30, n2 = 20, n3 = 30, n4 = 20

n3 = 50

Fig. 4   Average empirical false alarm rates for all simulated situations
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as before which results in an overall decreased link amount 
due to the decreased link probability of those nodes, which 
were in one group before and are in different ones after-
ward. Hence, it is a relatively easy GLC situation and all 
applied metrics achieve a satisfactory performance. We 
designed the last scenario such that the overall link prob-
ability stays the same after the split. This makes the detec-
tion more challenging which results in higher ARL1 values. 
However, the multivariate sets again underline their supe-
rior flexibility as they achieve better performances in this 
situation than their univariate counterparts.

5 � Empirical data examples

To further underline the applicability and the handling of 
the approach, we analyze two real-world dynamic networks 
from economics and social sciences.

5.1 � International trade data

This publicly available data set from the World Trade 
Organization (WTO) contains all reported international 
import–export relationships that are responsible for 90% of 
the overall worldwide trade volume. The data is collected 
quarterly and contains the time span of Q1 2010 - Q1 2022 
which results in a dynamic network of T = 49 time points. 
For the selection of the in-control phase, we use the first 22 
time points, i.e., the time span Q1 2010–Q2 2015. We are 
not aware of major trading conflicts in this time period and 
therefore expect stable behavior. As this in-control phase 
is rather short, we use the bootstrap Hotellings T2 chart, 
because it promises to yield the most reliable results in these 
circumstances compared to the other charts as we saw in 

the simulation study. We do not expect a particular change 
type, since changes triggered by nodes and links both in a 
global and in a local fashion are conceivable. Therefore, we 
use the balanced metric set SBd E in order to increase the 
probability for the detection of arbitrary change types. The 
result is shown in the upper part of Fig. 5.

The procedure detects a change in Q2 2020 that is prob-
ably triggered by the corona pandemic. Many countries 
were forced to reduce their trading activities and mainly 
restrict them to neighboring states and the most important 
partner nations. This behavior pushed the trade network 
to a more centralized layout with leading trade nations 

Table 7   ARL
1
 for the community changes. Best ARL

1
 for each scenario across all setups is printed in bold

a. Univariate Setup Performances

Case F S Cm C
d

Dm D
d

Bm B
d

E

1 1.00 1.00 1.00 19.32 1.00 10.63 1.00 1.49 1.06
2 20.34 15.71 17.90 18.59 18.34 22.77 19.42 12.37 1.62
3 1.01 3.02 1.00 2.55 1.00 6.13 1.00 5.89 1.28
4 25.60 17.33 10.61 16.46 25.60 17.93 10.44 18.50 20.03

b. Multivariate Setup Performances

Case SB
d
E SDmC

d
B
d
D

d
S CmDmS B

d
C
d
D

d
FSB

d
SAL

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.87 5.00 9.87 5.12 14.58 4.77 13.75
3 1.39 1.00 2.21 1.00 1.43 1.00 1.03
4 8.94 17.18 14.14 5.12 10.74 15.25 10.92

Fig. 5   Control charts using a balanced metric set (upper chart) and 
an unbalanced metric set (lower chart). In-control phase ends in Q2 
2015. Red dots signalize alarms
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as the hubs. Consequently, we can classify the observed 
change as a local change. Interestingly, we cannot detect 
global changes for this data as more unbalanced metric 
sets, that are focussed on global change types, do not trig-
ger an alarm. This is visualized in the lower control chart 
of Fig. 5, for which we used the metric set C mDm S. Hence, 
the pandemic apparently did not have a huge influence on 
the amount of relationships that are responsible for 90% of 
the overall worldwide trade volume, but it did change the 
network on a structural level as explained. This example 
again underlines the importance of a careful execution of 
the procedure and the flexibility advantage of a balanced 
metric set.

