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Abstract
Community deception is about hiding a target community that wants to remain below the radar of community detection 
algorithms. The goal is to devise algorithms that, given a maximum number of updates (e.g., edge additions and removal), 
strive to find the best way to perform such updates in order to hide the target community inside the community structure 
found by a detection algorithm. So far, community deception has only been studied for undirected networks, although 
many real-world networks (e.g., Twitter) are directed. One way to overcome this problem would be to treat the network as 
undirected. However, this approach discards potentially helpful information in the edge directions (e.g., A follows B does 
not imply that B follows A). The aim of this paper is threefold. First, to give an account of the state-of-the-art community 
deception techniques in undirected networks underlying their peculiarities. Second, to investigate the community deception 
problem in directed networks and to show how deception techniques proposed for undirected networks should be modified 
and adapted to work on directed networks. Third, to evaluate deception techniques both in undirected and directed networks. 
Our experimental evaluation on a variety of (large) directed networks shows that techniques that work well for undirected 
networks fail short when directly applied to directed networks, thus underlying the need for specific approaches.

1  Introduction

Complex network analysis is a powerful technique to model 
and analyze interactions between entities in complex sys-
tems (e.g., protein networks, social networks, signaling net-
works) (Strogatz 2001). One of the major tasks that can be 
performed over these networks is community detection, that 
is, the task of identifying a (non-overlapping) partition of 
nodes of the network, providing some insights about their 
structure (Fortunato and Hric 2016). Network analysis tools 
are routinely used by a variety of actors from data analysts 
that are interested, for instance, in suggesting items to buy 
to the users of a network. The problem arises when these 

spontaneously shared pieces of information are improperly 
used, as in the Cambridge Analytica case, where private per-
sonal information about users and their social relationships 
were used without their consent, or when information about 
communities is used to block forms of self-organization 
(King et al. 2013). Another example is the case of Bitcoin 
trading, where communities were used to identify multiple 
addresses belonging to the same user (Remy et al. 2017).

Hence, although community detection is an essential tool 
for discovering functional building blocks within networks, 
and to provide insights into the dynamics or modes of for-
mation of networks (Leicht and Newman 2008), the ques-
tion concerning what disclosing the community structure of 
networks can cause to the users remains primarily unsolved. 
The research community started to look into this problem 
giving rise to a new strand of research dubbed as commu-
nity hiding (Waniek et al. 2018) or community deception 
(Fionda and Pirrò 2018). The general idea is to promote 
(simple) techniques that can be used by the participants to a 
community that wants to remain below the radar of network 
analysis techniques like community detection. This prob-
lem is particularly critical if who wants to evade community 
detection tools are malevolent users (e.g., criminals or ter-
rorists) and who want to identify the communities are police 
enforcement. More formally, given a target community C  
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inside a network G and a budget � of updates (e.g., edge 
additions and removals), deception techniques investigate 
the best way to perform such updates in a way that C  can 
escape community detection algorithms. To find the best 
edge updates, some function �G(C) like modularity (New-
man and Girvan 2004), safeness (Fionda and Pirrò 2018), 
permanence (Mittal et al. 2021) is optimized. The desid-
eratum is that, after applying the edge updates, the level of 
hiding of C  inside a community structure (set of communi-
ties) C = {C1,C2, ...Ck} found on the updated network G′ 
will increase.

So far, community deception has only been studied for 
undirected networks, although many real-world networks 
are directed. A notable example is Twitter, where users can 
follow other users. When user A follows user B, an edge 
is established from A to B. Several studies on community 
detection (e.g., Leicht and Newman 2008) have shown that 
edge directions are essential to discovering meaningful com-
munities in directed networks. The first challenge that we 
face in this paper is how to devise deception techniques that 
are aware of edge directions.

One way to approach this challenge would be to apply 
deception techniques devised for undirected networks to 
directed networks by simply ignoring edge directions. How-
ever, this approach discards potentially helpful information 
contained in the edge directions (Leicht and Newman 2008; 
Malliaros and Vazirgiannis 2013), such as the fact that if 
there is an edge indicating that A follows B, this does not 
imply that also B follows A unless there is also the edge 
from B to A. Therefore, in this paper, we study how current 
deception optimization measures can be recast to the case of 
directed networks. Specifically, we study modularity, safe-
ness, and permanence through the lens of edge directions by 
taking into account the characteristics of directed networks. 
Returning to the above example, if A is a user with a few 
followers but follows many other users, one will naturally 
expect that the edge from A to B is more likely than that 
from B to A. Thus when this latter edge is present, it has to 
be considered differently from the edge from A to B.

From a practical perspective, users who want to use these 
deception tools still need to figure out their peculiarities. The 
second challenge that we face in this paper is to offer an 
overview of the performance of the state-of-the-art decep-
tion techniques on a variety of networks. We analyze the 
state of the art in terms of: (i) ability to quantify the level 
of hiding of C  inside C = {C1,C2, ...Ck} ; (ii) scalability in 
terms of running time; (iii) practical applicability, that is, 
how to implement the updates in a real network. As a by-
product, we make available the implementation of these 
techniques in a library available online1.

1.1 � Contributions and outline

This paper studies the community deception problem from 
two different angles. On the one hand, we provide a sys-
tematic analysis of the state-of-the-art community decep-
tion techniques in undirected networks. On the other hand, 
we study the novel problem of community deception in 
directed networks. Specifically, we make the following main 
contributions: 

1.	 A comprehensive overview of deception techniques in 
undirected networks under a common framework.

2.	 A study of community deception in directed networks. 
This problem has not been studied before. We show 
that dealing with edge directions brings some non-triv-
ial issues since it becomes more involved to tell apart 
whether a certain category of edge update is conveni-
ent deception-wise. In particular, edge directions bring 
a further intrinsic difficulty toward deception since, in 
directed networks, only one direction of edges can be 
managed, that is, edges that C  ’s members can directly 
add or delete.

3.	 An experimental evaluation along three main dimen-
sions: performance in terms of deception score, pres-
ervation of the community structure, and running time. 
As a by-product, we make available a modular Python 
library where new deception techniques can be easily 
plugged.

This paper extends a previous paper published in CNA 2021 
Fionda and Pirrò (2022). The present paper substantially dif-
fers in the following main respects. We expanded the intro-
duction to the community deception problem. We introduce 
the novel problem of community deception in directed net-
works (Sect. 4). We conducted a completely new experimen-
tal evaluation for directed networks, including three novel 
deception techniques as well as community detection algo-
rithms specifically devised for directed networks.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the community deception problem. Sec-
tion 3 reviews the state-of-the-art community deception 
techniques in undirected networks. Section 4 introduces the 
community deception problem in directed networks. Sec-
tion 5 reports on an experimental evaluation. We conclude 
in Sect. 6.

2 � Background

The goal of community deception is to design algorithms 
to deceive community detection algorithms. In particular, 
given a community C , the goal is to determine a set � of 

1  https://​commu​nityd​ecept​ion.​wordp​ress.​com/.

https://communitydeception.wordpress.com/
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edge updates so that C  will not be discovered by community 
detection algorithms. A network G = (V ,E) is an undirected 
graph that includes a set of n:=|V| vertices and m:=|E| edges. 
We denote by deg(u)=|{(u, v) ∈ E}| the degree of u. The set 
of communities (i.e., a community structure), discovered by 
some community detection algorithm AD is denoted by C
={C1,C2, ...Ck }; Ci ∈ C denotes the i-th community.

