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Abstract
In many sports disciplines, the schedule of the competitions is undeniably an inherent yet crucial component. The present 
study modeled sports competitions schedules as networks and investigated the influence of network properties on the accuracy 
of predictive ratings and forecasting models in sports. Artificial networks were generated representing competition schedules 
with varying density, degree distribution and modularity and embedded in a full rating and forecasting process using ELO 
ratings and an ordered logistic regression model. Results showed that network properties should be considered when tuning 
predictive ratings and revealed several aspects for improvement. High density does not increase rating accuracy, so improved 
rating approaches should increasingly use indirect comparisons to profit from transitivity in dense networks. In networks 
with a high disparity in their degree distribution, inaccuracies are mainly driven by nodes with a low degree, which could be 
improved by relaxing the rating adjustment functions. Moreover, in terms of modularity, low connectivity between groups 
(i.e., leagues or divisions) challenges correctly assessing a single group’s overall rating. The present study aims to stimulate 
discussion on network properties as a neglected facet of sports forecasting and artificial data to improve predictive ratings.

Keywords Network science · Network entropy · Sports forecasting · Sports scheduling networks · Predictive methods

1 Introduction

The use of predictive models in sports has been widely 
addressed by several disciplines as an opportunity to 
develop, evaluate and display new analytical methods. 
Among other predictive tasks related to, for example, tactical 
behavior (Seidl et al. 2018) or injury prevention (Rossi et al. 
2018), accurately predicting the outcome of sports events 
received significant attention due to knowledge transfera-
bility, data availability and economic reasons (McHale and 
Swartz 2019; Wunderlich and Memmert 2021). Despite the 
seemingly limited field of sports, the subject of predicting 
the outcome of sports events does not only vary in terms 

of the sport: American football (Baker and McHale 2013), 
basketball (Manner 2016), European football (Koopman and 
Lit 2019), horse racing (Lessmann et al. 2010), or tennis 
(Kovalchik 2016); but also the competition: national leagues 
(Angelini and de Angelis 2019), international tournaments 
(Groll et al. 2020), or Olympics (Forrest et al. 2010); and the 
forecasting level of detail (i.e., winner of the event (Pachur 
and Biele 2007), set of probabilities for the possible out-
comes (Koopman and Lit 2019), etc.). Besides domain-
specific knowledge from sports and forecasting, methods 
stemming from computer science such as data mining and 
machine learning have gained importance in recent years to 
handle the complex available sports data for predictive pur-
poses (Berrar et al. 2019; Bunker and Thabtah 2019; Horvat 
and Job 2020; Hubáček et al. 2019a; Miljković et al. 2010).

The majority of predicting models targeting the outcome 
of sports events can be encapsulated into a set of components 
that shape the sports forecasting process (Garnica Caparrós 
et al. 2021). Implicitly or explicitly, mathematical models 
use numerical representations of the competitors’ strength 
or quality, so-called ratings. Ratings aim to provide a sound 
assessment of the team’s or player’s performance. Competi-
tors ranking systems are usually implied from a basic rating 
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sorting. Popular sports are based on trivial point-rewarding 
systems such a football league table or tournament results 
like the ATP tennis world ranking. From a forecasting point 
of view, these rankings are not optimal for predictive sce-
narios. On the other side, forward-looking ratings gathered 
more attention from the scientific community thanks to their 
predictive properties (Stefani 2011). As a second component 
in the sports forecasting process, these ratings are the pri-
mary basis of a prediction model, referred to in this paper 
as the forecasting model. The forecasting model generally 
yields the final probability distribution among all the possi-
ble outcomes of a sports event. The model usually considers 
the ratings a systematic effect within other factors (i.e., home 
advantage) and unsystematic effects such as randomness. 
After an observation (i.e., a match), the ratings are updated 
by observing the real and expected outcomes.

Finally, statistical or economic measures can assert the 
forecasting model quality. Model’s accuracy measures how 
efficient the prediction goal was executed, i.e., if the events 
predicted were indeed observed. On the other side, the mod-
el’s quality might also be evaluated by generating benefits 
in the sports betting market. Accuracy and profitability of 
the forecasting model are usually correlated but should not 
be generally equated when it comes to model training and 
evaluation (Wunderlich and Memmert 2020). The inherent 
nature of this process includes a high degree of uncertainty 
as only the result of the sport event is observed. Yet, it is 
not easy to distinguish whether inaccuracy in the models 
can be attributed to unsystematic effects (i.e., randomness), 
forecasting inefficiencies or incorrect assessment of com-
petitors strength.

Each step of the fore-mentioned process has been a pro-
ductive area of application of statistical methods and data 
mining algorithms. The assessment of sports competitors 
(i.e., players or teams) can be performed from different 
approaches. Ratings can be derived from ELO Rating vari-
ants (Glickman and Jones 1999) or comparable mathemati-
cal models. Recent advances on the availability of highly 
detailed data in the sports domain boosted the research in 
determining key performance indicators of sports com-
petitors to achieve accurate predictions (Goes et al. 2019; 
Jayanth et al. 2018; Miljković et al. 2010). With regard to 
the forecasting models, deriving predictions from ratings 
is extensively studied in several sports (Wunderlich and 
Memmert 2021). However, the current literature seems to 
oversee the study of a fundamental and cross-discipline 
attribute of every sport, its schedule. The schedule, usually 
called the calendar, of a sports competition can be repre-
sented as a complex network of participants and pairwise 
confrontations.