5.2 � Enron email data

This data contains the email communication network 
between employees of the former US company Enron that 
has been made public by the US Department of Justice and 
was rigorously analyzed in many publications (Priebe et al. 
2005; Park et al. 2009; Chapanond et al. 2005). It com-
prises a time span from January 2000 until April 2002 on 
a monthly level. This results in T = 28 time points, from 
which we use the first 17 for the in-control phase and we aim 
to detect the effects of the accounting fraud scandal in the 
late 2001 s and early 2002 s. We again use the unbalanced 
metric set SBd E in a bootstrap Hotellings T2 chart in order 
to be flexible regarding the existence of different types of 
change. The output of the resulting control chart is depicted 
in Fig. 6.

The procedure triggers alarms that are in accordance with 
other social network analyses of this data set (Kendrick et al. 
2018). In June 2001, the CEO Jeffrey Skilling tried to fire the 
chairman and former CEO Kenneth Lay, in September/Octo-
ber 2001 Enron reported a huge loss and it was announced 
that a SEC (Security and Exchange Commission) inquiry 
has become a formal investigation, and in February/March 
2002 more and more details of the fraud were made public.

6 � Conclusion

The detection of temporal differences in a time series of 
graphs is a rather challenging task due to the complex 
nature of dynamic networks. We proposed an extension 
of a metric-based approach to a multivariate setup and 
its combination with suitable control charting procedures 
involving parametric as well as nonparametric setups. We 
explicitly explained the challenges of such a multivariate 
design and presented recommendations including a sound 
choice of a suitable set of metrics, its combination with 
a suitable control chart, and the final interpretation of 
the results. We particularly recommend to use a balanced 
metric set like SBd E together with a nonparametric con-
trol chart like the bootstrap Hotelling T2 chart in order to 
achieve reliable results in flexible change situations. We 
further validated our statements with the help of a simula-
tion study and some real-world examples in which a thor-
oughly designed multivariate approach outperforms the 
univariate procedure by offering a more flexible solution 
to the problem of change detection in social network anal-
ysis. As a main part of this paper was studying and evalu-
ating different multivariate network metric sets and their 
capability of capturing relevant network information, the 
results can be beneficial for further statistical analysis 
procedures. In our view, this especially yields for statisti-
cal testing procedures (e.g., goodness-of-fit, two-sample 
tests) for network data where test statistics (i.e., metrics) 
need to be derived that characterize the network structure 
as comprehensively as possible. Furthermore, our results 
can be beneficial also for researchers that aim to derive 
network monitoring procedures for a certain application 
scenario, e.g., with pre-known network structures (like 
in model-based approaches). In this context, our results 
can be used as a benchmark method as it is particularly 
designed for detecting changes of more general form.

Appendix

On the next pages: Tables for the performance of all poten-
tial metric sets for Sect. 4.3.

Fig. 6   Control Chart with SB
d
 E for the Enron data. In-control phase 

ends in May 2001. Red dots signalize alarms
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Table 8   ARL
1
 multivariate performances

Type Intensity FSCm FSC
d

FSBm FSB
d

FSDm FSD
d

FSE FCmC
d

FCmBm FCmB
d

FCmDm FCmD
d

FCmE

GLC Small 5.30 16.76 12.53 23.53 4.39 14.06 8.73 5.36 8.66 5.74 4.46 5.13 4.96
Moderate 1.42 2.07 1.83 2.39 1.26 1.87 1.69 1.41 1.74 1.43 1.27 1.39 1.36
Heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LLC Small 34.63 18.69 74.03 29.05 13.74 17.94 16.28 28.43 19.79 44.36 17.51 29.25 34.47
Moderate 12.51 3.41 44.51 4.76 20.30 3.79 5.28 4.42 15.99 5.32 16.79 4.76 6.56
Heavy 15.05 1.60 25.55 2.04 31.21 1.74 1.99 1.84 8.44 2.38 45.68 2.00 3.13

GNC small 1.48 3.74 1.81 23.94 2.60 2.99 2.47 13.70 1.36 7.62 1.36 6.64 4.17
Moderate 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.12 1.00 1.13 1.00 1.06 1.04
Heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LNC Small 1.01 1.00 1.00 1.00 1.50 1.00 1.00 1.00 1.01 1.00 1.09 1.00 1.00
Moderate 1.44 1.01 1.08 1.01 1.81 1.00 1.01 1.00 2.48 1.01 3.53 1.00 1.01
Heavy 3.12 1.01 1.91 1.01 1.86 1.01 1.01 1.01 12.40 1.01 14.85 1.01 1.01