Given a community Ci , we distinguish between intra-
community edges and inter-community edges. The set of 
intra-community edges E(Ci) is the set of edges of the form 
(u, v) ∶ u, v ∈ Ci , where both endpoints are members of Ci . 
The set of inter-community edges Ẽ(Ci) is the set of edges of 
the form (u, v) ∶ u ∈ Ci, v ∉ Ci , where one of the endpoint is 
external to Ci . Given a community Ci and a node u ∈ Ci , we 
indicate by E(Ci, u) (resp., Ẽ(Ci, u) ) the set of intra-commu-
nity (respectively, inter-community) edges of u. The degree 
of a community is denoted by: �(Ci)=

∑
u∈Ci

�(u) , where �(u) 
is the degree of node v. Given a network G = (V ,E) , we 
indicate by E+ and E− the set of edge additions and dele-
tions, respectively, to be applied on G . Table 1 summarizes 
the notation discussed above.

2.1 � Problem statement

Figure 1 reports a general deception framework. Given a net-
work G, the Detector module (implementing a community 
detection algorithm) analyzes G to discover communities. 
The underlying assumption that stresses the need for decep-
tion techniques is that disclosing (part of) C  leads to privacy 
leaks and should be avoided. The Deceptor module (imple-
menting a community deception algorithm) analyzes the net-
work G and suggests a set of edge rewiring involving nodes 
in C  that help C  ’s members to be hidden as a group. To find 
the best set of edge updates, the Deceptor is based on some 
function to be optimized such as modularity (minimization) 
as in the case of DICE Waniek et al. (2018), node safeness 
(maximization) as for SAFDEC (Fionda and Pirrò 2018), or 
permanence (maximization) as for NEURAL (Mittal et al. 
2021). After applying the modifications suggested by the 
Deceptor and obtaining a new network G′ , the desideratum 
is that the Detector by analyzing G′ is no more able to dis-
cover C  ; ideally because C  ’s members are scattered among 
different communities. In order to quantify the privacy leak 

Table 1   Notation table undirected deception techniques

Symbol Meaning Formula

� Product of the squared total degree of a community structure ∑
Ci∈C

�(C
i
)2

� Sum of the intra-edges of a community structure
∑

Ci∈C
�E(C

i
)�

m Number of edges in the network G = (V ,E) |E|
�(C

i
) Total degree of community C

i

∑
u∈Ci

�(u)

�(u) Degree of node u |{(u, v) ∶ (u, v) ∈ E}

V
u(C) Set of nodes reachable from u passing only via nodes in C  , excluding u itself

E(C
i
) Set of intra-community edges of community C

i
{(u, v) ∶ u, v ∈ C

i
}

Ẽ(C
i
) Set of inter-community edges of community C

i
{(u, v) ∶ u ∈ C

i
, v ∉ C

i
}

E(u,C
i
) Set of intra-community edges of node u belonging to the community C

i
{(u, v) ∶ u, v ∈ C

i
}

Ẽ(u,C
i
) Set of inter-edges of node u belonging to the community C

i
{(u, v) ∶ u ∈ C

i
, v ∉ C

i
}

Fig. 1   Community Deception: a 
general framework
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caused by the Detector, the Deception Evaluator module 
leverages some score such as the Deception Score (Fionda 
and Pirrò 2018) reported in Definition 1.

Definition 1  (Deception Score). Given a community C  and 
a community structure C = {C1,C2, ...Ck} found by some 
Detector, the community deception score is defined as: 
H(C,C) = 

where |S(C)| is the number of connected components in the 
s u b g r a p h  i n d u c e d  b y  C

′s  m e m b e r s ; 
R(Ci,C) =

#C’s members in Ci found by AD

|C| ∀Ci ∈ C is the recall of 
the Detector AD wr t a target community C  ; 
P(Ci,C) =

#C�s members in Ci found by AD

|Ci| ∀Ci ∩ C ≠ �  i s  t he 
precision.

One way to approach the community deception problem 
would be to work directly with the deception score H  . How-
ever, this would require knowing how the community detec-
tion algorithm AD , that generated the community structure 
C = {C1,C2, ...Ck} used in the computation of H  , works. 
What is needed is a way to increase H  by treating a commu-
nity detection algorithm AD as a black box. One can model 
community deception in terms of the following optimization 
problem to tackle this challenge.

Problem  2  [Community Deception] Given a network 
G=(V, E), a target community C ⊆ V  and a budget � of 
updates, solving the community deception problem amounts 
at solving the following optimization problem:

where G′=(V ,E�) and E′=(E ∪ E+) ⧵ E− and:
E+ ⊆ {(u, v) ∶ u ∈ C ∨ v ∈ C, (u, v) ∉ E}   , 

E− ⊆ {(u, v) ∶ u ∈ C ∨ v ∈ C, (u, v) ∈ E}   ,  a n d 
|E+| + |E−| ≤ � .

In the above formulation, �(G,G�,C) is a function that 
models a community deception algorithm while the budget 
� limits the number of possible updates. In particular, the 
function �(G,G�,C) computes a numerical value indicating 
the improvement in the network G′ (obtained by applying � 
modifications) in terms of the hiding of nodes in C  . Ideally, 
the argmax function selects the network G′ (and, thus a set 

�
1 −

�S(C)� − 1

�C� − 1

�
×

⎛
⎜⎜⎜⎝
1

2

⎛
⎜⎜⎜⎝
1 −max

Ci∈C̄
{R

�
Ci, C

�
} +

1

2

⎛
⎜⎜⎜⎝
1 −

∑
Ci∩C≠�

P(Ci, C)

�Ci ∩ C ≠ ��
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

argmax
G�

{�(G,G�,C)}

of � modifications) where the level of hiding is maximized. 
The crucial difference between the deception function � and 
the deception score H  is that the former picks the � changes 
that maximize � , while H  quantifies (in an axiomatic way) 
the desirable property that the target community C  is hidden 
inside C = {C1,C2, ...Ck} (Fionda and Pirrò 2018).

3 � Related work

Community deception (Fionda and Pirrò 2018) or hiding 
(Waniek et al. 2018) studies how to hide a target community 
C  inside a community structure from community detection 
algorithms. The idea is to find the best (deception-wise) set 
of edge updates by optimizing some functions. In what fol-
lows, we review the state of the art. The notation for the 
various deception techniques discussed in this section is 
summarized in Table 1.

3.1 � Modularity‑based deception

Waniek et al. (2018) and Fionda and Pirrò (2018) devise 
deception optimization functions based on (Newman 2006).

Definition 3  [Modularity] Given a network G , the modu-
larity of the partition of this network into communities C
={C1,C2, ...Ck } is given by:

where � = 
∑

Ci∈C
�E(Ci)� and � = 

∑
Ci∈C

�(Ci)
2.

The intuition behind using modularity for deception can 
be summarized as follows: community detection quality is 
related to the value of modularity, the higher, the better. 
Then, by minimizing modularity wrt edge updates per-
formed by C  ’s members should lead community detection 
algorithms astray. In particular modularity-based deception 
maximizes the modularity loss ML=MG(C) −MG� (C).

In what follows, we focus on the approach described in 
Fionda and Pirrò (2018) since Waniek et al.’s strategy does 
not always bring a modularity loss and thus can fail to con-
tribute to the hiding of the members of C  inside the com-
munity structure.

