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Abstract
Measuring group leadership in social networks is a nontrivial task from a methodological viewpoint. The development of 
modern computational methods for evaluating group leadership is rooted in the analysis of network centralities. While com-
putational methods for assessing the centralities of individual (i.e., single) nodes in networks have been well established, 
the methodological apparatus for computing group centralities has been much less developed. In the research domain of 
quantitative methods, this situation leads to the search for interdisciplinary solutions in which game theory currently plays 
a dominant role. This study analyzed two computational methods to measure group leadership in networks. Both are based 
on the game-theoretical concept of the Shapley value (SV). Based on the illustrative networks, the given research shows 
and discusses the strengths and weaknesses of the approaches. In short, the key finding of the study is that there is no “free 
lunch” method to measure group leadership, which means that each specific network requires an individual approach for 
choosing the most appropriate model.
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1 Introduction

The analysis of group leadership in social networks from a 
computational viewpoint is driven by the need to understand 
the benefits of the collaboration of agents for effective group 
decision-making (GDM) (Zhou et al. 2018) and leadership 
formation (Weymes 2010). Due to the high complexity of 
socioeconomic environments, the expert-based analysis of 
the knowledge, expertise, and skills of agents working in 
groups frequently stays hidden from managers due to an 
insufficient level of knowledge about the topological posi-
tion of agents in social networks (Patel et al. 2012; Murray 
and Moses 2005; Hossain and Wu 2009).

In GDM problems, the absence of a clear understanding 
of how group formation affects the distribution of leadership 
(i.e., influential power) in organizations (Hoyt et al. 2003) 
may lead to deceptive conclusions about the potential hidden 
behind the collaboration of agents acting as one unit (i.e., 
node in a network). In practice, this lack of understanding 
frequently leads to demotivation for information processing 

(Scholten et al. 2007), a decreasing ability to find consensus 
in GDM problems (Alonso et al. 2010), and even failure in 
collective decision-making (Bahrami et al. 2012). Accord-
ing to Scholten et al. (2007) to actively cooperate in solving 
problems and making high-impact decisions, “group mem-
bers need to engage in deep and systematic processing of 
information—only then will they uncover the hidden profile, 
unfreeze their initial and erroneous preferences, and achieve 
high quality decisions” (p. 540).

Research in the field of management shows that GDM 
directly affects the formation of leadership in organizations 
and, as a result, the quality of management decisions (Black 
et al. 2019). On the one hand, more individuals participat-
ing in decision-making are advantageous since each person 
contributes unique information or expertise to the group, 
as well as diverse viewpoints on the situation. On the other 
hand, groups often have more power of influence (i.e., higher 
leadership positions) than individuals in social networks. 
People with opposing viewpoints are often not listened to 
and are even ignored, which leads to the realization of ideas 
of only influential groups. The formation of groups in social 
networks can have both pros and cons in terms of individual 
and collective benefits in the context of organizational effec-
tiveness (Paunova 2015).
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Although understanding individual and collective task 
performance in organizations are of particular research 
interest from the standpoint of disciplines such as social 
psychology (Lamm and Trommsdorff 1973) and leadership 
and management (Paunova 2015), the purpose of this study 
is not to analyze the advantages and disadvantages of group 
formation itself or the effectiveness of GDM on the function-
ing of social networks. Instead, this paper focuses on the 
computational aspects of the topological analysis of group 
leadership in social networks. The main goal is to understand 
how grouping initially separately functioning network agents 
into one group (i.e., topologically one single node) leads to a 
redistribution of leadership in a social network from a com-
putational viewpoint. The research is motivated by the need 
for interdisciplinary research, with a special emphasis on the 
game-theoretic approach (Narayanam and Narahari 2011; 
Easley and Kleinberg 2010). In contrast to classic centrality-
based analysis of leadership positions in networks (New-
man 2018), combining social network analysis with game-
theoretic methods offers an advantage in obtaining a more 
accurate quantitative analysis of the leadership positions of 
both initially individual nodes and nodes obtained as a result 
of grouping. In this article, we do not aim to cover different 
types of games from a game theory point of view but focus 
in particular on the concept of Shapley value, which shows 
promising results in taking into account the synergy that can 
arise between agents acting in groups (Aadithya et al. 2010; 
Flores et al. 2014, 2016; Michalak et al. 2013). The game-
theoretic SV concept (Roth 1988) for obtaining joint gains 
from agents’ interrelations in cooperative games (Peleg and 
Sudhölter 2007) is of particular interest in the given research 
due to its well-established mathematical framework and flex-
ible adaptability for social network leadership analysis (Gla-
dysz et al. 2019).