Table 9   ARL1
 multivariate performances

Type Intensity FC
d
Bm FC

d
B
d

FC
d
Dm FC

d
D

d
FC

d
E FBmB

d
FBmDm FBmD

d
FBmE FB

d
Dm FB

d
D

d
FB

d
E FDmD

d

GLC Small 16.04 30.75 4.38 35.88 17.99 15.71 5.33 14.72 14.45 4.39 28.35 25.61 4.23
Moderate 1.91 2.51 1.26 10.72 2.02 2.10 1.39 1.84 1.83 1.26 2.18 2.21 1.26
Heavy 1.00 1.00 1.00 1.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LLC Small 45.83 26.73 13.54 23.00 20.67 105.27 18.46 71.36 107.86 15.00 28.36 29.95 13.66
Moderate 7.43 3.60 9.59 3.05 3.20 12.15 36.01 9.89 42.68 12.64 4.23 4.53 12.18
Heavy 2.11 1.60 2.72 1.52 1.54 2.66 52.74 2.39 4.55 3.35 1.77 1.93 3.30

GNC Small 2.82 6.72 3.96 11.79 4.37 3.14 1.38 2.49 2.17 3.83 5.47 7.65 2.84
Moderate 1.00 1.15 1.00 1.59 1.03 1.00 1.00 1.00 1.00 1.03 1.15 1.78 1.00
Heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LNC Small 1.00 1.02 1.00 1.00 1.04 1.00 1.05 1.00 1.00 1.00 1.02 1.02 1.00
Moderate 1.00 1.04 1.00 1.06 1.04 1.00 5.77 1.00 1.01 1.00 1.03 1.02 1.00
Heavy 1.01 1.01 1.01 1.01 1.01 1.01 33.69 1.01 1.01 1.01 1.01 1.01 1.01

Table 10   ARL1
 multivariate performances

Type Intensity FDmE FD
d
E SCmC

d
SCmBm SCmB

d
SCmDm SCmD

d
SCmE SC

d
Bm SC

d
B
d

SC
d
Dm SC

d
D

d
SC

d
E

GLC Small 4.30 13.64 13.05 4.37 16.80 8.90 11.86 8.82 17.46 22.59 15.63 32.38 14.90
Moderate 1.26 1.85 1.74 1.33 1.83 1.66 1.69 1.54 1.87 2.31 1.82 8.48 2.11
Heavy 1.00 1.00 1.00 1.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.00

LLC Small 14.40 18.96 24.54 11.48 45.51 68.36 27.85 29.39 23.02 24.58 18.47 22.99 17.41
Moderate 19.61 3.32 3.50 8.22 4.59 13.81 3.96 6.19 3.49 3.52 3.49 3.00 3.16
Heavy 14.55 1.67 1.68 6.38 2.12 17.27 1.82 2.30 1.76 1.62 1.60 1.49 1.52

GNC Small 2.51 2.91 16.80 1.36 8.75 6.06 8.08 5.68 2.81 7.76 12.38 14.03 5.84
Moderate 1.00 1.00 1.48 1.00 1.37 1.17 1.24 1.14 1.00 1.52 1.50 2.00 1.18
Heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LNC Small 1.00 1.04 1.00 1.41 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.06
Moderate 1.01 1.02 1.00 12.48 1.00 1.11 1.00 1.02 1.00 1.05 1.03 1.06 1.06
Heavy 1.01 1.01 1.01 49.96 1.01 2.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01
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Table 11   ARL
1
 multivariate performances