(1)MG(C) =
�

m
−

�

4m2
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Intra-edge addition. The modularity loss of an intra-com-
munity edge addition (u, w) s.t. u,w ∈ Ci and {u, v} ∩ C ≠ � 
giving G� = (V ,E ∪ {(u,w)}) is the following:

Inter-edge addition. The modularity loss of an inter-commu-
nity edge addition (u, w): u ∈ Ci ∩ C,w ∈ Cj , with Cj ≠ Ci 
giving G� = (V ,E ∪ {(u,w)}) brings the following potential 
modularity loss:

Intra-edge deletion. The modularity loss of an intra-edge 
deletion (u,  w) s.t. u,w ∈ Ci and {u, v} ∩ C ≠ � giving 
G� = (V ,E ⧵ {(u,w)}) is the following:

Inter-edge deletion. The modularity loss of an inter-commu-
nity edge deletion (u, w): u ∈ Ci ∩ C,w ∈ Cj , with Cj ≠ Ci 
giving G� = (V ,E ⧵ {(u,w)}) is the following:

3.2 � Safeness‑based deception

Safeness-based deception (Fionda and Pirrò 2018) has been 
introduced to correct for some drawbacks of modularity-
based deception. In particular, with modularity-based decep-
tion, one needs to know the entire community structure to 
pick the best edge update (that depends on the degree of the 
community toward which a new edge should be inserted). 
Safeness-based deception only requires information that can 
be obtained from C  ’s members.

Definition 4  (Node Safeness) Let G = (V ,E) be a network, 
C ⊆ V  a community, and u ∈ C  a member of C  . The safe-
ness of u in G is defined as:

where Vu(C) ⊆ C  is the set of nodes reachable from u pass-
ing only via nodes in C  , E(u,C) (resp., Ẽ(u,C) ) is the set of 
intra-C  (resp., inter-C  ) edges, 𝜏,𝜒 > 0 , and � + �=1.

MG(C) −MG� (C) =
� − m

m(m + 1)
+

4m2(�(Ci) + 1) − �(2m + 1)

4m2(m + 1)2
.

M
G
(C) −M

G� (C) =
�

m(m + 1)

+
2m2(�(C

i
) + �(C

j
) + 1) − �(2m + 1)

4m2(m + 1)2

MG(C) −MG� (C) =
� − m

m(m − 1)
+

�(2m + 1) − 4m2(�(Ci) − 1)

4m2(m − 1)2
.

M
G
(C) −M

G� (C) =
�(2m − 1) − 2m2(�(C

i
) + �(C

j
) + 1)

4m2(m − 1)2

−
�

m(m − 1)

(2)�(u,C) ∶= �
|Vu(C)| − |E(u,C)|

|C| − 1
+ �

|Ẽ(u,C)|
�(u)

Definition 5  (Community Safeness) Given a network 
G = (V ,E) and a community C ⊆ V  , the safeness of C  is 
defined as: �(C)=

∑
u∈C �(u,C)∕�C�

This approach instantiates the function � to be the safe-
ness gain �C=�(C�)-�(C) . It adopts a greedy strategy that, 
at each step, chooses the edge update that gives the highest 
�C  . Therefore, the goal is to understand what kind of update 
is more profitable safeness-wise (Fionda and Pirrò 2018).

Intra-edge addition. An intra-C  edge addition (u, w) s.t. 
{u,w} ⊂ C  can increase the safeness of the community only 
if the edge connects previously disconnected portions of C  . 
The possible safeness gain is:

where Cu ( Cw , respectively) is the connected component 
of C  to which u (w, respectively) belongs before the edge 
addition.

Inter-edge addition. The best inter-C  edge addition (u, w) 
s.t. u ∈ C  and w ∉ C  giving G′=(V ,E ∪ {�uw}) is given by 
nodes u ∈ argmin{

|Ẽ(u,C)|
�(u)

} . The safeness gain is:

Intra-edge deletion. Intra-C  edges deletions do not always 
correspond to a safeness gain. The best possible intra-C  
edge deletion (u, w): u,w ∈ C  safeness gain occurs when 
the value of the following formula is maximum.

Inter-edge deletion. An inter-C  edge deletion (u, w): u ∈ C,w 
∉ C  always corresponds to a safeness decrease.

3.3 � Permanence‑based deception

Mittal et al. (2021) devised NEURAL, a permanence-based 
deception strategy, which aims at reducing permanence of 
the network wrt C  . Permanence (2016) is a vertex-centric 
metric that quantifies the containment of a node u in a net-
work community C:

∑
v∈Cu⧵{u}

�
|C

w
|

2(|C| − 1)
+

∑
v∈Cw⧵{w}

�
|C

u
|

2(|C
w
| − 1)

+ �
|C

w
| − 1

2(|C| − 1)
+ �

|C
u
| − 1

2(|C| − 1)
+

− �
|Ẽ(u,C)|

2�(u)(�(u) + 1)
− �

|Ẽ(w,C)|
2�(w)(�(w) + 1)

�
|Ẽ(u,C)|
�(u) + 1

− �
|Ẽ(u,C)|
�(u)

�
|Ẽ(u,C)|

2�(u)(�(u) − 1)
+ �

|Ẽ(w,C)|
2�(w)(�(w) − 1)

(3)Perm(u,G) =
|E(u,C)|
Emax(u)

×
1

�(u)
− (1 − Cin(u))
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where Emax(u) is the maximum number of connections of u 
to the same neighboring communities, Cin(u) the fraction of 
actual and possible number of edges among the internal 
neighbors of u. The permanence for a network G is then 
defined as Perm(G) =

∑
u∈V Perm(u)

�V�  . NEURAL instantiates the 
f u n c t i o n  �  t o  b e  t h e  p e r m a n e n c e  l o s s 
Pl = Perm(G) − Perm(G�).

Intra-edge addition. An intra-community edge addi-
tion (u, w) s.t. u,w ∈ Ci and {u, v} ∩ C ≠ � does not always 
ensure Pl > 0. The possible permanence loss for node u (a 
similar loss can be also computed for node w) is:

Inter-edge addition. Adding an inter-community edge (u, w) 
where u ∈ Ci ∩ C  and w ∈ Cj , such that Cj ≠ Ci , always 
results in Pl > 0. The loss is more if Cj is the community 
that provides the maximum external pull for node u. In such 
a case, the permanence loss is:

Intra-edge deletion. An intra-community edge deletion 
(u, w) s.t. u,w ∈ Ci and {u, v} ∩ C ≠ � , always gives Pl > 0

Inter-edge deletion. Deleting an inter-community edge 
(u, w) where u ∈ Ci ∩ C  and w ∈ Cj such that Cj ≠ Ci never 
results in Pl >0.

Other pieces of work (e.g., Nagaraja 2010; Magelinski 
et al. 2021; Liu et al. 2019) have studied a different problem, 
that is hiding (or at least changing) the whole community 
structure instead of a target community. Another line of 
research (e.g., Jia et al. 2020) has studied countermeasures, 
that is, the robustness to attacks.

We observe that all these pieces of related work have 
focused on undirected networks, although many real-world 
networks (e.g., social networks like Twitter) are directed. 
As pointed out by fundamental studies (e.g., Leicht and 
Newman 2008; Malliaros and Vazirgiannis 2013; Fortu-
nato 2010), edge direction can play a fundamental role in 
revealing more accurate communities in networks. Moreo-
ver, devising direction-oblivious deception techniques (e.g., 
treating directed networks as undirected) to escape from 
direction-aware detection algorithms like leiden (Traag 
et al. 2019) may undermine the overall goal of protecting a 
community in a directed network.