More specifically, the given study represents a compara-
tive analysis of the two SV-based approaches to analyzing 
leadership positions in social networks. The first approach 
is based on the classical interpretation of SV for deriving 
agents’ payoffs in cooperative games (Flores et al. 2014). 
The second approach is a computational approach of the SV 
concept adapted to the analysis of the leadership positions 
of agents in networks (Aadithya et al. 2010). Shapley Group 
value is used as a valuation of group performance as it is 
proposed in Flores et al. (2014) and Aadithya et al. (2010), 
but the specific use and therefore the consequences depend 
on selection of the game. Flores et al. (2014) are focused 
on the game with transferable utility (TU-game), which 
they emphasize in their paper by saying that “since we will 
restrict to the case of TU games in the sequel, we will refer 
to them simply as games” (p. 3). The Aadithya et al. (2010) 
approach is based on using SV of a very specific game as a 
centrality measure. All players (i.e., nodes) of the coalition S 
are grouped into a single player who acts as a representative 

of the coalition S, and the game defined over the graph (i.e., 
network) is given by the number of nodes in the graph at 
most one degree away from nodes in the coalition S.

2  Comparative analysis

The analysis of centralities reflects leadership formation in 
networks. Measuring centralities for groups (i.e., coalitions) 
in networks is as important as it is for individual nodes. 
For example, to measure “how central is the engineering 
department in the informal influence network of the com-
pany” (Everett and Borgatti 2010, p.181), it is necessary to 
calculate the group centrality. Most centralities for groups 
and classes are based on classical structural measures (Ever-
ett and Borgatti 2010). However, the development of well-
formalized mechanisms to calculate centralities for network 
coalitions based on the game-theoretical concept of SV can 
make a significant contribution to the domain of social net-
work analysis.

In the present research, we analyze two computational 
methods for measuring group leadership (i.e., group cen-
trality in networks) developed by Aadithya et al. (2010) and 
(Flores et al. 2014). Although both approaches are based on 
game theory, the main difference between them is how the 
formation of a group does affect the current social relations 
among their members. Flores et al. (2014) approach, which 
leans more toward the classical interpretation of the general-
ized SV (Marichal et al. 2007), is based on the assumption 
that it is not necessary for players to agree to act jointly 
knowing each other. Instead, the authors suggest “the exist-
ence of an external agent, the decision maker, that is able to 
coordinate the actions of the members of the group” (Flores 
et al. 2014, p.2). However, the decision to form a group and 
act as a group can emerge from the group members as well 
when the deliberate action to accomplish some tasks in the 
group requires full interconnection (Flores et al. 2016).

Aadithya et al. (2010), who use an algorithmic interpre-
tation of SV, gravitate toward a game-theoretic analysis of 
relationships between players based on their network cen-
tralities and geodesic distances from each other. Based on 
the topological characteristics of the players’ positions in the 
network, Aadithya’s approach does not primarily focus on 
whether players have any social intentions to form groups 
or not, as it takes into account structural changes in the net-
work. If the players decide to work in a group (based on 
their mutual decision or under the influence of an external 
agent), Aadithya’s approach will take into account structural 
changes in the network, analyzing SV based on the topologi-
cal characteristics of interconnections between players.

It is important to emphasize that the analysis of both 
computational approaches is done at the micro-level, which 
means that the focus is on illustrating and understanding 
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how each of the approaches calculates group centrality at 
the single nodes’ level. This helps to see in great detail the 
Shapley-based redistribution of influential power (i.e., cen-
trality values) before and after grouping individual nodes. 
It is important to emphasize that since both computational 
approaches are well-established and validated mechanisms 
for network SV-based leadership analysis, this study is not 
intended to test or illustrate these approaches in networks 
larger than those used in this section. As mentioned above, 
the aim is to conduct a comparative analysis at the micro-
level and discuss the advantages and disadvantages of both 
methods.