Type Intensity SBmB
d

SBmDm SBmD
d

SBmE SB
d
Dm SB

d
D

d
SB

d
E SDmD

d
SDmE SD

d
E CmC

d
Bm CmC

d
B
d

CmC
d
Dm

GLC Small 28.69 99.70 15.27 10.08 22.25 19.00 20.56 13.13 9.47 12.23 5.86 20.42 6.75
Moderate 2.29 12.37 1.84 1.64 2.15 2.25 2.22 1.79 1.60 1.85 1.59 2.08 1.66
Heavy 1.00 1.01 1.00 1.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LLC Small 43.46 100.17 27.04 27.51 31.81 25.47 27.72 17.70 16.64 16.29 13.68 23.80 36.03
Moderate 4.76 135.18 3.98 5.93 4.69 4.07 4.66 3.69 5.20 3.27 3.66 3.52 3.61
Heavy 2.13 32.76 1.82 2.27 2.04 1.76 1.86 1.72 1.97 1.65 1.79 1.62 1.83

GNC Small 2.84 2.26 2.40 2.00 8.39 6.87 7.49 9.93 8.40 3.43 1.53 8.85 16.30
Moderate 1.00 1.00 1.00 1.00 1.57 1.34 1.48 1.42 1.34 1.04 1.00 1.62 1.47
Heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LNC Small 1.00 1.00 1.00 1.00 1.01 1.03 1.02 1.00 1.00 1.06 1.00 1.00 1.00
Moderate 1.00 1.08 1.00 1.01 1.02 1.04 1.02 1.01 1.01 1.02 1.00 1.01 1.00
Heavy 1.01 1.81 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Table 12   ARL1
 multivariate performances

Type Intensity CmC
d
D

d
CmC

d
E CmBmB

d
CmBmDm CmBmD

d
CmBmE CmB

d
Dm CmB

d
D

d
CmB

d
E CmDmD

d
CmDmE

GLC Small 33.35 12.82 7.21 25.38 5.74 5.52 8.75 17.13 15.08 6.26 5.99
Moderate 8.33 1.88 1.63 2.76 1.47 1.44 1.74 1.90 1.81 1.56 1.52
Heavy 1.02 1.01 1.00 1.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LLC Small 22.94 16.79 18.21 23.52 14.35 12.59 81.27 26.80 26.55 39.48 63.41
Moderate 3.03 3.13 4.86 24.81 4.08 5.23 4.95 4.07 4.45 4.13 5.05
Heavy 1.52 1.54 2.10 8.61 1.87 2.49 2.53 1.77 1.94 2.01 3.17

GNC Small 12.60 5.76 1.60 1.36 1.52 1.48 8.90 7.79 8.61 8.29 5.84
Moderate 2.85 1.26 1.00 1.00 1.00 1.00 1.39 1.38 1.49 1.24 1.14
Heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LNC Small 1.16 1.00 1.00 1.02 1.01 1.03 1.02 1.00 1.00 1.06 1.00
Moderate 1.08 1.00 1.00 2.66 1.00 1.01 1.01 1.01 1.07 1.00 1.02
Heavy 1.01 1.01 1.01 12.31 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Table 13   ARL1
 multivariate performances

Type Intensity CmD
d
E C

d
BmB

d
C
d
BmDm C

d
BmD

d
C
d
BmE C

d
B
d
Dm C

d
B
d
D

d
C
d
B
d
E C

d
DmD

d
C
d
DmE C

d
D

d
E

GLC Small 8.94 23.41 104.23 37.26 14.70 23.39 25.31 43.36 36.64 14.09 19.58
Moderate 1.72 2.20 13.19 9.82 2.00 2.09 6.28 9.33 9.71 2.00 4.58
Heavy 1.00 1.00 1.01 1.07 1.00 1.00 1.03 1.13 1.05 1.00 1.01

LLC Small 17.02 27.48 47.80 22.92 20.63 24.81 22.07 27.40 22.76 18.66 17.89
Moderate 3.27 3.59 10.05 3.03 3.19 3.59 2.92 3.29 3.03 3.19 2.99
Heavy 1.62 1.61 2.06 1.52 1.57 1.59 1.52 1.60 1.52 1.54 1.50

GNC Small 4.12 4.46 2.73 4.06 4.45 7.73 8.88 5.81 13.90 5.48 4.09
Moderate 1.07 1.05 1.00 1.08 1.04 1.56 1.61 1.16 2.00 1.18 1.12
Heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LNC Small 1.00 1.00 1.00 1.00 1.00 1.04 1.02 1.07 1.00 1.07 1.00
Moderate 1.00 1.00 1.00 1.05 1.03 1.05 1.13 1.07 1.06 1.06 1.08
Heavy 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01



Social Network Analysis and Mining (2023) 13:87	

1 3

Page 17 of 18  87

Acknowledgements  This research was financially supported by the 
Mercator Research Center Ruhr (MERCUR) with project number 
PR-2019-0019.