4 � Deception in directed networks

In this section, we study the community deception problem in 
directed networks. Although many real-world networks (e.g., 
Twitter) are intrinsically directed, state-of-the-art deception 

E(u,Ci) ⋅ (E(u,Ci) + 1)

Emax(u) ⋅ �(u) ⋅ (�(u) + 1)
+ Cin(u) − C�

in
(u)

E(u,Ci)(1 + Emax(u) + �(u))

Emax(u) ⋅ �(u) ⋅ (Emax(u) + 1) + (�(u) + 1)

techniques have only focused on undirected networks. One 
way to solve the problem would be to ignore edge directions 
simply. However, this is limiting for at least two reasons. First, 
meaningful information about edge direction is discarded. In a 
network like Twitter, the fact that A follows B does not imply 
that B follows A. Second, as community detection has evolved 
to take into account edge directions (e.g., Leicht and Newman 
2008; Traag et al. 2019), we believe that community deception 
should evolve to play a fairer game.

By referring to the framework reported in Fig. 1, in this 
new setting, the input network G is now a directed network, 
the Detector module can implement specific community 
detection algorithms proposed to work on directed networks, 
and the Deceptor will take edge direction into account when 
suggesting a set of directed edge updates. Therefore, the 
Deceptor can only consider edge additions and deletions 
whose source node is in the target community.

We show how to derive the counterpart for each of the 
three main deception strategies available for undirected 
networks in the directed case. Moreover, to understand the 
importance of taking edge directions into account and the 
need for introducing deception approaches specifically tai-
lored to work on directed networks, we will discuss the net-
work reported in Fig. 2. The figure reports the same network 
when edge direction is considered (Fig. 2(a)) and when it is 
neglected (Fig.2(b)). We suppose that the Detector has iden-
tified two communities and the target community is C1 = { 0, 
1, 2, 3, 4 } and it has been completely disclosed.

4.1 � Directed modularity‑based deception

In this section, we investigate how the modularity-based 
deception analyzed in Section 3.1 can be adapted to work 
on directed networks. In particular, we consider a slightly 
modified version of the metric described by Leicht and New-
man (2008). The notation used to define directed modularity 
is summarized in Table 2.

Definition 6  Let G = (V ,E) be a directed network, the 
directed modularity of the partition of this network into 
communities C={C1,C2, ...Ck } is given by:

81

(a) (b)

0

2

3
4

C1C1 C2C2

5 6

7

9

10

11

81

0

2

3
4

C1C1 C2C2

5 6

7

9

10

11

Fig. 2   Example of a directed network (a) and its undirected version 
(b)
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w h e r e  � =
∑

Ci∈C
�E(Ci)�  ,  m = |E|  ,  a n d  �⃗𝛿

= �o ⋅ �i =
∑

Ci∈C
�o(Ci)⋅ ∑

Ci∈C
�i(Ci) =

∑
Ci∈C

∑
u∈Ci

�o(u) ⋅
∑

Ci∈C

∑
u∈Ci

�i(u).

In terms of the general deception formulation (see Defini-
tion 2) the function � can be instantiated to be the directed 
modularity loss �������⃗ML=����⃗MG(C) −

����⃗MG� (C) . We will analyze 
the impact of the different types of edge updates on the 
directed modularity loss.

Example 7  Consider the network in Fig. 2. The directed 
modularity of the network in Fig. 2(a) is:

If we consider now its undirected version, reported in 
Fig. 2(b), we obtain the following modularity score:

From this simple example, it is clear how neglecting edge 
directions can significantly change the sense of “goodness” 
assigned to a community structure. Indeed, in the case of 
directed modularity, the obtained value is lower than 0, indi-
cating the absence of a community structure. In contrast, in 

����⃗MG(C) =
𝜂

m
−

�⃗𝛿

m2

����⃗M
G
(C) =

𝜂

m
−

�⃗𝛿

m2
=

|E(C1)|+ |E(C2)|
21

−

(
𝛿
o
(C1) + 𝛿

o
(C2)

)
⋅

(
𝛿
i
(C1) + 𝛿

i
(C2)

)
212

=
6 + 10

21
−

(9 + 11) ⋅ (7 + 13)

212

=
16

21
−

20 ⋅ 20

212
= −0.145

MG(C) =
�

m
−

�

4m2
=

|E(C1)|+ |E(C2)|
21

−
�(C1)

2 + �(C2)
2

4 ⋅ 212

=
6 + 10

21
−

162 + 252

4 ⋅ 212
=

16

21
−

881

4 ⋅ 212
= 0.262

the undirected case, the value is higher than 0, indicating the 
possible presence of a community structure.

4.1.1 � Intra‑edge addition

An intra-community edge addition (u,  w) s.t. u,w ∈ Ci 
and {u, v} ∩ C ≠ �  g iv ing an updated network 
G� = (V ,E ∪ {(u,w)}) does not always correspond to a 
directed modularity loss. Indeed, the modularity loss is:

With few algebraic manipulations, we obtain the following 
inequality �������⃗ML < 1

(m+1)2

�
𝜂 − m+ 𝛿

o
(C

i
)+ 𝛿

i
(C

i
) −

2m+1

m2

∑
Cj∈C̄

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

�
 . 

Since the last term in the bracket is negligibly small, we can 
conclude that �������⃗ML is negative if � − m ≥ �o(Cj)+ �i(Ci).

4.1.2 � Inter‑edge addition

An inter-community edge addition (u, w) s.t. u ∈ Ci ∩ C  and 
w ∈ Cw ≠ Ci giving an updated network G′=(V ,E ∪ {(u,w)}) 
does not always correspond to a directed modularity loss. 
Indeed, the directed modularity loss is:

�������⃗ML= ����⃗M
G
(C) − ����⃗M

G� (C)

=

[
𝜂

m
−

1

m2

(
𝛿
o
(C

i
) ⋅ 𝛿

i
(C

i
)+

∑
Cj∈C̄⧵{Ci}

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

)]
+

−

[
𝜂 + 1

m + 1
−

1

(m + 1)2(
(𝛿

o
(C

i
)+ 1)(𝛿

i
(C

i
)+ 1) +

∑
Cj∈C̄⧵{Ci}

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

)]
=

=
m − 𝜂

m(m + 1)
+

1

m2(m + 1)2[
m

2(𝛿
o
(C

i
) + 𝛿

i
(C

i
)+ 1) − (2m+ 1)

∑
Cj∈C̄

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

]

Table 2   Notation table for 
directed modularity

Symbol Meaning Formula

�⃗𝛿 Product of the total output degree and total input degree of a 
community structure

�⃗𝛿 = 𝛿
o
⋅ 𝛿

i

�
o Total output degree of a community structure C

∑
Ci∈C

�
o
(C

i
)

�
i Total input degree of a community structure C

∑
Ci∈C

�
i
(C

i
)

�
o
(C

i
) Total output degree of community C

i

∑
u∈Ci

�
o
(u)

�
i
(C

i
) Total input degree of community C

i

∑
u∈Ci

�
i
(u)

�
o
(u) Output degree of node u |{(u, v) ∶ (u, v) ∈ E}|

�
i
(u) Input degree of node u |{(v, u) ∶ (v, u) ∈ E}|
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By some algebraic manipulation, this can be reduced to:

Then, we can conclude that �������⃗ML is positive if and only if the 
term inside square brackets is positive. That is if the follow-
ing inequality holds:

4.1.3 � Intra‑edge deletion

An intra-community edge deletion (u,  w) s.t. u,w ∈ Ci 
and {u, v} ∩ C ≠ �  g iv ing an updated network 
G� = (V ,E ⧵ {(u,w)}) does not always correspond to a 
directed modularity loss. Indeed, the modularity loss is:

With few algebraic manipulations, we can conclude that 
�������⃗ML > 1

(m−1)2

(
m − 𝜂+ 1 − 𝛿o(Ci) − 𝛿i(Ci)

)
 . Such inequality 

shows that �������⃗ML will be positive if the term inside the brack-
ets is positive and thus if m − � ≥ �o(Ci)+ �i(Ci) − 1.

