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Abstract
Social media users can be influenced directly by their close relationships, such as their friends, family, and colleagues. 
They can also be influenced by those who follow them through shared information, goals, news, and opinions. Generally, an 
influencer is someone who entices an influence to do the same action, make the same decision, or change their behavior. He 
can also communicate information, ideas, and thoughts to multiple users. There are many tools to identify influencers. It can 
not be found simply through their big follower number or their shared media number. Thus, influencer identification is one of 
the essential tasks in social media research. Several approaches and metrics have been proposed in the literature to identify 
influencers. In this article, we explored the issue of identifying social media influencers while providing a generic view of 
social media influence. First, we presented a literature synthesis on the influence of social media. Then, we categorized the 
works and illustrated the leading solutions in literature to identify influencers in social media. A discussion and suggestions 
for potential future directions in this area accompanied this presentation. We believe these briefings are critical to resolving 
the issue discussed in this article.

Keywords Social media · Influencer · Influencer identification · Influence · Finding influencer · Users’ interest

1 Introduction

1.1  Context

Digital networks have a huge impact on people’s daily lives, 
leading dozens of new researchers to study this rapidly grow-
ing issue that extends throughout multiple sub-domains. As 
social networks become more prominent, a researcher’s first 
logical thought upon analyzing these networks is how to get 
specific information from the data. That makes marketing 
applications explore social media to understand user trends 
and offer new products. Military applications have analyzed 

them to detect terrorist groups and their further socialization 
Cialdini and Goldstein (2004). The health and biomedical 
fields Sendi and Omri (2015) have also benefited from social 
media analysis by exploring discussions on health topics 
and analyzing patient behaviors. Analysis can also predict 
relationship quality, event detection and characterization as 
good or bad Iraklis and Williams (2020) anticipating the 
number of followers they might have Imamori and Tajima 
(2016), enhancing interaction activity and user similarities 
Xiang et al. (2010). And by combining temporal informa-
tion with a social network structure, user interests Bao et al. 
(2013) are predicted.

As the researchers’ results found, the network structure 
proves to be of utmost importance. A graph with nodes and 
edges, where each edge symbolizes the connection between 
two users, whereas each node represents one user, can be 
used to model a social network. Users have a personal web 
page and connect with different friends to share content and 
interact with each other, and build social relationships by 
following others or adding a theme as a friend.

In associated with social influence Peng et al. (2018) an 
influencer entices an influence to do the same action or make 
the same decision, and there can also be no uncertainty Peng 
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et al. (2017). Users might well be instantly influenced by 
their true and intimate relationships (friends, family, class-
mates, coworkers, etc.) while they spend more time with 
them, and by famous content creators that they follow, by 
consulting their shares daily: actuality, goals, news, and 
opinion. Thus, users are sharing influence while sharing 
media and posts. The information and knowledge manage-
ment community has recently attached importance to the 
topic of identifying significant users from social media as 
“the source of influence”. Although studies have concen-
trated on measuring levels of ability to identify knowledge-
able users and determining levels of influence to identify 
influential users. The process starts by analyzing the influ-
ence of the nodes and then progressively maximizes the 
influence of an initial set of nodes to obtain the influential 
nodes. It is a challenging task that has the potential for con-
siderable usefulness in many applications.

Several important works in the literature deal with 
influence and many new works have recently been attracted 
by identifying important and significant influencer nodes. 
In this paper, we will deal with the social media influence 
environment, influencer identification, and important nodes, 
and we will classify important existing works.

The following section discusses the main related surveys 
cited in the literature.

1.2  Related surveys

Many important works dealing with social media analysis have 
been proposed in the literature. We are going to classify them 
according to their state of the art and their metrics. The first 
social media analysis technique Adedoyin-Olowe et al. (2014), 
Tabassum et al. (2018) was classified as an unsupervised, 
semi-supervised, or supervised learning method. The SM 
community detection Azaouzi et al. (2019) and social media 
structure discovery have two types of structure networks: static 
or dynamic according to space and time. Some others worked 
to drown the social media users’ relationships as a graph 
with nodes and edges. Authors Bian et al. (2019) reviewed, 
analyzed, and classified some main literature works into two 
main categories: the most influential nodes in the graph and 
the most significant nodes. Works dealing with the inferring of 
user interest profiles have been classified in Piao and Breslin 
(2018). Another target user personality has been detailed by 
its authors in Andreassen et al. (2016). Depending on the sort 
of machine learning utilized in each approach, the information 
transmitted could be rumors Alzanin and M.Azmi (2018). The 
authors proceeded by dividing the problem of rumor detection 
into three different categories: hybrid approaches; supervised 
approaches; and unsupervised approaches. There are also 
important works dealing with the analysis of social media 
influence, such as the works detailed in Peng et al. (2018); 
Sun and Tang (2011); Peng et al. (2017). The authors of the 

contribution presented in Peng et al. (2018) classified several 
notable works using switch algorithms and models. In Sun and 
Tang (2011), the authors also described various methods and 
algorithms for calculating measures related to social influence. 
An important new work Azaouzi et al. (2021) deals with the 
problem of influence maximization under privacy protection. 
They divide models into two categories: group node-based 
models and individual models. And, by proposing different 
algorithms, different methodologies, and also diverse frame-
works, they demonstrated that one key solves the problem 
of maximizing influence at the individual level Kempe et al. 
(2003). The perspectives of influencer marketing, their content 
strategies, and the attractiveness of their sponsored recommen-
dations are reviewed to promote the marketing tactic. The three 
research factors used by authors to categorize papers were the 
source, message, and audience Hudders et al. (2021). Social 
network applications are becoming highly interested in the 
topic of community detection Plantie and Crampes (2013).

There is much work dealing with the influence of others 
on social media. We aimed to classify some of them sub-
jectively according to their aims and the taxonomy used in 
classification. Table 1 below summarizes the related surveys.