Author contributions  Conzeptualization: J.F, R.F., C.J. Methodology: 
J.F., C.J. Writing: J.F. Simulation Study: J.F. Reviewing of Manuscript: 
J.F., R.F., C.J.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Declarations 

Conflict of interest  The authors declare that there is no conflict of in-
terest.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Barnett I, Onnela JP (2016) Change point detection in correlation net-
works. Sci Rep 6(1):1–11

Bassett DS, Sporns O (2017) Network neuroscience. Nature Neurosci 
20(3):353–364

Basseville M, Nikiforov IV (1993) Detection of abrupt changes: theory 
and application, Volume 104. Prentice Hall Englewood Cliffs

Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. Adv Neural Inform Process 
Syst 14:102

Bunke H, Dickinson PJ, Kraetzl M, Wallis WD (2007) A graph-theo-
retic approach to enterprise network dynamics. Springer, London, 
p 24

Carrington PJ, Scott J, Wasserman S (2005) Models and methods in 
social network analysis. Cambridge University Press, Cambridge, 
p 28

Chapanond A, Krishnamoorthy MS, Yener B (2005) Graph theoretic 
and spectral analysis of enron email data. Comput Math Organizat 
Theory 11(3):265–281

Chen L, Zhou J, Lin L (2021) Hypothesis testing for populations of 
networks. Commun Statist Theory Methods 7:1–24

Cui P, Wang X, Pei J, Zhu W (2018) A survey on network embedding. 
IEEE Trans Knowl Data Eng 31(5):833–852

Duan, D, Tong L, Li Y, Lu J, Shi L, Zhang C (2020) Aane: Anomaly 
aware network embedding for anomalous link detection. In: 2020 
IEEE International Conference on Data Mining (ICDM), pp. 
1002–1007. IEEE

Durante D, Dunson DB (2014) Bayesian dynamic financial networks 
with time-varying predictors. Statist Probab Lett 93:19–26

Durante D, Dunson DB, Vogelstein JT (2017) Nonparametric bayes 
modeling of populations of networks. J Am Statist Associat 
112(520):1516–1530

Farahani EM, Baradaran Kazemzadeh R, Noorossana R, Rahimian G 
(2017) A statistical approach to social network monitoring. Com-
mun Statist Theory Methods 46(22):11272–11288

Flossdorf J, Jentsch C (2021) Change detection in dynamic networks 
using network characteristics. IEEE Trans Signal Inform Process 
Over Netw 7:451–464

Grattarola D, Zambon D, Livi L, Alippi C (2019) Change detection 
in graph streams by learning graph embeddings on constant-
curvature manifolds. IEEE Trans Neural Netw Learn Syst 
31(6):1856–1869

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for 
networks. In Proceedings of the 22nd ACM SIGKDD international 
conference on Knowledge discovery and data mining, pp. 855–864

Gürsoy F, Haddad M, Bothorel C (2021) Alignment and stability of 
embeddings: measurement and inference improvement. arXiv 
preprint arXiv:​2101.​07251

Haddad M, Bothorel C, Lenca P, Bedart D (2020) Temporalnode2vec: 
Temporal node embedding in temporal networks. In Complex 
Networks and Their Applications VIII: Volume 1 Proceedings of 
the Eighth International Conference on Complex Networks and 
Their Applications COMPLEX NETWORKS 2019 8, pp. 891–902. 
Springer