�������⃗ML =
𝜂

m
−

1

m2

((
𝛿
o
(C

i
)𝛿

i
(C

i
)
)
+
(
𝛿
o
(C

w
)𝛿

i
(C

w
)
)

+
∑

Cj∈C̄⧵{Ci,Cw}

𝛿
o
(C

j
)𝛿

i
(C

j
)

)
+

−

[
𝜂

m + 1
−

1

(m + 1)2(
(𝛿

o
(C

i
)+ 1)𝛿

i
(C

i
) + 𝛿

o
(C

w
)(𝛿

i
(C

w
)+ 1)

+
∑

Cj∈C̄⧵{Ci,Cw}

𝛿
o
(C

j
)𝛿

i
(C

j
)

)]

�������⃗ML=
1

m2(m + 1)2

[
𝜂(m2

+ m)+ m
2
(
𝛿
i
(C)

+ 𝛿
o
(C

w
)
)
−
(
2m+ 1

) ∑
Cj∈C̄

𝛿
o
(C

j
)𝛿

i
(C

j
)

]

𝜂(m2+ m)+ m2
[
𝛿i(Ci)+ 𝛿o(Cw)

]
≥
(
2m+ 1

) ∑
Cj∈C̄

𝛿o(Cj)𝛿i(Cj)

�������⃗ML = ����⃗MG(C) −
����⃗MG� (C) =

[
𝜂

m
−

1

m2

(
𝛿o(Ci) ⋅ 𝛿i(Ci)+

∑
Cj∈C̄⧵{Ci}

𝛿o(Cj) ⋅ 𝛿i(Cj)

)]
+

−

[
𝜂 − 1

m − 1
−

1

(m − 1)2

(
(𝛿o(Ci) − 1)(𝛿i(Ci) − 1) +

∑
Cj∈C̄⧵{Ci}

𝛿o(Cj) ⋅ 𝛿i(Cj)

)]
=

=
m − 𝜂

m(m − 1)
+

1

m2(m − 1)2

[
− m2(𝛿o(Ci) + 𝛿i(Ci) − 1) + (2m − 1)

∑
Cj∈C̄

𝛿o(Cj) ⋅ 𝛿i(Cj)

]

4.1.4 � Inter‑edge deletion

An inter-community edge deletion (u, w) s.t. u ∈ Ci ∩ C  and 
w ∈ Cw ≠ Ci giving an updated network G′=(V ,E ⧵ {(u,w)}) 
does not always correspond to a directed modularity loss. 
Indeed, the modularity loss is:

By looking at the above formula, we can conclude that �������⃗ML 
is negative if the term inside the square bracket is negative, 
that is:

4.2 � Directed Safeness‑Based Deception

Starting for the Safeness defined for undirected networks 

(see equation 2 and equation 5) we can study safeness in 
directed networks. The notation used to define directed safe-
ness is summarized in Table 3.

We start by defining the safeness of a node in the directed 
case.

�������⃗ML = ����⃗M
G
(C) − ����⃗M

G� (C)

=

[
𝜂

m
−

1

m2

( ∑
Cj∈C̄

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

)]
+

−

[
𝜂 − 1

m − 1
−

1

(m − 1)2(
(𝛿

o
(C

i
) − 1)𝛿

i
(C

i
) + 𝛿

o
(C

w
)(𝛿

i
(C

w
) − 1)

+
∑

Cj∈C̄⧵{Ci,Cw}

𝛿
o
(C

j
)𝛿

i
(C

j
)

)]

=
1

m2(m − 1)2

[
− 𝜂m2 + 𝜂m − m

2𝛿
i
(C

i
)

− m
2𝛿

o
(C

w
) + (2m − 1)

∑
Cj∈C̄

𝛿
o
(C

j
)𝛿

i
(C

j
)

]

−𝜂m2 + 𝜂m − m2𝛿i(Ci) − m2𝛿o(Cw) + (2m − 1)
∑
Cj∈C̄

𝛿o(Cj)𝛿i(Cj) < 0.
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Definition 8  Consider a directed network G = (V ,E) , a com-
munity C ⊆ V  , and a node u ∈ C  . The directed safeness of 
u in G is defined as:

The above formula split the two components of undi-
rected safeness to take into account edge directions. Indeed, 
the Vu(C) of the undirected case is split into two terms Vu

o
(C) 

and Vu
i
(C) that consider the portion of nodes in C  that can 

be reached from u via directed paths originating from u 
and directed paths terminating in u, respectively. Similarly, 
Eo(u,C) ( Ei(u,C) , respectively) indicates the set of incoming 
(outgoing, respectively) edges linking u to other members 
of C  ; Ẽo(u,C) ( ̃Ei(u,C) , respectively) indicates the set of 
incoming (outgoing, respectively) edges linking u to nodes 
not in C  ; and, �o(u) ( �i(u) , respectively) indicates the outgo-
ing (incoming, respectively) degree of u.

Example 9  Consider again the network reported in Fig. 2 and 
let � = � =

1

2
 . To discuss safeness, we will focus on node 

1; in the directed network, it is connected by two outgoing 
edges to 2 and 8 and by three incoming edges from nodes 0, 
3, and 5. Then, if we compute the directed safeness score of 
node 3, we obtain the following:

�⃗𝜎(u,C) ∶=𝜏

(|Vu

o
(C)| − |E

o
(u,C)|)+ (|Vu

i
(C)| − |E

i
(u,C)|)

2 ⋅ (|C| − 1)

+ 𝜒

(
|�E

o
(u,C)|
𝛿
o
(u)

+
|�E

i
(u,C)|
𝛿
i
(u)

)

If we compute the safeness score of node 1 on the undirected 
version of the network, we obtain:

On the one hand, in the directed version of the network, 
node 1 can reach all the community nodes via outgoing and 
incoming paths. On the other hand, one out of the three 
incoming edges of node 1 is an inter-community edge; and 
one of the two outgoing edges is an inter-community edge. 
When it comes to the undirected version of the network, it 
does not matter the direction in which the information can 
be transmitted; all edges are treated in the same way mean-
ing that node 1 can reach all the other four nodes in C1 by 
mean of its three intra-community edges and has two out 
of five inter-community edges. This causes the decrease of 
the safeness score from 0.73 to 0.325, meaning node 1 is 
more subjected to be discovered as a member of C1 in the 
undirected version w.r.t the directed one.

Similar to the case of undirected networks, the directed 
community safeness can be defined by averaging the directed 
node safeness of the nodes in C .

Definition 10  Given a directed network G = (V ,E) and a 
community C ⊆ V , the directed safeness of C  in G is defined 
as:

In terms of the general deception formulation (see Defi-
nition 2) this approach instantiates the function � to be the 
directed safeness gain �⃗𝜉C= �⃗𝜎(C�)- �⃗𝜎(C) . Then, in the follow-
ing, we will discuss the impact of the different types of edge 
updates on the directed safeness score.