Any sports competition has a predefined structure that 
will eventually evolve following scheduling rules. The 
sports forecasting literature has an extended application 

to all those sports disciplines governed by a sequence of 
pairwise comparisons or confrontations. This list of sports 
disciplines includes all team sports where there are never 
more than two teams competing against each other and 
individual sports such as chess and tennis. In these cases, 
the tournament derives the results from sequences of pair-
wise confrontations. Tournaments differ in scheduling these 
comparisons; national football leagues in Europe derive a 
final winner from a double round-robin scheduling. In US 
sports, teams are organized in conferences with a higher fre-
quency of games. Tennis tournaments are usually defined as 
a single-elimination competition. Many tournaments often 
have schedules that combine non-elimination stages with a 
final knockout stage (e.g., NBA regular season and playoffs 
or UEFA Champions League group stage and double-leg 
knockout stage). If the forecasting model learns and pre-
dicts from every event of the tournament and ratings update 
the competitor’s strength depending on every confrontation 
expected and observed outcomes, it is intuitive to expect 
that the density, time order, and distribution of these events 
would influence the accuracy of the process and its evo-
lution. Even if not explicitly considered, rating procedures 
and forecasting models might benefit from the competition 
structure and follow their temporal order to perform learning 
and predicting tasks.

The relational nature in pairs between competitors in 
the sports described below can be translated into a network 
model with the vertices representing the competitors and the 
edges representing the set of confrontations of the tourna-
ment. A network abstraction of a system allows describing 
the local relationships pairwise and the macro-patterning 
above the structure, permitting knowledge to develop. The 
use of graph theory and network abstraction of sports tour-
naments to solve scheduling problems (Drexl and Knust 
2007; de Werra 1985) is presented in several sports disci-
plines such as football (Ribeiro 2012) or tennis (Ghoniem 
and Sherali 2010). Indeed, network science, as defined by 
Brandes et al. (2013), has experimented an exponential 
growth in recent years as their applications proved to be 
insightful in topics such as human migration (Pitoski et al. 
2021) or epidemiology (Bansal et al. 2010). In sports, some 
contributions used similar network abstractions and network 
science methods. In Park and Newman (2005), the authors 
analyzed the same network model with win-loss differential 
additions to investigate how to rank teams on competitions 
with several conferences. Another study (de Saá Guerra 
et al. 2012) used the network adjacency matrix to measure 
the level of competitiveness in basketball leagues. Recently, 
a rank-based social network analysis on team strength and 
confrontations was proposed (Shi and Tian 2020) that 
aimed to synthesize performance metrics of each team in 
the weight of the network edges. In European Football, net-
work analysis plays a role in performance analysis of teams 
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and players by the so-called passing networks (Buldú et al. 
2018; Duch et al. 2010), a network abstraction with play-
ers being the nodes and edges the passes between them as 
weighted and directed links. A recent study (Medina et al. 
2021) explores these passing networks properties and their 
effects on the match outcome.

1.1  Definitions

1.1.1  The scheduling network model

The network model consists of competitors (i.e., teams or 
players) as nodes and matches or confrontations as edges 
(Ribeiro 2012). The existence of an edge eij between the 
node i and the node j denotes a match between the two com-
petitors (see Fig. 1). Sports with clear meaning and impact 
on the venue of the match (i.e., European Football leagues 
with home and away fair matches between teams) are rep-
resented as a directed network where the edge source is the 
away team, and the target of the edge is the home team. In 
sports where the venue is irrelevant (i.e., Tennis or Chess 
tournaments), their network representation does not consider 
the edges’ direction.

Figure 1 exemplifies two states of the network model and 
showcases its temporality. The network is temporal from 
two different perspectives. First, edges are scheduled on a 
certain day and can be timely arranged following the sched-
ule of the competition and the order of matches. Second, 
some networks might not be fully scheduled at a certain 
point and receive edge additions depending on the actual 
outcome of certain confrontations (e.g., in elimination 
tournaments, the winners move to the next stage, and new 
games are scheduled). Rating procedures and forecasting 
models are integrated into this temporal schema and can 
be accessed in the network as the node and edge attributes, 
respectively. Ratings are a series of values linked to each 
node, and the forecasting models add a set of predictions 
related to each edge. This paper analyzed the forecasting 
models yielding a distribution of probabilities among all the 
possible outcomes (i.e., node x win probability vs node y win 
probability in elimination matches or without draw option or 

home-draw-away probabilities for a football match). Thus, 
rating rx,i refers to the node x rating value before the i + 1th 
confrontation while rx is the set of rating values assigned to 
the node x ordered by time. Similarly, each edge contains 
a set of forecasts trying to predict the event’s outcome. If 
appropriate, the actual outcome of the match is also added 
to the edge attributes.

1.1.2  Network properties

The topological study of the networks must be linkable to 
real-world scenarios and provide new knowledge in current 
sports domains and future applications. Additionally, the 
network properties ought to be available at the macro level 
of the network and allow a feasible random generation of 
networks (to understand the generation of random networks, 
refer to Sect. 2.3.). The generation of networks for the study 
used the following network measures (Newman 2003).

The density of a network is defined as the ratio between 
the actual number of edges and the maximum number of 
edges in a network. In our competition network model, this 
translates into the proportion of matches compared to the 
maximum number of possible matches. In rating procedures, 
it could be expected that leagues with a high density, such 
as national sports leagues, provide an easier environment 
to assess and compare the strength of each competitor. In 
contrast, sports tournaments with less density of matches 
oppose more challenging scenarios. The assumption that the 
structure and connection of the presented network model 
contain entropy and, therefore, a knowledge that could be 
used for predictive tasks is highly related to the transitivity 
property of a network. Transitivity is a marker of how nodes 
tend to cluster together.