Table 14   ARL
1
 multivariate performances

Type Intensity BmB
d
Dm BmB

d
D

d
BmB

d
E BmDmD

d
BmDmE BmD

d
E B

d
DmD

d
B
d
DmE B

d
D

d
E DmD

d
E

GLC Small 109.54 23.02 20.11 118.34 147.58 11.09 21.38 19.62 103.25 10.65
Moderate 17.90 2.03 1.94 13.49 13.14 1.77 2.03 1.94 23.57 1.77
Heavy 1.01 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.33 1.00

LLC Small 102.06 29.13 30.14 66.03 113.64 19.25 26.42 26.96 35.14 17.40
Moderate 17.35 4.21 4.55 17.86 106.32 3.29 4.16 4.50 4.22 3.27
Heavy 2.67 1.81 1.94 2.35 4.70 1.69 1.77 1.93 1.82 1.67

GNC Small 2.88 4.28 3.68 2.34 2.01 3.35 6.80 8.04 3.96 3.36
Moderate 1.00 1.02 1.02 1.00 1.00 1.01 1.33 1.44 1.03 1.044
Heavy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LNC Small 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.03 1.06 1.04
Moderate 1.00 1.00 1.00 1.00 1.01 1.01 1.04 1.02 1.06 1.02
Heavy 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2101.07251


	 Social Network Analysis and Mining (2023) 13:87

1 3

87  Page 18 of 18

Hazrati-Marangaloo H, Noorossana R (2021) A nonparametric change 
detection approach in social networks. Qual Reliabil Eng Int 
37(6):2916–2935

Hewapathirana IU (2019) Change detection in dynamic attributed net-
works. Int Rev Data Min Knowl Disc 9(3):1286–1306

Hewapathirana IU, Lee D, Moltchanova E, McLeod J (2020) Change 
detection in noisy dynamic networks: a spectral embedding 
approach. Soc Netw Analy Min 10:1–22

Holland PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: 
first steps. Soc Netw 5(2):109–137

Kendrick L, Musial K, Gabrys B (2018) Change point detection in 
social networks: critical review with experiments. Comput Sci 
Rev 29:1–13

Knoth S (2017) Arl numerics for mewma charts. J Qual Technol 
49(1):78–89

Koutra D, Shah N, Vogelstein JT, Gallagher B, Faloutsos C (2016) 
Deltacon: Principled massive-graph similarity function with attri-
bution. ACM Trans Knowl Disc Data (TKDD) 10(3):1–43

Lee DH, Dong M (2009) Dynamic network design for reverse logistics 
operations under uncertainty. Trans Res Part E logist Trans Rev 
45(1):61–71

Li Y, Lu A, Wu X, Yuan S (2019) Dynamic anomaly detection using 
vector autoregressive model. In Advances in Knowledge Discovery 
and Data Mining: 23rd Pacific-Asia Conference, PAKDD 2019, 
Macau, China, April 14-17, 2019, Proceedings, Part I 23, pp. 
600–611. Springer

Lin Ch, Xu L, Yamanishi K (2022) Network change detection based on 
random walk in latent space. IEEE Trans Knowl Data Eng. https://​
doi.​org/​10.​1109/​TKDE.​2022.​31670​62

Lowry CA, Woodall WH, Champ CW, Rigdon SE (1992) A multivari-
ate exponentially weighted moving average control chart. Tech-
nometrics 34(1):46–53

Malinovskaya A, Otto P (2021) Online network monitoring. Statist 
Methods Appl 30(5):1337–1364

McCulloh I, Carley KM (2011) Detecting change in longitudinal social 
networks. Military Acad West Point NY Network Sci Cent (NSC) 
12:1–37

Montgomery DC (2012) Statistical quality control. Wiley Global 
Education

Motalebi N, Owlia MS, Amiri A, Fallahnezhad MS (2021) Monitoring 
social networks based on zero-inflated poisson regression model. 
Commun Statist Theory Methods 12:1–17

Neil J, Hash C, Brugh A, Fisk M, Storlie CB (2013) Scan statistics for 
the online detection of locally anomalous subgraphs. Technomet-
rics 55(4):403–414