�⃗𝜎(3,C) ∶=
1

2

(|V1

o
(C)| − |E

o
(1,C)|)+ (|V1

i
(C)| − |E

i
(1,C)|)

2 ⋅ (|C| − 1)

+
1

2

(
|�E

o
(1,C)|
𝛿
o
(1)

+
|�E

i
(1,C)|
𝛿
i
(1)

)
=

=
(4 − 1) + (4 − 2)

2 ⋅ 2 ⋅ 4
+

1

2

(
1

2
+

1

3

)

= 0.313 + 0.417 = 0.73

�(1,C) ∶ =
1

2

|V1(C)| − |E(1,C)|
|C| − 1

+
1

2

|Ẽ(1,C)|
�(1)

=
4 − 3

2 ⋅ 4
+

2

2 ⋅ 5
= 0.125 + 0.2 = 0.325

(4)�⃗𝜎(C) =
∑
u∈C

�⃗𝜎(u,C)∕|C|

Table 3   Notation table for directed safeness

Symbol Meaning Formula

V
u

o
(C) Nodes in C  (excluding u itself) reachable 

from u:
(i) passing only via nodes in C  and
(ii) following directed paths originating 

from u
V
u

i
(C) Nodes in C  (excluding u itself) that can 

reach u:
(i) passing only via nodes in C  and
(ii) by following directed paths terminat-

ing in u
E
o
(u,C) Outgoing edges of u to members of C {(u, v) ∣ v ∈ C}

E
i
(u,C) Incoming edges of u from members of C {(v, u) ∣ v ∈ C}

Ẽ
o
(u,C) Outgoing edges of u to non members of C {(u, v) ∣ v ∉ C}

Ẽ
i
(u,C) Incoming edges of u from non members 

of C
{(v, u) ∣ v ∉ C}

�
o
(u) Output degree of node u |{(u, v)}|

�
i
(u) Input degree of node u |{(v, u)}|
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4.2.1 � Intra‑edge addition

An intra-C  edge addition (u, w) s.t. u,w ∈ C  giving an 
updated network G� = (V ,E ∪ {(u,w)}) does not always 
introduce a directed safeness gain. Indeed, after the addition 
of the edge (u, w), if w ∉ Vu

o
(C) , u will be able to reach w and 

all the nodes in Vw
o
(C) ⧵ Vu

o
(C) . The same holds for w that 

will be able to reach u and all the nodes in Vu
i
(C) ⧵ Vw

i
(C) , if 

u ∉ Vw
i
(C) . Then, the possible increase of the safeness score 

for the nodes u and w is the following:

Obviously, such edge addition always results in a safeness 
decrease if w ∈ Vu

o
(C) and u ∈ Vw

i
(C).

4.2.2 � Inter‑edge addition

Any inter-C  edge addition (u, w) s.t. u ∈ C  and w ∉ C  giv-
ing an updated network G′=(V ,E ∪ {(u,w)}) always corre-
sponds to a directed safeness increase. Indeed, the directed 
safeness node increase for u is

�⃗𝜎(u,C�) − �⃗𝜎(u,C) = 𝜏
(|Vw

o
(C) ⧵ Vu

o
(C)| + 1) − 1

2(|C| − 1)

+ 𝜒
|�E

o
(u,C)|

𝛿
o
(u)(𝛿

o
(u) + 1)

�⃗𝜎(w,C�) − �⃗𝜎(w,C) = 𝜏
(|Vu

i
(C) ⧵ Vw

i
(C)| + 1) − 1

2(|C| − 1)

+ 𝜒
|�E

i
(w,C)|

𝛿
i
(w)(𝛿

i
(w) + 1)

�⃗𝜎(u,C�) − �⃗𝜎(u,C) = 𝜒
|�E

o
(u,C)| + 1

𝛿
o
(u) + 1

− 𝜒
|�E

o
(u,C)|
𝛿
o
(u)

= 𝜒
𝛿
o
(u) − |�E

o
(u,C)|

𝛿
o
(u)(𝛿

o
(u) + 1)

that is always greater or equals to 0 since �o(u) ≥ |Ẽo(u,C)| . 
Note that the maximum increase in directed safeness hap-
pens for all the nodes u such that u ∈ argmin{

|Ẽo(u,C)|
�o(u)

}.

4.2.3 � Intra‑edge deletion

An intra-C  edge deletion (u, w) s.t. u,w ∈ C  giving an 
updated network G� = (V ,E ⧵ {(u,w)}) does not always 
bring a directed safeness gain. Indeed, let Vu−

o
(C) ( Vw−

i
(C) , 

respectively) be the nodes of C  that cannot be reached by 
following directed paths originating from u (ending in w, 
respectively) after the deletion of the edge (u, w). Then, the 
possible increase of the safeness score for the nodes u and 
w is the following:

Obviously, such edge addition always results in a safeness 
increase if Vu−

o
(C) = � and Vw−

i
(C) = � , that is u and w will 

be able to reach exactly the same C  ’s members if (u, w) is 
deleted.

4.2.4 � Inter‑edge deletion

Any inter-C  edge deletion (u, w) s.t. u ∈ C  and w ∉ C  giv-
ing an updated network G′=(V ,E ⧵ {(u,w)}) always corre-
sponds to a directed safeness decrease. Indeed, the directed 
safeness node increase for u is

�⃗𝜎(u,C�) − �⃗𝜎(u,C) = 𝜏
1−|Vu−

o
(C)|

2(|C| − 1)
+ 𝜒

|�Eo(u,C)|
𝛿o(u)(𝛿o(u) − 1)

�⃗𝜎(w,C�) − �⃗𝜎(w,C) = 𝜏
1 − Vw−

i
(C)

2(|C| − 1)
+ 𝜒

|�Ei(w,C)|
𝛿i(w)(𝛿i(w) − 1)

�⃗𝜎(u,C�) − �⃗𝜎(u,C) = 𝜒
|�E

o
(u,C)| − 1

𝛿
o
(u) − 1

− 𝜒
|�E

o
(u,C)|
𝛿
o
(u)

= 𝜒
|�E

o
(u,C)| − 𝛿

o
(u)

𝛿
o
(u)(𝛿

o
(u) + 1)

Table 4   Notation table for 
directed permanence

Symbol Meaning Formula

E
o
(u,C

i
) Outgoing edges of u to members of C

i
{(u, v) ∣ u ∈ C

i
}

E
i
(u,C

i
) Incoming edges of u from members of C

i
{(v, u) ∣ v ∈ C

i
}

E
max

o
(u) Maximum number of edges originated from u connect-

ing u to a neighbour community
max

C∈C
|{(u, v) ∣ v ∈ C}|

E
max

i
(u) Maximum number of incoming edges of u connecting 

u to a neighbour community
max

C∈C
|{(v, u) ∣ v ∈ C}|

C
in
(u) Clustering coefficient of u’s neighbours |{(v,w)∈E∶v,w∈Nu}|

�(u)(�(u)−1)

�(u) Degree of u |{(u, v)}| + |{(v, u)}|
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that is always greater or equals to 0 since �o(u) ≥ |Ẽo(u,C)|.

4.3 � Directed permanence‑based deception

This section shows how permanence can be adapted to 
directed networks. The notation used in this section is sum-
marized in Table 4. We start by defining directed node 
permanence.

Definition 11  Let G = (V ,E) be a directed network, and 
u ∈ V  a node in G. The directed node permanence of u is 
defined as:

 where Eo(u,Cu) and Ei(u,Cu) denote the internal outgoing 
and incoming connections of u within its own community 
Cu resp., Emax

o
(u) and Emax

i
(u) the maximum number of out-

going and incoming connections of u to its neighboring 
communities resp., Cin(u) =

|{(v,w)∈E∶v,w∈Nu}|
�(u)(�(u)−1)

 ,  where 
Nu = {v ∶ (v, u) ∈ E ∨ (u, v) ∈ E} are the neighbors of u, the 
fraction of actual and possible number of edges among the 
internal neighbors of u (i.e., the clustering coefficient among 
the internal neighbors of u, where �(u) indicates the total 
degree of u). As in the case of undirected networks, also for 
directed networks for all vertices u that do not have any 
inter- outgoing and/or incoming connections permanence is 
considered equal to the clustering coefficient, i.e., 
��������⃗Perm(u) = Cin(u) . Moreover, if the total number of internal 
outgoing and incoming connections of u is less than 2 the 
clustering coefficient Cin(u) is set to be 0.