The degree is a significant feature of a network node. 
Each vertex degree is equivalent to the number of edges 
adjacent to the node. The relevance of the vertex degree not 
only is present in the micro-analysis of complex networks 
but also in the macro-analysis with the network degree dis-
tribution. The study of this network property directly tackles 
the challenges that might source from leagues with different 
participation frequencies between competitors and leagues 

Fig. 1  Simple network model 
representing the sports competi-
tion network implemented. a 
Ratings and forecasting for each 
of the nodes and edges at time 
t
i
 . b Status of ratings, forecasts 
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with all competitors participating on the same number of 
occasions. It is expected that high degree nodes would be 
more accurately estimated than low degree nodes.

The modularity of a network measures the structure of 
a network by looking at its divisions and the connections 
within divisions. Networks divisions are often referenced in 
the literature as clusters or communities. High modularity 
structures have dense relationships within clusters but sparse 
connections between them. Modularity is a notable charac-
teristic of US sports divided by conference or international 
European leagues gathering teams from different national 
leagues. Often, predicting the outcome of a match within 
two competitors from different divisions forms a bigger chal-
lenge than predicting matches within the same division. It 
is expected that the size and density of the groups and the 
interconnections between groups will affect the predictive 
ability of matches within divisions.

1.2  Real‑world examples

To further contextualize and motivate the focus of this study, 
four different real-world sports tournaments are visualized 
as their scheduling network model in Fig. 2. Topologi-
cally, large differences among sports disciplines and tour-
naments become visible. National leagues (Fig. 2a) form 
dense structures where every competitor faces each other 
twice in a round-robin schedule. However, these national 
leagues are also included in bigger networks (Fig. 2b) where 
international leagues concur (i.e., UEFA Champions League 
games). In these scenarios, several dense connected compo-
nents are present in the network model, and just a few con-
nections are formed between components. Figure 2c shows a 
smaller competition of professional men’s European football 
national teams as an example of a sports competition with 
modifiable scheduling rules: six connected components of 
four nodes can be identified referring to the group stage of 
the competition, only a subset of the most successful nodes 

is then participating in the knockout stage that involves all 
the components. Last but not least, a more unstructured net-
work model is presented in Fig. 2d, representing one full 
season of a professional men’s tennis circuit. This network 
model involves more nodes than the others and is highly 
sparse. Moreover, the degree of each node is a determinant 
aspect as a component of the nodes in the network is involv-
ing the vast majority of the edges. In contrast, a lot of other 
nodes are left to fewer interactions.

An overview of the main characteristics of each network 
model with regard to the properties presented in the previous 
section is shown in Table 1. As an initial exploratory analy-
sis, real-world sports competitions networks are generally 
sparse when taking the full network model where every com-
petitor faces each other, only happening in domestic leagues. 
Interestingly, domestic leagues are the only ones with a con-
stant degree distribution among all its participants, com-
pared to the tennis circuit that contains high fluctuations 
among the degree of each node and a highly asymmetric 
distribution. Additionally, international competitions con-
tain predefined components that are indeed full connected, 
while edges between these divisions are scarce. Please refer 
to Sect. 2.3. for further discussion on how these real-world 
metrics were embedded in the artificial generation of net-
works. Additionally, Sect. 4 provides a brief use case on how 
the results of this theoretical study could be validated and 
implemented in these real-world data scenarios.

1.3  Contribution

The contribution of the present study is three-fold. First, 
it proposes an extendable network model defining sports 
tournaments confrontations and integrating predictive rat-
ing procedures and forecasting models. Second, realistic net-
works are simulated by random creation while tweaking the 
desired predefined network properties. Third, artificial data 
is introduced to recreate a full forecasting process on these 

a b c d

Fig. 2  Real-world sports tournaments visualized as a network of con-
frontations. a One season of the Bundesliga, the professional men’s 
European football league in Germany. b Three of the most competi-
tive men’s European football leagues in Europe: English Premier 
League, Spanish First Division and Bundesliga with the two profes-

sional international competitions: UEFA Champions League and 
Europa League. c The 2020 UEFA European Football Championship, 
a quadrennial international men’s European football champions of 
Europe. d The 2019 Tennis ATP Tour, the men’s professional tennis 
circuit
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networks, enabling a network properties dependent analysis 
of rating accuracy and predictive quality. To the best of our 
knowledge, this is the first study systematically analyzing the 
impact of network structure as a neglected facet of forecast-
ing models in sports. The main advantage of this approach 
is that—in contrast to applications using real-world data—a 
fully controlled environment of the sports forecasting pro-
cess is implemented, yielding improved empirical validation 
and insights on the impact of network structure.

In summary, this study seeks to investigate the impact of 
several network properties on the optimal training of models 
and their rating accuracy and predictive quality. Moreover, it 
aims to identify the potential for improvement of rating pro-
cedures by analyzing the strengths and weaknesses of state-
of-the-art rating procedures on different network structures.

2  Methods

2.1  Data simulation

In real-world scenarios, sports scheduling changes are rare. 
Additionally, real-world tournaments do not provide a big 
enough range of network differences to analyze the impact 
of the network characteristics in the forecasting methods. 
To solve this paradigm, this study introduces artificial data. 
While artificial data is useful to recreate realistic environ-
ments without using personal data (Jahangirian et al. 2010), 
it is also useful to provide extreme scenarios and generate 
new hypotheses. The simulation framework (Garnica Cap-
arrós et al. 2021) used in this study creates a large set of 
competition schedules with certain network properties and 
analyses their impact on network evolution and forecasting. 