To the best of our knowledge and after these related sur-
veys studies, no one proposed a classification of influencer 
node. Moreover, no work has been found to deal with the 
global problem of social media influencer identification. 
By comparison with the main related surveys, such as Bian 
et  al. (2019); Adedoyin-Olowe et  al. (2014); Tabassum 
et al. (2018); Piao and Breslin (2018); Alzanin and M.Azmi 
(2018); Hudders et al. (2021); Andreassen et al. (2016); Peng 
et al. (2018); Plantie and Crampes (2013) presented previ-
ously, our study presents the following major differences:

– We are not only dealing with influence maximization or 
significant node identification. Our aim is the identifica-
tion of many types of social network influencers.

– Unlike some existing surveys, dealing with only 
one type of social network, that of Twitter, our study 
exploits different types of social networks, such as 
micro-blogging, egocentric networks, Google+ dataset, 
Facebook, Amazon, DBLP, and Wiki.

– Our study is characterized by two important points: 
exhaustiveness and recent bibliographical references. 
Indeed, our study represents coverage of different fields 
of application.

1.3  Motivation and contribution

1.3.1  Motivation

Numerous important works in the literature deal with user 
interests and influence, which have changed over time and 
have played a vital role in all analysis processes. Thus, we 
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have dealt with social media strategy, the first user influ-
encer, to simulate the real environment of users.

The social media strategy makes users more dependent: 
content is organized and categorized, and switching algo-
rithms, user activity, and past choices increase the usage 
rate. One of its strategies is that publication occurrence 
depends on users’ last choices and their degree of impor-
tance, the rate of publication consulted, and users’ litiga-
tion. These networks use cookies and algorithms to collect 

information about them and their behavior. Other websites 
consult, search, and try to identify the users’ interests. 
When the latter is looking for something, it starts appear-
ing as a suggestion on social media homepages. This fur-
ther influences brands to consume their offer. User inter-
est was also guided by photos, videos, and information 
inspired by his friends. On the homepage are their trending 
topics, most viewed videos, and their latest picks; similar 

Table 1  Classification of the main surveys

Reference Aims Taxonomy(ies) studied  Finding

Piao and Breslin (2018) Inferring User Interests - Data Collection
- Data Representation
- Data Construction
- Data Enhancement

Both questionnaires and extrinsic 
evaluation procedures have similar 
levels

 Alzanin and M.Azmi (2018) Detecting rumors - Unsupervised approaches
- Supervised approaches
- Hybrid approaches

There is still a critical need to include 
many languages

 Sun and Tang (2011) Social influence analysis models 
and algorithms

Comprehensive survey An important and challenging 
research area

 Adedoyin-Olowe et al. (2014) Social Network Analysis Using 
Data Mining Techniques

- Unsupervised Methods
- Semi-supervised methods
- Supervised methods

 The usefulness of data mining 
techniques in locating important 
content and information among the 
massive amounts of data created

 Tabassum et al. (2018) Social network analysis Comprehensive survey Still a challenge for many of the 
metrics that need to traverse the 
entire or most of the graph on every 
update

 Andreassen et al. (2016) The relationship between addictive 
use

Behavioral addiction  It is necessary to conduct an 
additional study on these 
understudied interactions

 Plantie and Crampes (2013)  Community Detection - Graph partition
- Hypergraph
- Concept graphs or Galois lattices

There should be more approaches 
developed, and software tools to 
support them are anticipated to 
follow

Azaouzi et al. (2019) Community detection - Static network
- Dynamic network
- Real-world datasets
- Synthetic datasets

Important topic

 Bian et al. (2019) Identifying Top-k Nodes in Social 
Networks

- Influential nodes
- Significant nodes

- The work in this area is quite 
limited.

- The research area of mining top-k 
nodes in dynamic networks is still 
relatively new

 Peng et al. (2018) Influence analysis Comprehensive survey Social networks are on the horizon, 
and social influence analysis is a 
crucial field to address needs

 Azaouzi et al. (2021) Influence maximization Models - Individual models
- Group node-based models

 Many more problems and challenges 
will show up during the progress of 
the social network journey

 Hudders et al. (2021) Social media influencers’ strategy Comprehensive survey - Research on influencer marketing is 
flourishing

- Continuing research on the subject 
is estimated to grow

 Our Survey Influence and identifying 
influencers

Comprehensive survey - Interesting issue
- The amount of ongoing research is 

anticipated to rise
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and international trending topics; international action or 
famous events; and personal activity.

Social media allows users to follow each other and share 
details about their activities and postings. They can like each 
other’s publications, photos, videos, opinions, and disputes. 
It allows the user to see similar consulted publications, and it 
offers the possibility to chat and create direct communication 
and influence. Their friend or an influencer can be inspired 
by seeing the publication. That is why we thought that social 
media users were sharing influence.

All of those influence the user’s choice, use, ideas, focus, 
and personality. Users prefer personalized and guided 
services that are matched by their choice of searches and 
hope. So we are dealing with the influence and influencers 
on social media networks.

1.3.2  Contributions

The main contributions of this article can be summarized in 
the following points:

– First, we dealt with the social media inf luence 
environment to study the general concept of our aims.

– Secondly, our principal contribution was influencer iden-
tification and important nodes, followed by classifying 
important works dealing with them and reviewing them.

– Finally, in a third step, new research directions concern-
ing our survey review are discussed.

1.4  Paper Organization

The rest of this work is organized as follows: In Section 2, 
we presented the review methodology adopted in this work 
by providing the information sources and the research ques-
tions. In section 3, the social media influence background is 
presented and discussed. Section 4 is devoted to detailing 
an overview of social media influence. Then, section 5 con-
tained a literature synthesis on the social media influence that 
we have treated in this work. Section 6 presented the discus-
sions and research challenges that are synthesized at the end 
of this research work. We concluded the study by proposing 
several research challenges in Section 7.

2  Review methodology, sources 
of information and research questions

2.1  Review methodology

We have assumed a systematic methodology to elaborate on 
this current work on social media influence. The following 
is a description of the review approach used, inspired by 
Kitchenham and Charters (2007); Helali and Omri (2021); 

Souiden et al. (2022). The review procedure is a series of 
processes that make up the review protocol. We begin by 
providing the various information sources and then the 
search and selection criteria for the main bibliographical 
references that we used to undertake this study. Next, we 
present the questions section that we have to provide answers 
to throughout this literary work.