Example 12  Consider again the directed network reported in 
Fig. 2(a), the directed permanence of node 1 is the following:

If we consider the undirected version of the same network, 
the permanence of node 1 will be the following:

��������⃗Perm(u,G) ∶=

( |Eo(u,Cu)|
2 ⋅ Emax

o
(u) ⋅ 𝛿o(u)

+
|Ei(u,Cu)|

2 ⋅ Emax
i

(u) ⋅ 𝛿i(u)

)
−
(
1 − Cin(u)

)

��������⃗Perm(1,G) ∶=

( |E
o
(1,C1)|

2 ⋅ Emax

o
(1) ⋅ 𝛿

o
(1)

+
|E

i
(1,C1)|

2 ⋅ Emax

i
(1) ⋅ 𝛿

i
(1)

)
−
(
1 − C

in
(1)

)
=

(
1

2 ⋅ 1 ⋅ 2
+

2

2 ⋅ 1 ⋅ 3

)
− (1 −

3

5 ⋅ 4
)

= (0.25 + 0.33) − (1 − 0.15) = −0.27

Perm(1,G) ∶=
I(1)

Emax(1) ⋅ �(1)
−
(
1 − Cin(1)

)
=

3

2 ⋅ 5
−
(
1 −

2 ⋅ 3

5 ⋅ 4

)
= 0.3 − (1 − 0.3) = −0.4

Then, for this example, the permanence of node 1 in the 
directed version is higher than the permanence in the undi-
rected case, meaning that in the undirected version, node 1 
is less committed to staying in C1 than that in the directed 
version.

The directed permanence of w.r.t. a target community is 
defined as:

Definition 13  Given a directed network G = (V ,E) and a 
target community C  , the directed permanence of C  in G is 
defined as:

In terms of the general deception formulation (see Defi-
nition 2) this approach instantiates the function � to be the 
directed permanence loss ��⃗Pl= ��������⃗Perm(C,G)- ��������⃗Perm(C,G�) . 
Then, in the following we will discuss the impact of the 
different types of edge updates on the directed permanence 
loss:

4.3.1 � Intra‑edge addition

An intra-community edge addition (u,  w) s.t. u,w ∈ Ci 
and {u, v} ∩ C ≠ �  g iv ing an updated network 
G� = (V ,E ∪ {(u,w)}) does not always correspond to a 
directed permanence loss. In the following we will analyze 
the directed permanence loss for u, a similar reasoning will 
apply to w. Then, the directed permanence loss of u is:

The first term (i.e., |Eo(u,Ci)|−�o(u)
2Emax

o
(u)�o(u)

(
�o(u)+ 1

) ) is always lower or 

equals to zero since �o(u) ≥ Io(u) . The second term (i.e., 
(Cin(u) − C�

in
(u)) ) can be lower or greater than 0 depending 

on how the clustering coefficient change after the edge 
addition.

Note that the addition of the edge (u, w) will also increase 
the directed permanence of all the nodes v that have both u 

(5)��������⃗Perm(C,G) =

∑
u∈C

��������⃗Perm(u,G)

�C�

|Eo(u,Ci)|
2Emax

o
(u)�o(u)

− (1 − Cin(u)) −
|Eo(u,Ci)|+ 1

2Emax
o

(u)(�o(u)+ 1)
+ (1 − C�

in
(u))

=
|Eo(u,Ci)| − �o(u)

2Emax
o

(u)�o(u)
(
�o(u)+ 1

) + (Cin(u) − C�
in
(u))
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and w in its neighborhood, since their clustering coefficient 
Cin(v) will increase.

4.3.2 � Inter‑edge addition

Any inter-community edge addition (u, w) s.t. u ∈ Ci ∩ C  
and w ∈ Cw ≠ Ci giving an updated network G′

=(V ,E ∪ {(u,w)}) always results in a directed permanence 
loss. Consider first the case in which Emax

o
(u) does not change 

after the edge addition, then the directed permanence loss 
of u is:

that is always greater or equals to 0 since Io(u) is at least 0.
Consider now the case in which Emax

o
(u) changes after the 

edge addition, then the new value will be Emax
o

(u)+ 1 . In this 
case the directed permanence loss of u is:

that is always greater than 0 since it holds that 
|E

o
(u,C

i
)|(Emax

o
(u)+ 1

)(
𝛿
o
(u)+ 1

)
> |E

o
(u,C

i
)|Emax

o
(u)𝛿

o
(u).

Moreover, note that the maximum permanence loss is 
obtained in the second case when the edge is added to the 
community toward which u already has the maximum num-
ber of edges.

4.3.3 � Intra‑edge deletion

An intra-community edge deletion (u,  w) s.t. u,w ∈ Ci 
and {u, v} ∩ C ≠ �  g iv ing an updated network 
G� = (V ,E ⧵ {(u,w)}) always results in a directed perma-
nence loss. Indeed, after the deletion of the edge (u, w), we 
have that |Eo(u,Ci)|, |Ei(w,Ci)|, �o(u), �i(w) will be decreased 
by 1. Consider first the directed permanence loss of node 
u (a similar reasoning will apply also to node w). We will 
restrict the analysis to edges whose deletion will decrease 
Cin(u) , to the new value C�

in
(u) ≤ Cin(u) . Then the directed 

permanence loss of u is:

that is always greater or equals to 0 since �o(u) ≥ |Eo(u,Ci)| 
and C�

in
(u) ≤ Cin(u).

Note that the deletion of the edge (u, w) will also decrease 
the directed permanence of all the nodes v that have both u 

|Eo(u,Ci)|
2Emax

o
(u)�o(u)

−
|Eo(u,Ci)|

2Emax
o

(u)(�o(u)+ 1)
=
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(
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)
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2
(
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)(
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)
�o(u)

(
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2Emax

o
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− (1 − Cin(u)) −
|Eo(u,Ci)| − }1

2Emax
o

(u)(�o(u) − 1)
+ (1 − C�
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=
�o(u) − |Eo(u,Ci)|

2Emax
o

(u)�o(u)
(
�o(u) − 1
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in
(u))

and w in its neighborhood, since their clustering coefficient 
Cin(v) will decrease.

4.3.4 � Inter‑edge deletion

Any inter-community edge deletion (u, w) s.t. u ∈ Ci ∩ C  
and w ∈ Cw ≠ C  giving an updated network G′

=(V , sE ⧵ {(u,w)}) never brings a directed permanence loss.
Consider first the case in which Emax

o
(u) does not change 

after the edge deletion, then the directed permanence loss 
of u is:

that is always lower or equals to 0 since |Eo(u,Ci)| is at least 
0.

Consider now the case in which Emax
o

(u) changes after the 
edge deletion, then the new value will be Emax

o
(u) − 1 . In this 

case the directed permanence loss of u is:

4.4 � Directed deception in practice

In this section, we will analyze the behavior of the different 
deception strategies on the synthetic network reported in 
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Fig. 3   Deception on directed networks with different deception tech-
niques: (b) directed modularity, (c) directed safeness, and (d) directed 
permanence
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Fig. 3 (a). The two communities shown in the figure have 
been identified by running the infomap detection algo-
rithm (Rosvall and Bergstrom 2008). In the following, we 
suppose that the target community is C1 = { 0, 1, 3, 4, 5 } and 
it has been completely disclosed. Moreover, we will consider 
a budget of update � = 4.