The networks’ generation, modeling, and analysis were 
implemented in Python programming language (van Rossum 
and Drake 2009) and the software NetworkX for complex 
networks analysis (Hagberg et al. 2008). The visualization 
of the networks was performed by Cytoscape.js graph theory 
library (Franz et al. 2016).

To achieve an accurate simulation of the sports forecast-
ing domain, all aspects of the sports forecasting process are 
also added to the simulation. For every single competition 
simulated (i.e., network), all competitors (i.e., nodes) receive 
a simulation of their true strength and their evolution in time 
during the duration of the competition, from now on referred 
to as true ratings. Similarly, every match (i.e., edge) is prop-
erly simulated with a certain probability distribution for each 
possible match outcome, referred to as the true forecasts. 
The match result is drawn from this denominated true fore-
cast. True ratings are created as a numerical function with 
a specified starting point and trend, including random daily 
fluctuations and seasonal changes per node. True ratings are 
the main input to simulate match possible results by deriv-
ing a distribution of outcome probabilities. A ternary match 
result was assumed (i.e., home win, draw, away win), fol-
lowing previous approaches (Hvattum and Arntzen 2010) 
in European football, the match probabilities are obtained 
by an ordered logit regression model (OLR) using the dif-
ference of competitors ratings as the single covariate. The 
model yields the match probabilities concerning the possible 
outcomes (i.e., probability of a home win, draw and away 
win). Three parameters c0, c1, � are required by the model. 
The true forecast is configured with c0 = −0.9 , c1 = 0.3 and 
� = 0.006 . The configuration of the true ratings and true 
forecasts defines the “reality” of the simulated environment. 
The scheduled competition is modeled as a network, with 

Table 1  Network properties observed in the different sports tournaments

Density refers to the actual number of edges divided by the maximum number of edges. Theoretically, tennis seasons allow infinite confronta-
tions between two opponents; however, a double-round robin system is used as the maximum number of edges for all competitions. Degree 
spread refers to the ratio between the interquartile range and the median. Inter-division connectivity refers to the actual number of edges between 
divisions divided by the maximum number of edges between divisions (again assuming a double round-robin system).
1 BL Bundesliga, PL English Premier League, LL Spanish First Division La Liga, CL UEFA Champions League, EL UEFA Europa League

Sports Domestic Football International Club Football International Football Tennis
Competition Bundesliga European Leagues1 Men’s Eurocup 2020 ATP tour 2019

Density 1.0 0.021 0.092 0.031
Degree distribution
Median 34 38 4 8
Q1, Q3 [34,34] [38,44] [3,5] [2,35]
Min,Max [34,34] [34,53] [3,7] [1,79]
Degree spread 0.0 0.158 0.5 4.125
Modularity
Number of divisions 1 3 6 1
Inter-division connectivity – 0.013 0.031 –
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nodes being the competitors with associated time-series 
attributes as ratings and edges representing the confronta-
tion between competitors with associated attributes includ-
ing time, result, and forecasts.

2.2  Estimates and evaluation metrics

To properly simulate a forecasting process and the impact 
of each network property, the simulation needs estimators 
that try to mimic the true ratings accurately, and true fore-
cast explained in the previous section (as in reality, when a 
predictor/bettor is proposed to rate teams or predict match 
results by assuming a certain truth underneath). A frequently 
used method to estimate competitors strength is the ELO 
Rating (Glickman and Jones 1999; Hvattum and Arntzen 
2010). To each competition simulated, the study integrates 
a trained ELO Rating with parameters c = 10 , d = 400 and 
a home advantage � = 80 . The parameter of the ELO Rat-
ing is left to optimization and used as an additional study 
metric. The K-factor is examined and interpreted in the lit-
erature as how much a competitor’s rating can change after 
a single match. A too-small K-factor creates slow ratings to 
converge, while too high K-factors create unstable ratings 
with wild fluctuations.

In contrast to pure real-world applications, the simulated 
environment enables to measure how accurate the proposed 
ELO Rating estimates the true ratings. Thereafter, the dis-
tance between the estimator values and the true ratings is 
reported for every node at every point in time as the rating 
error. Even though this error metric is impossible to obtain 
in real-world scenarios, it indicates how accurate the esti-
mators are from the real simulated values. Moreover, meas-
uring only the estimator’s accuracy against the simulated 
environment would lack real applicability. To solve this, the 
predictive value of these estimators is also analyzed. The 
ELO rating estimator is used as an input of a proposed fore-
cast. An OLR model equivalent to the one used to simulate 
the data is implemented using as the covariate the differ-
ence of the estimated ratings. Using the same model as the 
one used to simulate the data, the analysis focuses entirely 
on the estimator rating predictive value without any noise 
besides the inherent randomness of the data. Two metrics 
are reported to measure the predictive power of the ELO 
Rating-based forecast model, the Rank Probability Score 
(RPS) (Constantinou et al. 2012) and the forecast error. The 
RPS measures the accuracy of the forecasting model as a 
quadratic loss function from the actual result of the game, 
where lower values are interpreted as more accurate fore-
casts. The RPS evaluation is constrained by the actual result 
of the match, which sometimes can be misleading (highly 
unlikely match outcomes are still possible). Therefore, the 
forecast error is reported as the distance between the true 
forecast and the estimator-based forecast. This provides a 

fair measurement of how similar the estimator model was 
to the actual forecast.