The functionality of computational methods is illus-
trated based on the topology of a mixed symmetrical net-
work. Since this network structure combines the funda-
mental types of network architectures such as bus, star, 
and ring (Haddadi et al. 2008), the computational results 
presented in this paper encapsulate the mutual effect of 
the topological aspects of these network architectures on 
the distribution of influential power. Another aspect of 
the analysis performed is the way in which the individual 
nodes are combined, namely the grouping of nodes and 
merging into one node. Notably, there is a big difference in 
the computational results for grouping nodes and merging 
them (as showed later in the article). In terms of networks, 
grouping nodes imply that internal joint intra-group coop-
eration affects relations with out-of-group nodes in the 
network. For example, employees in an organizational net-
work might be asked to collaborate on a project based on 
shared communication with other members of the organi-
zation outside of their intra-group relationship. Merging 
nodes imply the delegation of rights from all merging 
nodes to only one of them, or to one abstract node that 
inherits the relations of all merging nodes. For example, an 
employee may be asked to take over the duties of another 
one (due to illness, dismissal, etc.), which would mean 
merging the duties and work-related communications of 
two employees into one work unit (on a permanent or tem-
porary basis).

An important feature of the analysis presented below 
is the division of the analysis of each approach into two 
cases. The first case demonstrates the calculation of cen-
tralities in a network where the grouped nodes were ini-
tially (i.e., before the grouping) connected to each other 
directly (i.e., not through intermediate nodes). Accord-
ingly, the second case applies to networks in which the 
grouped nodes were initially (i.e., before the grouping) 
connected to each other indirectly (i.e., through interme-
diate nodes). This division into two cases is dictated by 
the difference in the computational results for the grouped 
nodes initially connected to each other directly or through 
intermediaries in the network.

2.1  Group Leadership Measure: First Approach

The first approach analyzed in this study was developed by 
Flores et al. (2014). To measure group leadership in net-
works, the authors used the classical interpretation of SV, 
as presented in Eq. 1:

where N is the set of n players, S is the coalition of players, 
and v is the characteristic function 2N → ℝ ; v(Ø) = 0.

Consider social network as an undirected graph G(V,E) 
that reflects the connectivity game (Amer and Giménez 
2004) with the following value function for the coalition 
(i.e., group) S:

The value of v(S) is equal to one if there is a path between 
all nodes in S that contains more than one node. Otherwise, 
a zero value is assigned to v(S).

Consider the graph with a mixed symmetric topology 
presented in Fig. 1.

Initially, individual SVs for all nodes were calculated 
based on v(S) (see Table 1).

In Table 1, there are seven coalitions, where each coali-
tion S contains only one node, and v({1}) = v({2}) = … = v (
{7}) = 0. It is important to specify that it is possible to obtain 
a negative SV for the node or for the coalition of nodes. The 
“peripheral” nodes i = 1,2,6,7 get SV(i) = − 0.021, and the 

(1)SVi(v) =
∑

S⊆N�{i}

|S|!(n − |S| − 1)!

n!
(v(S ∪ {i}) − v(S)),

v(S) =

{
1, if S connected in E and |S|> 1, for all S ⊆ V.

0, otherwise,

Fig. 1   Network with a mixed symmetric topology

Table 1  Initial SVs based on the 
first approach

Node Shapley value

1 − 0.021
2 − 0.021
3 0.362
4 0.362
5 0.362
6 − 0.021
7 − 0.021
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more valuable nodes i = 3,4,5 get SV(i) = 0.362 due to their 
“centric” location.

2.1.1  Grouping directly connected nodes

Next, the directly connected Nodes 3 and 4 are grouped 
together to calculate the SV of S = {3,4}, which is illustrated 
in Fig. 2. For example, it could be a situation where two 
employees from the same department are assigned to work 
on a project in tandem with the subsequent submission of 
a joint report.

Based on Flores et  al. (2014), we have v({3,4}) = 1 
because 3 and 4 are connected forming a path and |S|= 2. 
Table 2 presents the overall results.