According to our objective, we do not aim to create a 
proper list dealing with social media influence but to 
introduce some important work. We focused on works from 
reputable publications. The initial research was based on 
keywords from recent works. After that, we filtered our 
search results by choosing according to a few norms, such as 
the publication date and/or writer competence. If the same, 
we find a similar approach or idea. Then, based on a full-text 
screening, title, and abstract, we obtain our primary studies 
list. Finally, to ensure the quality of the assessment form, 
we choose several articles arbitrarily based on the previous 
stage’s selected results.

2.2  Sources of information considered

Concerning the bibliography used, we proceed to search 
various information sources to lead to the realization of this 
study. To choose sources related to our focus problem, we 
selected research articles from journals, conference proceed-
ings, books, and magazines. Thus, we considered the fol-
lowing databases in our research: IEEE Xplore Springer1, 
ScienceDirect2, Scopus3, ACM Digital Library4,Taylor5, 
Francis6, Google Scholar7.

We also screened the majority of related high-profile 
conferences, such as SIGKDD, ICDT, SIGMOD, ICML, 
WWW, VLDB, ICDE, and EDBT, to find out about recent 
work. Figure 1 shows that papers reviewed percentages from 
different types of resources.

2.3  Research questions

In our research, we are going to answer some proposed ques-
tions that are identified in this current section. Therefore, 
this part focuses on question determination, as below. Then, 
we will answer those questions through the research review.

– RQ1 : Who can influence social media users?

1 https:// link. sprin ger. com
2 http:// www. scien cedir ect. com
3 https:// www. scopus. com
4 https:// www. acm. org/ digit al- libra ry
5 https:// www. taylo randf rancis. com
6 http:// ieeex plore. ieee. org)
7 https:// schol ar. google. co. in

https://link.springer.com
http://www.sciencedirect.com
https://www.scopus.com
https://www.acm.org/digital-library
https://www.taylorandfrancis.com
http://ieeexplore.ieee.org
https://scholar.google.co.in
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– RQ2 : Which is the way to detect influencers?
– RQ3 : How do they influence social media users?

3  Social Media Influence : background

3.1  Social Networks representation

Social media networks can be represented as a set of profile 
sites Aggarwal and Subbian (2014) or virtual communities. 
Their structure, by default, is considered static, with a static 
topology and information. After that, it can be transformed 
into dynamic networks at a specific time t if new nodes 
and edges are added. Networks have a specific topology 
Peng et al. (2018): internet sites where users connect and 
communicate with others; and mobile social networks. 
According to the contribution Bian et al. (2019), the authors 
show that we can model a social network by a graph G = {V, 
E} where V = { v

1
 , v

2
 , . . . , vi } represents a set of nodes and 

E = { e
1
 , e

2
,..., ej } represents a set of edges. In the network 

graph, actors are denoted by V, and social interactions and 
relations between them are denoted by E. Edge measures 
relay the influence built on the concepts of a pair of nodes. 
Each node vi can be active or inactive, and the diffusion of 
influence can propagate from the active node to its neighbor, 
and the links correspond to social relations.

3.2  Influence on Social Media

Social influence is a concept that includes a wide range of 
phenomena, such as:

– Socialization is the process through which individuals 
acquire the knowledge, skills, attitudes, values, norms, 
and appropriate actions of their community Shahr et al. 
(2019), which powerfully directs behavior in private 
settings as well Cialdini and Goldstein (2004) .

– Obedience and authority Individuals are frequently 
rewarded for behaving under the opinions, advice, and 

directives of authority figures Cialdini and Goldstein 
(2004).

– Compliance professionals are forever attempting to 
establish that they are working for the same goals as they 
are, in essence, their teammates Cialdini (2001).

– Conformity refers to the act of changing one’s behavior 
to match the responses of others Cialdini and Goldstein 
(2004).

– Persuasion, the ability to use its effect, is frequently a 
crucial element of success Cialdini and NJ. (2002).

Social networking users tend to act like their “friends” or 
“neighbors” Singlaand and Richardson (2008); Sun and 
Tang (2011). This phenomenon can be summarized in the 
following points:

– Social Influence: Social media users are more likely 
to imitate their friends’ actions. Thus, social influence 
causes people to endorse the behaviors of others.

– Selection: People who are characterized as close to them 
are more likely to bond with each other.

– Variables that may be confusing: Other unidentified vari-
ables exist, and people may act similarly to each other.

Social influence Cercel and Trausan-Matu (2014) can be 
defined as the influence of a person or a group of people on 
each other. This influence is manifested through the impo-
sition of a set of attitudes and behaviors. Considering two 
users, U

1
 and U

2
 , from the social network, U

1
 has a direct 

influence on U
2
 or indirectly influences the point of view of 

U
2
 , and transmits influence to U

2
 . According to Peng et al. 

(2018), social influence is defined as a level of uncertainty 
or a binary relationship between one (the influencer) and 
the other (the influenced) to do the same action or choice. 
The level of social influence can be quantified by a continu-
ous real number or by a degree of uncertainty (e.g., weaker, 
weak, strong, stronger, etc.) and can have different values 
Peng et al. (2017). The fact that U

1
 influences U

2
 , does not 

imply that U
2
 necessarily affects U

1
.

3.3  Two‑step and multi‑step communication flow 
theory

Since relationships are organized around a network 
of peers, with no centralized entities of control in 
social media, users are thrown into a global stream of 
communication Elanor (2013). Social media networks have 
reshaped communication at different levels, such as mass 
communication’s two-step flow of communication theory 
Oren (2019) and multi-step communication. The two-step 
flow communication theory can be used to describe how 
influence works on social media. According to Ognyanova 
(2017) in the two-step model, the theory’s concept of 

Fig. 1  Articles from different types of sources
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personalized content through opinion leaders Oren (2019) 
and direct media effects are hampered by social interactions 
and audience selectivity in exposure, perception, and 
retention. The two-step flow theory was expanded upon by 
the multi-step paradigm Ognyanova (2017). The multi-step 
flow paradigm describes the way media and interpersonal 
influence shape public opinion. Understanding whether 
someone’s opinion was influenced by their social links or 
if they simply chose social ties that shared that opinion, to 
begin with, is important in the context of the multi-step flow 
of communication Ognyanova (2017).