The study follows the same training split design at every 
network constructed. The first 20% of edges served as an 
initialization for the estimator. The following 30% of edges 
were used as the in-sample training set to select the ELO rat-
ing K-factor by optimizing for RPS. For every data set split, 
a median value for rating error, RPS and forecast error for all 
confrontations was calculated. Thereafter, the optimal K was 
calculated by optimizing RPS. Consequently, the remaining 
50% of the edges served as the evaluation set. A median 
value for each evaluation metric was calculated.

2.3  Random networks generation

The second step in the data simulation is to generate several 
random network topologies for each of the studied network 
properties: density, degree distribution, and modularity. To 
properly study the effect of each property, the random net-
works generated covered the full range of possible values. 
Several design constraints are introduced for each property 
to ensure a proper collection of sample networks.

2.3.1  Networks generation by density

Network density can range from 0 (i.e., a low connected 
network) values to 1 (i.e., a fully connected network). Ran-
dom networks with the same degree per node were created 
with an increasing number of nodes to achieve a list of net-
works that uniformly traverses the network density spec-
trum. The networks with a lower number of nodes achieved 
higher density values. A fully connected network mimics a 
national sports league with a double round-robin schedule 
where every team plays each other twice through the season. 
Therefore, the full connected network is obtained by a net-
work with 50 nodes and a node degree of 98. In contrast, the 
minimum density of 0.04 is achieved by keeping the node 
degree of 98 and 1226 nodes. A final set of 25 networks 
was created with a constant node degree of 98 and densi-
ties ranging from 0.04 to 1.0 with approximate increments 
of 0.04. The K-factor of the ELO rating was optimized for 
each network, and the evaluation metrics were extracted, as 
explained in the previous section.

2.3.2  Networks generation by degree distribution

A new measurement is introduced for this part of the study 
as degree distribution spread. A degree distribution spread 
of value ds with a mean degree of � refers to a network with 
a degree distribution with mean at � and values uniformly 
distributed between � − �ds and � + �ds . Networks of 200 
nodes were created with a fixed mean degree per node of 
120. Thereafter, the generation of networks ranged from a 
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degree distribution spread of 0 (i.e., all nodes with a degree 
of 120) to a degree distribution spread of 1 (i.e., all nodes 
degree drawn uniformly between 0 and 240). In other words, 
low values for degree distribution spread generated networks 
with a similar degree for all nodes. In contrast, higher values 
in the degree distribution spread created networks with a 
highly variable degree distribution (existence of highly con-
nected nodes vs poorly connected nodes). The desired dis-
tributions were obtained using Python NumPy library (Har-
ris et al. 2020), the generation of random networks given a 
certain degree distribution employed a configuration model 
(Newman 2003; van der Hofstad 2017).

A final set of 40 networks was created with a distribu-
tion spread ranging from 0 to 1 with increments of 0.025. 
From each network, the low degree nodes are defined as the 
decile of the nodes with lowest degree (10% of all nodes 
with the lowest degrees) and the high degree nodes defined 
as the decile of the nodes with highest degree (10% of all 
nodes with the highest degree) were extracted. The optimal 
K-factor and the evaluation metrics were calculated for each 
subgroup of nodes on each network. This can be viewed as 
how the degree distribution spread and competition sched-
ules with variable degrees on its competitors’ effect on rating 
calibration and predictive accuracy. Additionally, the optimi-
zation of the K-factor was individually observed by degree 
groups. In this case, the results were reported by comparing 
the lowest degree nodes and the highest degree nodes for 
each trial.

2.3.3  Networks generation by modularity

Finally, the third set of networks was created focusing on 
their modularity. All networks contained 200 nodes and 
ten divisions or communities (20 nodes per division). The 
connectivity between divisions is defined as the probability 
of an inter-division edge being present. The ten divisions 
were fully connected at each network, while the connectivity 
between divisions ranged from 0 (10 independent groups) 
to 1 (a single full connected network of 200 nodes). A final 
set of 50 networks was created with connectivity ranging 
from 0 to 1 with increments of 0.02. The analysis determines 
how inter-division connectivity affects rating calibration and 

predictive accuracy. An optimal K-factor and the evaluation 
metrics were calculated for each network.

Additionally, the rating error was analyzed at the team 
and division levels. A division rating can be defined as the 
average of all node’s ratings belonging to a certain division. 
Thereafter, a certain true rating and an estimated rating are 
present at the division level. Optimally, a new node-level rat-
ing error definition was introduced to differentiate between 
node-level and division-level rating inaccuracies. A divi-
sion-dependent rating error was calculated as the difference 
between the rating error and the division rating error for each 
node. The division-dependent rating error reflects how accu-
rate the rating error is within the scope of a certain division.

3  Results

The results of the three network properties studies are pre-
sented similarly. First, the optimal specification for the 
ELO rating estimator (i.e., selection of K-factor) for every 
network simulated is presented. Then, the accuracy of the 
estimators is explained by the network property considering 
rating accuracy and predictive value. More detailed findings 
are reported to understand the internal behavior and motivate 
the discussions for each property characteristic.