According to Table 2, the “peripheral” nodes 1, 2, 6, and 
7 lost their leadership positions in terms of SV values. Based 
on the grouping of nodes 3 and 4, both node 5 and the group 
{3,4} strengthened their leadership positions. The strength-
ening of the leadership position of node 5 is based on its 
«hub»-status. More specifically, it is directly linked to the 
group {3,4}, which has the highest SV and two “peripheral” 
nodes. Group {3,4} has the strongest leadership position 
since its members merged their powers as “centric” players 
in the network. In accordance with the efficiency require-
ment for the SV concept (Hart 1989), the total SV is equal to 
one. When {3,4} and 5 get an SV gain, the initially “periph-
eral” nodes lose their positions.

Next, consider the option where directly connected nodes 
3 and 4 are merged into one node, as represented in Fig. 3.

In this case, for the merged node “3–4,” the value of 
v({“3–4”}) is equal to zero, because |{“3–4”}|= 1. Table 3 
presents the resulting SVs.

According to the results given in Table 3, the merged 
node “3–4” and node 5 have equal SVs because of the sym-
metric nature of the transformed graph. The “peripheral” 
nodes get equal SVs: SV({1}) = SV({2}) = SV({6}) = SV
({7}) = 0. In the transformed graph, the number of nodes 
decreased from seven to six. Consequently, the number 
of links connecting nodes 1 and 2 with nodes 6 and 7 is 
reduced. Accordingly, their SVs improved from negative to 
zero values.

Notably, according to the results represented in 
Tables 2–3, the value of SV({3,4}) is greater than the value 
of SV(“3–4”). In other words, considering directly con-
nected nodes 3 and 4 as one group improve the joint leader-
ship much more than merging nodes 3 and 4 into one node.

2.1.2  Grouping indirectly connected nodes

The indirectly connected nodes 3 and 5 are grouped together 
to calculate the SV of S = {3,5}, which is illustrated in 
Fig. 4.

Fig. 2   Network with S = {3,4}

Table 2  First approach: SVs 
considering S = {3,4}

Node Shapley value

1 − 0.033
2 − 0.033
{3,4} 0.667
5 0.467
6 − 0.033
7 − 0.033

Fig. 3  Nodes 3 and 4 are merged

Table 3  SVs: Nodes 3 and 4 are 
merged

Node Shapley value

1 0.0
2 0.0
“3–4” 0.5
5 0.5
6 0.0
7 0.0
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According to Flores et al. (2014), group {3,5} is consid-
ered as a set of two disconnected nodes, but not as one entity 
in terms of connectivity. Since S is disconnected, the value 
of v({3,5}) is equal to zero. Table 4 presents the resulting 
SVs.

According to Table 4, all nodes have positive SVs. Com-
pared to the case with S = {3,4} (see Fig. 2), the “periph-
eral” nodes i = 1,2,6,7 get stronger leadership positions 
with SV(i) = 0.017. Basically, this stronger position can be 
explained by the direct connection of nodes 1 and 2 with 
nodes 6 and 7 through the “hub” represented by group {3,5} 
(see Fig. 4). It is not required for the left-side “peripheral” 
nodes to go through an additional node (i.e., node 4) to get 
to the right-side “peripheral” nodes and vice versa. Even 
though node 4 lost its “hub” status, it gets the same leader-
ship position as S = {3,5} (i.e., SV(4) = SV({3,5})) due to 
its direct connections to all sub-nodes of the “hub” {3,5}.

Next, consider the case when indirectly connected nodes 
3 and 5 are merged into one node “3–5” as represented in 
Fig. 5. For example, this could be a situation where two 
employees from different departments (but with the same 
project manager) are assigned to work on a project in tandem 
and then, submit a joint report.

Table 5 presents the resulting SVs.
The merged node “3–5” becomes the only centric node in 

the network by connecting to all others directly. Sequentially, 
it becomes the most powerful with the highest SV. Node 4 
gets the lowest SV (i.e., SV(4) = 0), losing its leadership posi-
tion. Now, node 4 has become the most “peripheral” in the 

transformed network. Compared to node 4, nodes 1, 2, 6, and 
7 improve their leadership positions, as they are not only con-
nected to the “hub” but also maintain local connections with 
each other. Specifically, links (1,2) and (6,7) are parts of the 
cliques with the merged nodes “3–5”: 1–2-“3–5” and 6–7-
“3–5,” respectively.