3.4  Influencers identification

Nowadays, social media homepages are limited to showing 
their users priority on the activities of their friends who are 
used to communicating with or reacting to their statuses, 
pics, media, or stories. This task can be studied by utilizing 
the rich text and user interactions on social media Zheng 
et al. (2020). Some research deals with the person who 
influences others, each defines a type and researches its 
impact on others. Nowadays, social media homepages are 
limited to showing their users the activities of their friends, 
who are used to communicating with or reacting to their 
statuses, pics, media, or stories. Some research deals with 
the person who influences others, each defines one influencer 
type and researches its impact on others. In the book, Shah 
et al. (2018) and according to its authors, influential people 
play an important role in information sharing. Being the 
most popular or the first to affirm a new concept are two 
examples of being influential. They also provide a strategy 
for identifying network infrastructure pioneers based on a 
specific topic of interest. People who adopt and introduce 
new ideas before they are known, influencing others, are 
known as trendsetters. They are not always famous or 
popular. In the same way, not all the latest inventors are 
trendsetters since only a few of them can spread their ideas 
in their social circles. They also suggest a reliable way to 
describe the spread of creativity by presenting each issue as 
a collection of trends that can be applied to many different 
scenarios. Results from algorithm simulations on a large 
Twitter dataset show an ability to quantify indirect and direct 
influence, and early adoption is also an important trait for 
influencing others.

All this is to distinguish between the trendsetters and the 
others, who, although having a high degree, only accept 
trends when they have become well known. Other specified 
innovation hubs score a lower degree of acceptance of a 
new idea than follower hubs. Followers Innovation Hubs are 
trendsetters, while hubs are influencers. In the dissemination 
of information, influential people have a crucial effect. 
Having more Wang et al. (2020) followers than others does 
not mean more interaction. There are several ways to be 

influential, such as being the most famous or being the 
first to implement a new idea. The most influential users 
Erlandsson et al. (2016); Zareie et al. (2019); Zhao et al. 
(2019); Sun and Ng (2012) played an important role in 
spreading the information. Others aim to find influencers 
Rodríguez-Vidal et  al. (2019); Subbian et  al. (2014); 
Harrigan et al. (2021); Tsugawa and Kimura (2018); Kaple 
et al. (2017); Chia et al. (2021); Harrigan et al. (2021) 
in different ways. The authors of the works presented in 
Cervellini et al. (2016); Saez-Trumper et al. (2012) deal with 
a trendsetter who is not automatically popular or famous but 
whose thoughts have been broadcast on the network. As a 
result, they serve the same purpose with a different name 
Zhou et al. (2019): influence nodes. Identifying influential 
users has important implications in e-commerce and media 
Jain and Sinha (2020); Sun et al. (2016); Yang et al. (2019); 
Sheikhahmadi et al. (2017). Another example is influential 
actors Qasem et al. (2015, 2017), who have followers Probst 
(2013), are famous on Instagram Jin et al. (2019), and have 
popular content Ding et al. (2015). This phenomenon causes 
a significant increase in the size of the social network. In 
addition, news influencers Alp and Ögüdücü (2018) have 
been identified as specialists on a specific topic. Table 2 
summarizes this work and gives further details.

Trendsetters are people who support and propagate inno-
vative thoughts and have an influence on others before they 
become famous. Cervellini et al. (2016) propose a methodol-
ogy for identifying themes in network infrastructure based on 
a certain topic of interest. And Saez-Trumper et al. (2012) 
used different ranking algorithms to identify themes. Popu-
lar content is by and about famous people on social media. 
A random walk model was presented by Ding Ding et al. 
(2015) to quantify the influence of users and the popularity of 
tweets. Another influencer type is called the prophet, who are 
knowledgeable bloggers and have a strong capacity to predict 
the future. Zhang et al. (2015) propose a method for identify-
ing influential blogs that can predict trending hashtags. It is 
based on keywords or phrases that describe topics or events 
that are well-known in the community. Influencers are people 
who have the power to influence someone or something’s 
personality, evolution, or attitude. Authors like Rodríguez-
Vidal et al. (2019) used a topic modeling approach to manage 
the textual signal in tweets after experimenting with numer-
ous signals and machine learning algorithms. Harrigan et al. 
(2021)are using freely available data from social media APIs, 
and influential mavens on social media may be discovered. 
Chia et al. (2021) integrated the social capital and social 
exchange theories, as well as the social learning theory, to 
identify ideal Kaple et al. (2017) proposed a method to maxi-
mize public participation and build smart cities through the 
use of social networks. To detect influencers, Pudjajana et al. 
(2018) employ SNA metrics (DC, CC, BC) and weight on 
the SNA measurement. A method for identifying network 
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influencers based on their social capital value was proposed 
by Subbian et al. (2014). Switch Sunil and Lingam (2019) 
most of the currently used algorithms created to address these 
issues have the greedy algorithm as their foundation. And the 
two-level approach was proposed (SI) for an epidemic model 
for maximizing the influence spread and a multithreading 
approach for implementation. Tsugawa and Kimura (2018) 
used degree, betweenness, proximity, PageRank, and the 
k-core index, and used the common sample methodologies 
SEC, BFS, DFS, and random sampling to find influencers 
in different social networks. Switch topic Alp and Ögüdücü 
(2018) defined the topical influencers as experts on a given 
topic. And to identify the theme, an approach that combines 
related features and network feature information was used. 
It is widely acknowledged that the distribution of influence 
varies over topics. The work of Zheng et al. (2020) is based 
on the language attention network and influence convolu-
tion network to detect on-demand topic-specific influenc-
ers. Another work dealing with Topic-Sensitive Influencer 
Fang et al. (2014). They used a unified hypergraph to model 
users, images, and various types of relations. Influencers of 
airline services Izdihardian and Ruldeviyani (2021) are also 
detected on Twitter and the results showed their higher influ-
ence. Influential nodes in complex networks are often those 
that increase an interest propagation process’s asymptotic 
reach. Zhou et al. (2019) a thorough evaluation of centrality 
metrics based on their capacity to detect early and late influ-
encer nodes. Lead or follow the influence of mobilizers and 
propagators in networks and society funded by Probst (2013) 
using a systematic literature review to find relevant publica-
tions. Influential users are authoritative actors and are a term 
used to describe influential users. The work of Jain and Sinha 
(2020) used WCI (Weighted Correlated Influence), a new 
concept that integrates the relative influence of 10 different 
elements into two different feature sets: timeline and trend 
specific. Yang et al. (2019) developed the component study 
of the characteristics of Houston’s top 1% of Twitter users in 
terms of the following growth. Another important work by 
Sheikhahmadi et al. (2017) where weights are allocated to 
neighbors based on their adoption delays and the spreading 
influence of nodes is identified. Via a multi-features model, 
Sun et al. (2016) and based on a user identification solution 
with a lot of clouts. The model investigates if a user’s attrib-
utes, such as follower count, can be used to infer whether he 
or she is an influential user, and then ranks influential indi-
viduals based on their impact using the Page-Rank concept. 
Others aim to find the most influential users, or “top k” users, 
who are considered the most influential. Erlandsson et al. 
(2016) found the Degree Centrality and Page Rank Central-
ity and compared the theme to the outcomes of association 
rule learning. Zareie et al. (2019) proposed the idea of a user 
behavior analysis-based high-influence user discovery algo-
rithm (HIUD). Also, influential actors are individuals whose 