3.1  The effects of network density

In this study, the simulated network size increases expo-
nentially as network density decreases. The network with 
the highest density value contained 50 nodes and 2450 
edges, while the lowest density network, at a density of 
0.04, contained 1226 nodes. The optimal K-factor for the 
proposed estimator on each network with a different density 
is presented in Fig. 3. This parameter does not significantly 
impact the density values as it remains constant through all 
the density range. Figure 4 shows the rating accuracy and 
the predictive performance of the estimators added to each 
network. No clear effect of network density on any indicators 
can be identified.

Fig. 3  Optimal K-factor for each 
of the constructed networks by 
network density

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

Network density

O
pt

im
al

 K



 Social Network Analysis and Mining (2022) 12:143

1 3

143 Page 8 of 15

3.2  The effects of degree distribution spread

This section evaluates the effects of the degree distribution 
spread in the forecasting capabilities. In this case, the size 
of the resulting networks remained relatively constant as 
the main difference between each network was their degree 
distribution.

With regard to the ELO rating optimal K-factor, Fig. 5 
presents how the optimal K-factor resulted by degree dis-
tribution spread of the generated networks. While no trend 
was identified if all nodes are analyzed together, the optimal 
K behaves differently, when analyzing only the low degree 
and the high degree nodes. Low degree nodes require higher 
K values, and their optimal K increases with a high degree 
distribution spread. In contrast, high degree nodes require 
lower values of K, specifically in high values of spread, and 
are not affected by the increase of the distribution spread. 
Additionally, Fig. 6 shows two individual examples of how 
the predictive value by RPS differs by certain values of K in 
high and low degree nodes. At low distribution spread, both 
functions are similar and result in similar optimal points. 
In contrast, at high distribution spreads, the functions are 

distant and have different shapes, resulting in different opti-
mal points for each group.

The evaluation metrics evolution by degree distribution 
spread are presented in Fig. 7 considering only the defined 
low degree and high degree nodes. The rating and forecast 
error reported for high degree nodes is kept at a constant 
level while it increases at the low degree nodes as the degree 
distribution spread is incremented. This effect is not visible 
if we only observe the RPS value.

3.3  The effects of network modularity

The third collection of studies focused on network modu-
larity. For each network, ten divisions were constructed, 
and inter-division connectivity was investigated. As shown 
in Fig. 8, the optimal K for the estimator on each network 
decreases as we increase the connectivity between divisions. 
Moreover, Fig. 9 shows a gradual fall in the rating error and 
forecast error as networks increase their inter-division con-
nectivity. The RPS values also drop; however, given that the 
RPS depends on the random realized outcomes, the trend 
appears slightly weaker than the inherent noise in the values.

Fig. 4  Rating error and predic-
tive value (actual forecast error 
and RPS) by network density. 
Linear trends are presented as a 
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Fig. 5  Optimal K by degree 
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degree. Linear trend is marked 
as a thinner grey line

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

30

35
Low degree High degree

Degree distribution spread

O
pt

im
al

 K



Social Network Analysis and Mining (2022) 12:143 

1 3

Page 9 of 15 143

Dissemination between node rating error, division rat-
ing error and division-dependent rating error is presented 
in Fig. 10. The graph shows how the estimators achieve 
higher accuracy at node and division levels in networks 

with higher inter-division connectivity. Additionally, in 
networks with higher inter-division connectivity, the dis-
tance between the rating error and the division-dependent 
rating error is lower.

Fig. 6  RPS values for each pos-
sible K-factor for the lowest and 
highest degree groups respec-
tively at distribution spread 
values of 0.2 and 0.95
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4  Practical applications: a use case on sports 
divisions

The primary aim of this paper was to present the theo-
retical results of the simulation-based study to measure 

the impact of the sports scheduling network in forecast-
ing models in sports. However, it is important to provide 
transferable insights into real-world data scenarios. In this 
section, a practical application motivated by the presented 
study highlights how network modularity could provide 
important modeling and optimization insights in the 

Fig. 8  Optimal K-factor 
depending on the connectivity 
between divisions
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Fig. 9  Rating error and predic-
tive value (actual forecast error 
and RPS) by inter-division con-
nectivity. Linear trend is marked 
as a thinner grey line
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sports forecasting process. Example of real-world data-
sets were presented in Sect. 1.2. This use case comprises 
data from European Football national leagues and inter-
national competitions in 2020/2021 season; 1826 matches 
were extracted from the five top leagues; English Premier 
League, French Ligue 1, German Bundesliga, Italian Serie 
A and Spanish First Division. In addition, 72 international 
matches were gathered from the UEFA Champions League 
and the UEFA Europa League. For this case study, only the 
international matches confronting teams from the listed 
national leagues were included, representing only the 4% 
of the total number of matches in the dataset. All data were 
obtained through (LLC SR).

The resulting network model contains five connected 
components. Only a few connections exist between the 
components which refer to the international confrontations. 
International matches are generally more challenging to 
model for a forecasting process in such scenarios due to the 
potential differences between national competitions and the 
lowest number of international matches. Network modularity 
challenges are also present in US sports, where tournaments 
are divided into divisions with different playing frequen-
cies. While these dimensions are not directly observable in 
some other unstructured network models (i.e., in tennis), 
network analysis methods could reveal components within 
the network and motivate a similar procedure. As shown 
in Sect. 3.3, network modularity, its components and their 
inter-component edges seem to affect ratings optimization 
and accuracy. A possible network-aware modification of the 
ELO Rating could be based on differentiating between edges 
within the components (i.e., matches in national leagues) 
and edges between components (i.e., international compe-
titions matches). Thus, this practical use case adjusts the 
ELO Rating algorithm to segregate between edge groups 
(i.e., national league matches and international matches). 
Finally, this adjusted ELO Rating is compared to the stand-
ard version.