Ofori-Boateng D, Gel YR, Cribben I (2021) Nonparametric anom-
aly detection on time series of graphs. J Computat Graph Stat 
30(3):756–767

Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity 
preserving graph embedding. In: Proceedings of the 22nd ACM 
SIGKDD international conference on Knowledge discovery and 
data mining, pp. 1105–1114

Park Y, Priebe C, Marchette D, Youssef A (2009) Anomaly detection 
using scan statistics on time series hypergraphs. In: Link Analy-
sis, Counterterrorism and Security (LACTS) Conference, pp. 9. 
SIAM Pennsylvania

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of 
social representations. In: Proceedings of the 20th ACM SIGKDD 
international conference on Knowledge discovery and data min-
ing, pp. 701–710

Phaladiganon P, Kim SB, Chen VC, Baek JG, Park SK (2011) Boot-
strap-based t2 multivariate control charts. Commun Stat Simulat 
Comput 40(5):645–662

Pincombe B (2005) Anomaly detection in time series of graphs using 
arma processes. Asor Bull 24(4):2

Prabhu SS, Runger GC (1997) Designing a multivariate ewma control 
chart. J Qual Technol 29(1):8–15

Priebe CE, Conroy JM, Marchette DJ, Park Y (2005) Scan statistics 
on enron graphs. Computat Math Organiz Theory 11(3):229–247

Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of net-
work motifs contribute to biological network organization. PLoS 
Biol 3(11):e343

Ranshous S, Shen S, Koutra D, Harenberg S, Faloutsos C, Samatova 
NF (2015) Anomaly detection in dynamic networks: a survey. Int 
Rev Computat Statist 7(3):223–247

Salmasnia A, Mohabbati M, Namdar M (2020) Change point detection 
in social networks using a multivariate exponentially weighted 
moving average chart. J Inform Sci 46(6):790–809

Sarkar P, Moore AW (2005) Dynamic social network analysis using 
latent space models. ACM Sigkdd Explorat Newsl 7(2):31–40

Stoumbos ZG, Sullivan JH (2002) Robustness to non-normality of the 
multivariate EWMA control chart. J Qual Technol 34(3):260–276

Sun J, Tao D, Faloutsos C (2006) Beyond streams and graphs: dynamic 
tensor analysis. In: Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 
pp. 374–383

Sun T, Liu Y (2018) A dynamic network change detection method 
using network embedding. In: Cloud Computing and Security: 
4th International Conference, ICCCS 2018, Haikou, China, June 
8-10, 2018, Revised Selected Papers, Part I 4, pp. 63–74. Springer

Wilson JD, Stevens NT, Woodall WH (2019) Modeling and detecting 
change in temporal networks via the degree corrected stochastic 
block model. Qual Reliabil Eng Int 35(5):1363–1378

Xie Y, Wang W, Shao M, Li T, Yu Y (2023) Multi-view change point 
detection in dynamic networks. Inform Sci 629:344–357

Zhou L, Yang Y, Ren X, Wu F, Zhuang Y (2018) Dynamic network 
embedding by modeling triadic closure process. In: Proceedings 
of the AAAI conference on artificial intelligence, Volume 32

Zou N, Li J (2017) Modeling and change detection of dynamic network 
data by a network state space model. IISE Trans 49(1):45–57

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TKDE.2022.3167062
https://doi.org/10.1109/TKDE.2022.3167062

	Online monitoring of dynamic networks using flexible multivariate control charts
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contribution

	2 Existing foundations
	2.1 Changes in network data
	2.2 Metric-based network monitoring
	2.3 General online monitoring procedure
	2.4 Control charts for traditional multivariate data

	3 Multivariate metric-based monitoring solutions
	3.1 Selection of a suitable set of metrics
	3.2 Selection of a suitable multivariate control chart
	3.3 Interpretation of the results and further analyses

	4 Simulation study
	4.1 Setup
	4.2 Phase I performances
	4.3 Phase II performances
	4.4 Extension to mixed-type changes

	5 Empirical data examples
	5.1 International trade data
	5.2 Enron email data

	6 Conclusion
	Appendix
	Acknowledgements 
	References