tweets generate an enormous number of retweets, resulting 
in a larger social network, proposed in 2015 by Qasem et al. 
(2015) find via a method for detecting influential people uti-
lizing a novel influence degree. Then, Qasem et al. (2017), 
an extended method for identifying important actors, was 
formed based on the attractiveness model defined with the 
T measure.

Other works have defined special influencers that can be 
an inspiration for many important other works by trying to 
identify and find those influencer nodes on social media net-
works. MARWICK (2013) wrote a book that describes con-
tent creators who enjoy fame and influence others by using 
social media to maintain an active communication network. 
Other works could use the larger social graph or friends list 
and broadcast audience recordings to Marwick, who proved 
its importance. In the work Enke and Borchers (2019), the 
authors described three types of influencers: digital opinion 
leaders, those who are likely to have an impact on others in 
their immediate area, and content creators, who are people 
who develop content for social media using their talents to 
create social media content. They also defined moderators, 
who initiate interaction procedures and utilize their position 
to try to lead and continue conversations, and they proved 
the importance and strategy of influencer communication, in 
which social media influencers are performed or addressed 
within tasks that are strategically important to the objectives 
of business goals. Campbell and Grimm (2019); Campbell 
and Farrell (2020) aimed at users with large communities of 
followers. Like celebrity influencers and mega-influencers, 
last but not least, are individuals who have already earned 1 
million or more followers on social media, have seen con-
siderable follower growth, and have gained celebrity status 
through a well-established skill. Recording Campbell and 
Grimm (2019) authors’ social media influencers’ posts on 
their social media channels in exchange for compensation. 
In their next work, they affirmed that influencers can be 
simultaneously social media personae, celebrities, experts 
in particular fields, and peer consumers. They add another 
definition of influencers and micro-influencers, whose ads 
are indistinguishable from other consumer-generated con-
tent. And also, they defined influencers as individuals who 
post to their social media accounts in exchange for com-
pensation and as consumers paid to endorse products and 
promote them to their followers. They affirmed that micro-
influencers, Campbell and Grimm (2019); Campbell and 
Farrell (2020); Leonardi and Monti (2020) or influencers 
with relatively small online followings, are more effective, 
often implying enjoyment or simply usage than other influ-
encers and celebrities.

Using social media to identify influential users is a com-
plex process, but one that is extremely important for sev-
eral Zhang et al. (2015) applications. Previous research has 
determined skill levels for detecting knowledgeable users and 
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influence degrees for recognizing influential users. Generally, 
they mainly depend on the analysis of textual content but also 
on links to the structure of social media networks. Bloggers 
use the blogosphere as a platform to post articles, communi-
cate ideas and discuss views. Blogosphere data is dynamic 
and changes with information updates over time. In the work 
presented in Zhang et al. (2015), the authors attempted to 
find bloggers who anticipate future popular trends, known 
as prophetic bloggers. In this work, the authors examined 
the chronological characteristics and content of blog data 
and proposed a method to analyze the ability of bloggers 
to predict buzzwords. Bloggers are judged on the types of 
words used in their blogs. For example, four recent, related, 
frequent, and/or thorough factors are considered for this goal: 
content similarity, post-precocity, buzzword coverage, and 
frequency of entry. In the work of Zhang et al. (2015), the 
authors stated that by inferring buzzwords, they detected buz-
zwords, which allows the assessment of bloggers’ buzzword 
prediction ability. The contribution proposed by Bian et al. 
(2014a), was interested in the detection of epidemics. To 
discover the spread of a virus as soon as possible, they have 
selected many social network nodes that they consider most 
relevant. To maximize the benefits of companies’ products 
and services, consumer profiles are detected and analyzed 
Hernandez et al. (2013). By analyzing a dataset from Twitter, 
the linguistic indicators of partisan conflict in mainstream 
and social media during political upheaval are explored 
Karamshuk et al. (2016). Others deal with pathogenic social 
media accounts, such as terrorist supporters exploiting large 
communities Alvari et al. (2018) and critical nodes, Alorainy 
et al. (2022) and a high detection of top-k central nodes Mah-
yar et al. (2018). Identifying the users who are most influen-
tial in spreading information can aid in the creation of effec-
tive tactics Adnan et al. (2022).