2.2  Group Leadership Measure: Second Approach

The second approach has a dual nature. It encapsulates con-
cepts from the domains of game theory and the theory of 
algorithms. The approach for single nodes was developed by 
(Michalak et al. 2013): 

Fig. 4   Network with S = {3,5}

Table 4  SVs considering 
S = {3,5}

Node Shapley value

1 0.017
2 0.017
{3,5} 0.467
4 0.467
6 0.017
7 0.017

Fig. 5  Nodes 3 and 5 are merged

Table 5  First approach: Nodes 3 
and 5 are merged

Node Shapley value

1 0.05
2 0.05
“3–5” 0.80
4 0.00
6 0.05
7 0.05
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In this study, the SV-COMPUTING approach was used 
to measure group SVs substituting single nodes with nodes’ 
coalitions.

Consider the initial network with a mixed symmetric 
topology shown in Fig. 1. Initially, individual SVs are cal-
culated for seven coalitions, represented by single nodes: 
 S1 = {1},  S2 = {2},…,  S7 = {7} (see Table 6).

In accordance with degree centralities, nodes 3 and 5 
get the highest SVs. The “peripheral” nodes i = 1,2,6,7 get 
SV(i) = 0.917, which is higher than SV(4) = 0.833. Although 
node 4 has a “hub” status, nodes 1, 2, and 3 form one clique, 
and nodes 5, 6, and 7 form another clique. This involvement 
in a clique structure helps them to retain higher SVs higher 
than that of “hub” node 4.

2.2.1  Grouping directly connected nodes

First, the directly connected nodes 3 and 4 are grouped to 
calculate the SV of S = {3,4} (see Fig. 2). Table 7 presents 
the results.

Since deg{3,4} = deg{5} = 3, their SVs are equal: 
SV({3,4}) = SV({5}).

Note that if nodes 3 and 4 are merged into node “3–4,” 
as shown in Fig. 3, then, we get the same results for the sec-
ond approach, as shown in Table 3. In terms of Aadithya’s 
approach (Aadithya et al. 2010), group {3,4} and merged 
node “3–4” have the same degree centrality, which gives an 
equal effect in terms of SV-based leadership.

The issue of how to calculate SV-based group central-
ity in the second approach occurs for coalitions with the 
directly connected nodes when some node, which is out of S, 
is directly connected to more than one node in S. There are 
two cases. The first case involves counting all links between 
the internal (i.e., S-nodes) and external (i.e., nodes out of S) 
nodes. The second case is based on the idea of merging all 
connections of an external node with S-nodes into one link.

Consider the coalition S = {5,6}, where node 7 is con-
nected to both nodes 5 and 6. There are two cases:

Case 1: Consider deg({5,6}) = 3 and deg(7) = 2, which is 
illustrated in Fig. 6.

Table 8 presents the resulting SVs.
Case 2: deg({5,6}) = 2 and deg(7) = 1, as depicted in 

Fig. 7.

Table 6  Initial SVs based on the 
second approach

Node Degree Shapley value

1 2 0.917
2 2 0.917
3 3 1.250
4 2 0.833
5 3 1.250
6 2 0.917
7 2 0.917

Table 7  Second approach: SVs 
considering S = {3,4}

Node Degree Shapley value

1 2 0.917
2 2 0.917
{3,4} 3 1.167
5 3 1.167
6 2 0.917
7 2 0.917

Fig. 6  Grouped nodes 5 and 6 with deg({5,6}) = 3

Table 8  SVs considering 
deg({5,6}) = 3

Node Degree Shapley value

1 2 0.917
2 2 0.917
3 3 1.250
4 2 0.833
{5,6} 3 1.250
7 2 0.833
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Table 9 presents the resulting SVs.
Case 1 is based on the double counting of links between 

node 7 and group {5,6}, where we consider the relations 
of all coalition members with an “external world.” Case 2 
is based on counting of only one link between node 7 and 
group {5,6}, which acts as one holistic entity. The leadership 
position of the coalition {5,6} in Case 1 is stronger than that 
in Case 2 because of the greater number of relations with 
the “external world.” Merging nodes 5 and 6 into one node 
“5–6” will get the same results as for the group {5,6}, as 
shown in Table 9.