The main results of this use case are presented in Table 2. 
The two ELO Rating implementations were added to the 
same data. The version ELOsame is a basic implementation 
of an ELO Rating with c = 10 , d = 400 , a home advantage 

parameter w = 50 (Hvattum and Arntzen 2010), and a single 
K-factor calibrated by RPS. Despite current approaches con-
taining more complex parametrizations, ELOsame is used as 
the benchmark for the state of the art calibration and evalu-
ation of ELO Rating in research and practice. The adjusted 
version, ELOdif  , was implemented with the same param-
eters as ELOsame . However, in this case, ELOdif  contained 
two calibrated K-factors, one for matches within national 
leagues and one for international leagues matches. Both 
K-factors were calibrated by RPS. Despite being a basic use 
case, results already indicate the potential of such network-
aware implementations in rating procedures. First, the two 
different K-factors had different optimal points. This finding 
validates the results found in Sect. 3.3 where the K-factor 
was affected by the increase in connections between com-
ponents. Moreover, while the aggregated RPS of national 
league matches remained unaffected, results show a slight 
improvement in the RPS performance of the international 
league matches when using two K-factors. Thus, the ratings 
are more accurate in predicting international league matches 
than a single K-factor.

This practical application is subject to several limita-
tions. The sample size is limited to a single natural year 
of competitions, while in most sports forecasting scenarios, 
sample sizes of at least three years are usually gathered. 
Consequently, the number of international matches only rep-
resents the 4% of the total number of matches. Due to the 
small sample size, no initialization of ratings or data split 
between the in-sample and the out-of-sample dataset was 
incorporated. Additionally, the leagues added to the study 
could be considered of a similar level of competitiveness, 
reducing the challenge of international matches. However, 
this use case aimed to demonstrate the applicability of this 
study’s findings, and these limitations should be tackled to 
further structure real-world data studies. Despite the pro-
posal of network-aware new methodologies being considered 
out of the scope for the present study, it is expected that the 
findings of this paper, in conjunction with the brief use case 
presented, will motivate and boost their research, develop-
ment and application.

5  Discussion

Predictive models targeting the outcome of sports events 
frequently raise attention in several research disciplines 
and often tackle methods to properly estimate competitors’ 
strengths or procedures to predict the result of certain events 
accurately. In this predictive context, the structure of the 
competition (i.e., how competitors are scheduled to com-
pete) is yet assumed to be of lesser relevance. The aim of 
this study was to use a simulation-based approach to ana-
lyze the effects of competition schedules in the forecasting 

Table 2  Results comparing the basic ELO Rating implementation 
ELO

same
 and the network-aware proposed implementation with two 

different K-factors ELO
dif

1The first value is the optimal k for national league matches and the 
second value is the optimal k for international leagues matches
2Average RPS of the national leagues matches
3Average RPS of the international leagues matches

Optimal K RPS
inter

2 RPS
intra

3

ELO
same

42 0.2111 0.2349
ELO

dif
42,541 0.2111 0.2341
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performance (i.e., model optimization, rating accuracy and 
predictive value) via network science. The analysis mod-
eled a sports competition schedule as a network model with 
nodes representing the competitors and edges representing 
the confrontation between competitors and embedded a full 
forecasting process in the network model. Separate strands 
of literature can support the presented results and motivate 
further research. First, the literature on sports forecasting 
models (Hvattum and Arntzen 2010; Wunderlich and Mem-
mert 2021) that has been neglecting to systematically study 
the possible influence of network structures. Second, the 
literature on optimal scheduling of sports tournaments that 
have used network science to apply the general conditions 
of a competition format while optimizing additional aspects 
such as traveling costs (Drexl and Knust 2007; Fry and Ohl-
mann 2012; Ribeiro 2012), but has not focused yet on pre-
dictive aspects of competition schedules.

Methodologically, the effects on rating error and forecast 
error were consistent in all analyses, meaning that rating 
inaccuracies directly translate to forecasting inaccuracies. 
This can be considered a direct consequence of the fact that 
in the simulation model, the forecasting process equals the 
true forecasting process; thus, no additional inaccuracy is 
introduced when obtaining probabilities from the estima-
tors instead of the true rating values. The same applies to 
the results with regard to RPS; however, effects on RPS 
appear to be not as clear as effects on forecast error. This 
can be attributed to the fact that rating and forecast errors, 
by definition, are not prone to the inherent randomness in 
observed results. As such, the additional noise driven by 
observed results in the RPS can obfuscate the true mecha-
nisms and have been documented as one of the limitations 
of this evaluation metric in recent studies (Hubáček et al. 
2019b). These results highlight three advantages of using 
the present setup of artificial data creation that are not given 
in real-world data: First, the data characteristics can be fully 
controlled, which made it possible to successfully exclude 
errors in forecasting from ratings in the analysis. Second, the 
true ratings and true forecasts are known and thus available 
for comparison. Third, the inherent randomness in observed 
results is excluded from analysis by using rating error and 
forecast error values.