4  Overview of Social Media Influence

4.1  Users’ interest

The degree of influence a social media user has on their 
friends, as well as their desire to spread additional 
information, can be detected from interest similarity. 
Authors have submitted that people users are more affected 
and influenced by their friends’ opinions than by other 
influencers Domingos and Richardson (2001); Staab et al. 
(2005). In Xie et  al. (2014), the measure of similarity 
between two users is based on a random walk distance 
based on tags and image correlation and was examined 
in folksonomy data. It outperforms proof in terms of 
user profile enrichment. Generally, social media users 
demonstrate Bian et al. (2014b) different interests and hold 
different expertise levels for numerous kinds of interests, 

such as sports, music, history, and so on. Authors Sendi et al. 
(2017) assumed that users’ interests were discovered from 
uncertain information. Another way to categorize users’ 
profiles Mabrouk et al. (2020, 2018) as an outcome, the 
culture of the user’s interest profile will be critical for a full 
analysis of their influence on their friends, diffusion actions, 
and future action prediction.

4.2  User’s relationship

The main reason that social networks influence users’ 
behavior changes is their relationship. As users’ relationship 
strengths are not equal, social media users do not have 
the same degree of friendship and intimacy. Relationship 
strength can be detected by interaction comments, likes, 
chats, etc. Previously, social network studies centered on 
binary friendship relationships. Switch authors Xiang et al. 
(2010) can lead to a wide variety of relationship strengths 
(for example, mixing acquaintances and best friends) to 
estimate relationship strength. They create an unsupervised 
model based on user similarities and interaction activity, 
weak and strong relationships. Their model represents the 
full spectrum and infers a continuous-valued relationship 
strength for links. For the inference, they used a coordinate 
ascent optimization approach to create their link-based 
latent variable model. They have proved and evaluated it on 
Facebook and LinkedIn. The authors Chader et al. (2017) did 
not accept the binary relation. They had related weights that 
recorded the strength of people’s relationships; they tested 
the effectiveness of the CoBSP process. The motive comes 
from the belief that those with the closest relationships with 
users can give more information about them. In the work of 
Zarrinkalam et al. (2017, 2019), they detect user interests 
by focusing on social relationships, user-generated content, 
and temporal factors.

4.3  Interests change

After taking into account the users’ utterances, gender Ouni 
et al. (2022b), their activeness, and vulnerability to their 
friends’ influence, the work of Budak et al. (2014) proved 
that interests vary during life. They established an inference 
algorithm that strikes a balance between the latest estimates 
of interests and the old estimate of interests, and using Twit-
ter data, they funded a precision of 0.9 for the top-5 inter-
ests. Users have a variety of interests, such as music, history, 
sports, and so on Bian et al. (2014a). The degree of influence 
he has on his friends is determined by his interest in distribut-
ing new information and must be varied for different catego-
ries. The interest profile learning is decisive for a complete 
analysis of a user’s impact on his contacts, spread actions, 
and future action prediction. Another idea Wang et al. (2018) 
is to use the UNITE systemic framework with interesting 
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extraction, which considers both text and information. Their 
approach to experimental results on Sina Weibo. An impor-
tant work Sendi et al. (2019) aims to derive and monitor on 
Twitter the temporal interest topics and also handle the user’s 
interest, social various dimensions, and dynamical charac-
teristics. Moreover, over time on social media, through user 
activities’ frequent tags, users, and organizations from their 
social media posts Shah et al. (2018), the evolution of one’s 
attitude through time is observed. The suggested approach 
also incorporates the use of the semantic web, particularly 
the DBpedia ontology, which analyzes the content of tweets 
in the user’s Twitter feed.

4.4  Infer interests

To deduce users’ interests, authors have taken into account 
their communication, their activity state, and their sensi-
tivity according to the influence of their friends. A proba-
bilistic model of social data has been proposed by Budak 
et al. (2014). This model is unsupervised and well-scalable 
with many users and interests. The authors of Han et al. 
(2015), were interested in determining the similarities of 
interest given to two users, without having any idea about 
their interests. They showed that similarities between peo-
ple depend on similar demographic information and having 
more common friends. Attribute inference can be performed 
by mixing social graphs and Jia et al. (2017) behaviors, by 
first collecting public data and then using machine learn-
ing techniques to estimate the private attributes of certain 
target users. They analyzed user behavior to determine the 
probability that all users have a given property. Many appli-
cations, such as targeted advertising and news suggestions, 
rely on user locations, which can help solve the problem of 
profiling users’ Ouni et al. (2022c) home locations Li et al. 
(2012). The authors propose a unified discriminatory influ-
ence model UDI and overcome the challenge of rare signals 
in a unified probabilistic framework, combining user-centric 
and social media data. They produce local and global loca-
tions with their prediction methods. Important work has also 
been proposed in Utz (2010), their authors found that the 
target’s acknowledged popularity, community orientation, 
target’s self-generated data, the affectivity of the target’s con-
tacts, and the volume of friends all have an impact on social 
attractiveness. So users can create accounts with photos and 
detailed descriptions to use as a starting point for building 
an impression. In addition to self-provided data, social media 
offers two other types of data: the target’s friend data and 
system data, such as the number of friends. Another inter-
esting work has been proposed in Xie et al. (2014) where 
the authors aimed to improve various user tags for a simple 
image by establishing a collaborative description and making 
them more meaningful and useful to users.

4.5  Emerging and trending topic

The work proposed in Bao et  al. (2013) was occupied 
by trending topics. It could be related to important 
news or subjects being discussed by a large number of 
microbloggers. The authors supposed that publishing posts 
on a popular topic proved the user’s interest. The latter are 
replicated in posts published on the same trending topics. 
In the work presented in Dang et al. (2016), the authors aim 
at emerging topics and are concerned with the substance of 
important emerging events such as regulatory enforcement, 
election campaigns, natural disasters, and traffic accidents. 
Dynamic Bayesian networks are used to uncover developing 
topics within their methodology. For this, they started the 
topic diffusion characteristics in the early phase, as well as 
non-emerging topics with several topology features, and 
they compared emerging and then, in a given time interval, 
generated an emerging keyword candidate term list based 
on term frequency. Next, create a DBN-based model for 
each candidate to calculate the probability of the candidate 
emerging as a keyword based on the joint conditional 
probabilities of the specified features.