2.2.2  Grouping indirectly connected nodes

Indirectly connected nodes 3 and 5 are grouped to calculate 
the SV of S = {3,5} in the initial graph represented in Fig. 1. 
The main issue in this case is how to calculate the degree 
of the coalition S = {3,5} and of node 4, which is directly 
connected to both nodes in S. Again, consider two cases:

Case 1: Consider deg({3,5}) = 6 and deg(4) = 2, as pre-
sented in Fig. 8.

Table 10 presents the resulting SVs.
Case 2: deg({3,5}) = 5 and deg(4) = 1, as presented in 

Fig. 9.
Table 11 presents the resulting SVs.
In Case 1, SV({3,5}) is higher than in Case 2, mainly 

because of the difference in degree centralities of the coa-
lition {3,5}. Now, consider the case when indirectly con-
nected nodes 3 and 5 are merged into one node “3–5,” as 
shown in Fig. 5. Table 12 presents the resulting SVs.

The final results presented in Table 12 are equal to the 
results shown in Table 11 because group {3,5} has the 
same degree centrality as the merged node “3–5” as well 
as all other corresponding nodes from Figs. 5 and 9.

Fig. 7  Grouped nodes 5 and 6 with deg({5,6}) = 2

Table 9  SVs considering 
deg({5,6}) = 2

Node Degree Shapley value

1 2 0.917
2 2 0.917
3 3 1.250
4 2 0.917
{5,6} 2 1.167
7 1 0.833

Fig. 8  Grouped nodes 3 and 5 with deg({3,5}) = 6

Table 10  SVs considering 
deg({3,5}) = 6

Node Degree Shapley value

1 2 0.810
2 2 0.810
{3,5} 6 2.143
4 2 0.619
6 2 0.810
7 2 0.810

Fig. 9  Grouped nodes 3 and 5 with deg({3,5}) = 5

Table 11  SVs considering 
deg({3,5}) = 5

Node Degree Shapley value

1 2 0.833
2 2 0.833
{3,5} 5 2.000
4 1 0.667
6 2 0.833
7 2 0.833
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3  Conclusion and Discussion

This study analyzed two representative approaches to 
measuring group leadership using the SV concept from 
cooperative game theory. The computational results show 
that there is no unique approach for measuring group lead-
ership in social networks based on the SV. Each method 
has its advantages and limitations.

Flores’s approach (Flores et  al. 2014) to measuring 
group leadership employs the concept of classical SVs 
based on the objective function for coalitions (i.e., net-
work groups). The given method shows the comprehen-
sive distribution of a total surplus among all nodes within 
a network. However, based on the computational nature 
of the classical SV, this method has an exponential time 
complexity that limits its use to networks with a small 
number of nodes (Maleki et al. 2014). This limitation is 
critically important for group leadership analysis because 
most real-world networks have a large-scale essence. 
Another limitation of this method is that the SV can obtain 
negative values, which complicates the interpretation of 
how the resulting SVs reflect the real agents’ leadership 
in networks.

The advantage of the Aadithya’s approach (Aadithya et al. 
2010), which was adapted for the group SV calculation, is its 
polynomial running time, which makes this method applica-
ble to large-scale networks. This method also has a theoreti-
cal game background, which offers more opportunities for 
further research in the domain of group leadership analy-
sis due to the well-developed analytical apparatus of game 
theory. However, as the given research indicated, one of the 
issues of this method is how to compute the degree cen-
tralities of coalitions and nodes that are simultaneously con-
nected to more than one member of some specific coalition. 
We described two scenarios to overcome this uncertainty, 
but the final choice has to be made by decision makers who 
work with practical social networks, as each particular case 
requires individual analysis and testing.

In summary, the approaches by Aadithya et al. (2010) and 
(Flores et al. 2014) both have advantages and disadvantages. 
The analysis shows that there is no single solution in terms 
of methods for measuring group leadership in networks. 
The choice of a method for calculating group centralities in 

social networks should be carried out individually in each 
specific case.
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