Theoretical insights can be drawn from analyzing the 
three different network properties. Regarding density, no 
significant effect of the network property on rating or fore-
cast accuracy can be found. The lack of impact from den-
sity is considered a surprising result as a higher density is 
associated with higher transitivity, i.e., if participant A faces 
participant B in a dense network, there is a good chance 
both teams already faced participant C, and these results 
are known. In a less dense network, this is rather unlikely, 
and as such, less information from transitivity is available 
in the network. The results suggest that the ELO rating does 

not seem to take advantage of higher transitivity in denser 
networks. Regarding the degree distribution of the networks, 
results show clear evidence that rating and forecast error 
are predominantly driven by those nodes (competitors) 
with a very low degree (low number of matches). This is 
an understandable result, as a low degree is associated with 
less information, and as such, there is less possibility for 
the rating estimation to converge towards the true rating. 
Moreover, results prove that the optimal specification of the 
model (in terms of the K-factor) depends on the degree of 
the nodes, which becomes a large discrepancy in the case of 
high degree distributions. Driven by the smaller amount of 
information for low degree nodes, it is comprehensible that 
any new information should be given a higher weight than 
new information for high degree nodes. The third network 
property investigated was the network modularity; results 
revealed that networks with higher inter-division connec-
tivity require lower K-factor and show lower rating error, 
forecasting error and RPS. However, in contrast to the other 
two properties, the number of edges per node increases for 
increasing modularity. Therefore, the increased informa-
tion from additional confrontations could also explain the 
decrease of inaccuracies. It is also explainable that a low 
number of connections between divisions generates a bias 
in estimating the overall rating of nodes in the divisions as 
the overall division rating is assumed to be the same for each 
division. The present study then further explored the source 
of rating inaccuracies by comparing the node rating error 
with its division rating error. Results show that the estima-
tion of overall ratings across divisions and the estimation 
of node ratings inside a division contributes to improving 
rating accuracy. In contrast, the overall division ratings seem 
to be a serious challenge in networks with few inter-division 
connections.

This combination of findings provides support for 
improving and developing new forecasting models. This 
study aimed at identifying the potential for improvement of 
predictive ratings. In general, the study has confirmed that 
network characteristics play a role in forecasting and should 
be considered in the model choice. Analysis of density has 
shown that an established rating procedure such as the ELO 
rating does not benefit from transitivity in the networks. 
Therefore, future rating approaches should try to specifi-
cally exploit transitivity by involving indirect comparisons 
of participants in the rating procedure. A further advantage 
of using the micro and macro network structures could be to 
update competitors’ values even though the competitors did 
not directly engage in a confrontation. Analysis of degree 
distribution has revealed that different parts of a network 
would require different model specifications in terms of 
optimal k. These results could relate to sports schedules 
with a high disparity in competitors’ occurrences and how 
to deal with the new competitors (i.e., new-ranked tennis 
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players). In the current state of the art in forward-looking 
rating systems (Coulom 2008), such as the ELO Rating, the 
K-factor is usually referred to as the rating adjustment. Too 
high values for the K-factor create sensitive and unstable rat-
ings, while low values create ratings that generally will not 
respond quickly enough to a competitors strength evolution. 
A stable K-factor is the standard approach, although variable 
K-factors have been already discussed in the literature, e.g., 
depending on the experiences of the rated competitor (Bester 
and von Maltitz 2013). Although K-factor appears to have a 
limited influence on the ranking of competitors in the long 
term (Albers and de Vries 2001), the present results suggest 
that a variable K-factor taking the network characteristics 
into account would be likely to improve rating accuracy. 
Finally, the analysis of modularity has shed light on the 
issue of overall divisions rating estimations, which seem 
to be inaccurate when connections between divisions are 
very limited. To solve this issue, some potential might lie in 
using increased K-factors for the sparse connections between 
leagues or indirectly updating all teams in a league based 
on the results of an inter-league match. The latter results 
have practical implications in competitions containing divi-
sions (i.e., US Sports or European tournaments consider-
ing national leagues teams). Results support other studies 
proposing special procedures to deal with different division 
strengths and inter-division confrontations, e.g., introducing 
competitive balance coefficients to predict the outcome of 
international football games (Halicioglu 2009). A practical 
application is showcased to justify further and motivate the 
adoption of new network-aware methods in the sports fore-
casting process. This brief use case using real data illustrates 
the potential lines of improvement that network-aware rating 
procedures and predictive models could achieve in concord-
ance with the theoretical findings presented in this paper.

The present study is subject to limitations that could be 
a fruitful field for further research. First, the study is lim-
ited to three basic network properties representing a very 
small selection of possible metrics from network science 
that might be worth investigating. Moreover, for feasible 
data generation and interpretability, these properties have 
been considered in three separate analyses while not study-
ing joint effects of the properties. The authors, therefore, 
propose that future studies can investigate further properties 
and consider the joint evaluation, including network entropy 
metrics (Omar et al. 2020). The present analysis is also 
limited to the specifications of the simulated environment, 
which introduces a single rating and forecasting model. 
While ELO rating (Glickman and Jones 1999) and ordered 
logistic regression (Hvattum and Arntzen 2010) are com-
mon and established methods, further research should par-
ticularly consider additional rating methods to validate the 
generalizability of results. Due to the use of artificial data 
generation, the lack of any real-world data evidence might 

be another point of criticism. However, artificial data was 
intentionally chosen as an analysis like this would simply not 
be possible with real-world data. The available real-world 
networks from various sports and competitions represent 
a very small fraction of the artificially generated network 
specifications in this study. As such, a direct transferability 
of the results to real-world data by taking a similar approach 
is impossible. At the same time, theoretical insights have a 
very limited value if not being transferable to real-world 
problems. Consequently, further research should build on 
the present results, focusing on using the network structure 
for varying K-factors and indirect comparisons to test model 
improvements based on real-world datasets.
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