5  Social Media influence and literature 
synthesis

In this section, we proceed to an illustration and a 
classification of the main relevant works in the literature that 
are related to the problem treated in this work. The Table 3 
presents a summary of the works covered and discussed in 
this survey. We can see that the majority of previous studies 
have dealt with the goals and interests of users. Many other 
studies have addressed the influencers, reasons for interest, 
and change of all new users.

This Table  3 also presents the approaches used, the 
experimental results, as well as the years of publication, 
the authors, and the methodologies adopted. The different 
approaches to this survey are listed with their concepts. The 
table also shows the average scores and proof.

For example, in 2013, Bao et al. (2013) propose a PMF-
based method to predict user interests by combining tempo-
ral information and social network structure. In this work, 
the authors confirmed the accuracy of user interest predic-
tions. Then, in 2014, Bian et al. (2014a) focused on the 
prediction of trending messages and diffusion participants. 
Three types of influence have been determined: epidemic 
influence, interest influence, and social influence, which has 
proven its superiority. In 2015, Han et al. (2015) were inter-
ested in inferring similarities in interests using user demo-
graphic information, friendships, and interests. The pro-
posed model was tested on a Facebook dataset. The authors 
were able to conclude that people with similar demographic 
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information (e.g., age, location) or more mutual friends tend 
to have more similar tastes. Another interesting work is that 
of Xiang et al. (2010). This work consists of modeling the 
strength or weight of the relationship using a latent variable 
model on Facebook and LinkedIn. The simulation results 
of this model showed better autocorrelation and classifica-
tion performance compared to the results obtained using 
different raw data elements. The contribution proposed 
by Zarrinkalam et al. (2017, 2019)leveraged influencers’ 
interests in active social media users. By using a graphi-
cal description model with three types of information, this 
model showed its performance. Important work was also 
proposed by Shah et al. (2018), where the authors focused 
on modeling user interests through the social media network 
graph and the semantic web. This model has also proven 
its effectiveness. In the same year, i.e., 2018, Wang et al. 
(2018) used both content and network structure to extract 
interest from microblogging and significantly outperform 
basic methods. Another unsupervised approach that allows 
inferring user interests from microblogs has been proposed 
by Budak et al. (2014). The most direct measure of their 
inference technique is quality. For the top five interests, 
this model yielded an accuracy of 0,9. Zhang et al. (2015) 
targeted the chronological and content aspects underlying 
blog data, and a method of analyzing the power of blog-
gers to predict hashtags has been implemented and tested. 
This technique has also shown its performance. In 2017, 
Chader et al. (2017) show that targeted friendships are not 
created equal. A methodology for detecting emerging trends 
has been proposed by Dang Dang et al. (2016). Their DBN 
model is based on DBN and uses an early detection strategy 
based on a dynamic Bayesian network for emerging topics 
in microblogging networks. They choose features among 
the topological attributes of the subject distribution and use 
dynamic changes in the conditional probabilities computed 
by DBNs to recognize new trends. Jia et al. (2017) proposed 
an AttriInfer model to infer user attributes in online social 
networks using Markov random fields. They incorporated 
behaviors and social graphics, benefited from both positive 
people and people with negative training experience, and 
scaled across large online communities. They proved that 
the optimized version of AttriInfer is much more flexible 
than the fundamental version. Li et al. (2012) proposed their 
model called “Home Locations Using a Universal and Dis-
criminative Influence Model,” which proved its effective-
ness. Saez-Trumper et al. (2012) tried to find trendsetters in 
news networks by proposing a robust method. They showed 
their ability to locate a large portion of trendsetters, regard-
less of the top 10% of trend adopters, in authentic situa-
tions. In their contribution, when nodes with high degree 
trends are late, the temporal corrosion function diminishes 
their impact on outcome ranking and helps to underlie vari-
ations in the behavior of TS and PR outcomes over time. 

Rather than using the tags or just the photos, they used both 
user-generated tags and image correlation. The Multifac-
eted Folksonomy Graph (MFG) was proposed by Xie et al. 
(2014). The Multifaceted Folksonomy Graph (MFG) was 
proposed. Recently, Wang et al. (2020), examined the impact 
of influential leaders on the spread of famous games: Sina 
Weibo’s Travel Frog and assessed the spread trends, as well 
as the growth of KOL group networks and keywords UGC. 
They show that the information propagation event continues 
via periods of robust and slow forward growth, reaching 
its peak. In the same year, Mabrouk et al. (2020) proposed 
two approaches: the first is a hybridization of ontology and 
linear SVM, while the second is a hybridization of ontol-
ogy and FSVM, where they proved that the SVM fuzzy 
semantic classifier works exceptionally well Mabrouk et al. 
(2018). A unique weighted correlated influence metric for 
Covid-19 is used to identify influential users on Twitter and 
was also proposed Jain and Sinha (2020) In this work, the 
authors verified that the individual with the most follow-
ers or the greatest number of tweets is not always the most 
impactful. Trend-specific influence metrics are insufficient 
to identify influential users. Harrigan et al. (2021) attempted 
to identify influencers on social networks using data widely 
accessible from the APIs of these networks, and influential 
mavens have been identified. They found that big social data 
can be used by decision-makers to identify influential cus-
tomers. Also, Chia et al. (2021) proposed searching for the 
best influencer by combining theories of social capital and 
socialization with social theories of learning. A complete 
framework for identifying ideal SMIs has been developed. 
They proved that the effects of trust and social identification 
on PMIs’ desire to share unboxing journals in the cogni-
tive dimension of the social capital theory were found to be 
insignificant. The cognitive factor did not influence the pro-
pensity of PMIs to post unboxing notices in the community, 
unlike the structural and relational dimensions. Finding the 
most influential entities within the network has proved to be 
NP-hard. The proposed approach More and Lingam (2019) 
provides a balance between influence spread and execution 
time. Others Yang et al. (2014) deal with uncovering social 
network sybils in the wild and terrorist community evolution 
detection Chaabani and Akaichi (2022) proposing an artifi-
cial bee colony optimization, and then applying the BCTTC 
to track terrorist evolution. In the work of , Hodas et al. 
(2016), an experiment exploring social media usage dur-
ing disaster scenarios, combining electroencephalograms, 
personality surveys, and prompts, is proposed. To detect 
spammer Aswani et al. (2018) using bio-inspired comput-
ing and compromised accounts, the authors Bohacik et al. 
(2017); Ouni et al. (2022a) used an anomaly model trained 
on the previous login data of users. Another important work 
Arora et al. (2019) proposes a mechanism for measuring 
the influencer index across popular social media platforms 
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to identify buzz in social media Aswani et al. (2017). This 
is also detected via a hybrid artificial bee colony approach 
integrated with k-nearest neighbors to identify and segregate 
buzz and a proposed hybrid bio-inspired approach.

6  Discussion and research challenges

One could wonder if we have adequately addressed the 
majority of the important issues underlying the identification 
of influencers, considering the volume of works that have 
been published in this area, such that the solutions suggested 
are sufficient for the majority of social network analysis 
tasks. Yet, in our opinion, a large variety of critical research 
issues should be solved until we can regard influencer 
identification as a problem-solving technique. We conclude 
that other significant fields have not yet been fully explored 
or studied, such as social network graphs and topology, 
and the relationship between influencers’ identification 
and community detection, their networked audience switch 
MARWICK (2013) instead of studied fields, of which we 
have shown some relevant examples. Thus, we ponder 
unless we have successfully handled almost all of the critical 
problems related to this subject in a way that the solutions 
provided seem suitably sophisticated for most social network 
analysis tasks.

– Using social media, users first put their basic informa-
tion, which can be false, into the social media guide to 
find their interesting topics. After they add friends and 
some aims or topics, social media algorithms expand 
their interests. Social media stars propose helpful sug-
gestions for users to enrich their lives: friends from the 
same region; old school and faculty; and phone contact. 
It also suggests hobbies related to his work domain or 
studies. Then, after setting some preferences, social 
media stars suggest similar pages and friend types and 
eliminate ignored suggestions. Its suggestions are based 
on an intelligent system that analysts change needs, 
trembling all the time to suggest the most helpful. It cer-
tainly encourages users to use it more. The most impor-
tant thing that users can do here is to search for new 
aims, new friends, or a new place and all the suggested 
updates. The challenge was that users could have a period 
or ephemeral aims. We think time has a big impact on 
social media users and the importance of a dynamic 
social media structure for researchers. There are many 
works in literature dealing with this idea, but no one has 
put into consideration the social media algorithms and 
strategies that determine social media influence.

– The majority of works in the literature have focused 
on the identification of the most influential people 
and significant nodes, called top-k. It represents an Ta
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interesting research area. Without considering Users 
can be influenced directly by their friends or groups 
of friends. They may influence them at the same time. 
Users share influence. All types of influencers have an 
important effect and can be the most influential because 
of their direct contact.

– Influence maximization is the trendiest topic that is being 
exploited and hopes to maximize users’ influence like 
marketing publicity. But we do not have a search engine 
that deals with protecting users from negative and also 
positive users, who may likewise pose a risk by fostering 
wrath, resentment, hostility, hatred, and indignation, to 
minimize influence.

– User interests that change throughout time and trendy 
topics have a direct relationship with influence detection 
by simply comparing users’ aims or interest topics. User 
interests change according to place or locality and season, 
influencing them, so we can predict influencers’ node 
switches. For example, they can also change locales.

– Different works deal with the relationship strength and 
still cannot know the real life and direct relationship. 
Users may not communicate and discuss clear ideas on 
social media and may just exchange media or some sym-
bols. Other contributions where the authors have aimed to 
exploit the users’ locality information without considering 
that some users have double nationality or can aim with 
other country topics. The great challenge is, therefore, to 
find a solution to all these situations. The work of Sinha 
and Swearingen (2001) showed that suggestions from 
subject friends are better than recommender systems. The 
other challenge now is to study users’ influencers’ friends 
and predict their new aims.

– There are many types of influencers defined as: content 
creators MARWICK (2013) digital opinion leaders, mod-
erators Enke and Borchers (2019) celebrity influencers, 
mega-influencers, and other works dealing with micro-
influencers Campbell and Grimm (2019); Campbell and 
Farrell (2020); Leonardi and Monti (2020) that can be 
identified and found. So research is anticipated to rise.

7  Conclusion and prospects

7.1  Summary

Social media has emerged as a popular platform for 
members to discuss anything, give opinions, and express 
feelings and important moments about ideas and facts 
from everyday life Bao et  al. (2013). In this article, 
we have provided an overview of the current state and 
future directions of influencer identification on social 
media. We have reviewed and classified the main existing 
contributions in the literature into the identification 

influencers category. At first, we tried to talk more about 
this domain and alleged it in some works. Then, we cited 
some other classifications that deal with the same subject, 
and at least we have applied our classification proposition 
in some works according to our knowledge. We have 
proposed some new ideas that can change the orientation 
of searches on social media users’ interest topics, and why 
not aim to influence new works?

Our study has some limitations. Most importantly, we 
did not aim at the structure and topology of social media. 
We have also noted that we identify significant nodes that 
influence other nodes in the influenced community and 
also detect them.

We also know that social media is virtual, but behind 
this virtual exists a real person whose acts, interactions, 
and shows are real. They are influenced by internal factors 
like friends and family, college classmates, and next-
door neighbors, and external factors like life coaches, 
travel bloggers, influence, fashionistas, fitness models, 
and makeup artists. So we have detailed some important 
influencers’ identification.

7.2  Prospects

In this state, to conclude our survey, we aimed to 
synthesize the main research works proposed in the 
literature, solve the problem of identifying influencers, and 
present the various algorithms, methods, methodologies, 
and proposed frameworks. It remains a topical problem, 
given the importance of the social media community in 
recent years, and it will continue in the future. Three new 
avenues may be outlined for this work’s prospects. The first 
step is to undertake more complete comparison research 
to provide more information to scholars and particularly 
on how to find social media influencers. In the second part 
of the study, we will run more experiments on a multitude 
of other standard data sets to confirm the principal 
approaches provided in the literature’s performance and 
robustness. The third part consists of proposing a new 
approach to finding new influencers on social networks 
by using other techniques and criteria based on the new 
networks’ users’ characteristics.
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