Effect of directed modularity deception. The modularity-
based deceptor on the directed network in Fig. 3(a) will sug-
gest, in order, the following edge updates: 

1.	 Inter-community edge addition (0, 8);
2.	 Inter-community edge addition (3, 6);
3.	 Inter-community edge addition (1, 7);
4.	 Inter-community edge addition (4, 6);

If we run the same detector on the network obtained after 
applying the four modifications suggested, we obtain the 
network reported in Fig 3(b). As it can be noted, the detec-
tor identifies three communities, and the target community’s 
members are spread between C1 and C2.

Effect of directed safeness deception.
The safeness-based deceptor on the directed network in 

Fig. 3(a) will suggest, in order, the following edge updates: 

1.	 Inter-community edge addition (4, 10);
2.	 Inter-community edge addition (3, 6);
3.	 Inter-community edge addition (1, 10);
4.	 Inter-community edge addition (4, 9);

If we run the detector on the network obtained after apply-
ing the four modifications suggested, we obtain the network 
reported in Fig 3(c). As it can be noted, the detector identi-
fies two communities with the target community’s members 
spread in both of them.

Effect of directed permanence deception.
The permanence-based deceptor on the directed net-

work in Fig. 3(a) will suggest, in order, the following edge 
updates: 

1.	 Intra-community edge deletion (1, 2);
2.	 Intra-community edge deletion (3, 1);
3.	 Inter-community edge addition (0, 5);
4.	 Intra-community edge deletion (0, 1);

If we run the detector on the network obtained after apply-
ing the four modifications suggested, we obtain the network 
reported in Fig 3(d). As it can be noted, the detector identi-
fies three communities with the target community’s mem-
bers spread in two of them.

We want to point out that there is a slight difference in the 
interpretation of intra- and inter-community edge updates 

among the three different deception strategies described in 
the previous section. Consider the case in which the target 
community in the network in Fig. 3 is C = {0, 1, 3, 5, 8} . 
Then, directed modularity and directed permanence catego-
rize intra- and inter-edge updates by considering the com-
munity structure identified by the detector, meaning that, for 
example, the addition of the edge (1,5) would be considered 
as an inter-edge addition that could decrease both modular-
ity and permanence, while, of course, it is not a good update 
w.r.t. the target community C  . Instead, the directed safe-
ness does not suffer from this problem since it always looks 
at intra-C  and inter-C  edge updates. Thus, when applying 
modularity and permanence deception algorithms, one 
should also check that the intra- and inter-community edge 
updates suggested meet the requirement related to the iden-
tity of the target community C  . By considering the example 
network reported in Fig. 3 such differences cannot be appre-
ciated since the target community is completely revealed.

5 � Experimental evaluation

This section reports on an experimental evaluation of the 
community deception approaches devised for directed net-
works. We set three main goals. The first one is to assess the 
feasibility of community deception approaches in directed 
networks. In particular, we want to gain some insight into 
how our approaches, which rework the state of the art in a 
directed network context, are effective. The second goal is 
to compare community deception approaches for directed 
networks with the state of the art that has focused on undi-
rected networks. The comparison will shed further light 
on our novel techniques’ effectiveness in hiding capabili-
ties. The third goal is to assess the scalability, in terms of 
running time, of our novel approaches and make a parallel 
with deception in undirected networks. We also measure the 
impact of the deception strategies on the whole community 
structure by measuring the similarity between communities 
before and after deception. In what follows, we describe the 
experimental setting (Sect. 5.1), the datasets (Sect. 5.2), and 
then report on the experimental results. The algorithms have 
been implemented in Python. Code and datasets are avail-
able online2

5.1 � Experimental setting

To introduce the experimental setting, we refer to the general 
framework outlined in Sect. 1 and provide details about the 
actors involved.

2  https://​commu​nityd​ecept​ion.​wordp​ress.​com/.

https://communitydeception.wordpress.com/
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5.1.1 � Detectors

We considered a variety of community detection algorithms 
(detectors) that will act as adversaries to the deception tech-
niques. To make the comparison meaningful for our context, 
we focus on approaches that work on directed networks. We 
considered the following algorithms available in the cdlib 
library:3

•	 Leiden (Traag et al. 2019) (leiden): a community 
detection algorithm that corrects for some issues of the 
Louvain algorithm (Blondel et al. 2008) and can work on 
directed networks.

•	 Directed modularity (Leicht and Newman 2008) (dm): 
this algorithm is an extension of the modularity maximi-
zation algorithm devised for undirected networks (New-
man 2004).

•	 Surprise community (Traag et al. 2015) (surprise): 
this algorithm uses the notion of asymptotic surprise, 
which assesses the quality of the partition of a network 
into communities.

•	 InfoMap (Rosvall and Bergstrom 2008) (infomap): a 
detection algorithms that leverages information theory 
(the shortest description length for a random walk) to 
return a community structure.

•	 Gemsec (Rozemberczki et  al. 2019) (gemsec): an 
approach that leverages random walks to approximate the 
point-wise mutual information matrix obtained by pool-
ing normalized adjacency matrix powers. This matrix is 
decomposed by an approximate factorization technique 
which is combined with a k-means-like clustering cost.

5.1.2 � Deceptors

To tackle community deception in directed networks, we 
considered the following two categories of deceptors:

•	 Approaches devised for undirected networks: to make the 
experiments possible for these approaches, we treat the 
directed network under consideration as undirected. We 
considered:

–	 Delete Internal Connect External (Waniek et  al. 
2018) (DICE): this community deception algorithm 
is based on the heuristic of deleting intra-community 
edges and adding inter-community edges. DICE is 
based on the assumption that such kinds of edge 
updates always minimize modularity.

–	 Modularity Minimization (Fionda and Pirrò 2018) 
(modMin): this approach corrects for some issues 
with DICE; the authors of modMin showed that in 
some cases, DICE fails to perform edge updates that 
minimize modularity.

–	 Safeness-based deception (Fionda and Pirrò 2018) 
(SAF): this approach introduces safeness maximiza-
tion for community deception.

–	 Permanence-based deception (Mittal et al. 2021) 
(NEUR): this approach is based on permanence mini-
mization.

–	 Random edge updates (RND): we consider an 
approach that randomly selects both the type of 
update and the endpoints of the edge addition/dele-
tion.

•	 Approaches devised for directed networks: for this cat-
egory of deceptors we consider edge direction. In this 
case, we considered all the novel approaches described 
in the present paper.

–	 Directed modularity (dmod): this is the approach 
described in Sect. 4.1

Table 5   Datasets and 
communities found by the 
Detectors considered

Network |V| |E| Number of communities

leiden dm surprise infomap gemsec

Freeman ∼50 ∼500 5 5 7 6 5
Email ∼1K ∼25K 28 32 21 12 16
AnyBeat ∼12K ∼67K 129 81 143 156 112
WikiVote ∼7K ∼103K 30 34 43 51 49
Facebook-like ∼900 ∼142K 6 5 6 7 5
Epinions ∼75K ∼508K 795 986 – – –
Slashdot ∼77K ∼905K 825 1115 – – –
SocialNet ∼82K ∼1M 841 1120 – –
Academia ∼200K ∼1.4M 89 93 – – –
GooglePlus ∼211K ∼1.5M 2105 – – – –

3  https://​cdlib.​readt​hedocs.​io.

https://cdlib.readthedocs.io
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–	 Directed safeness (dsaf): this approach is described 
in Sect. 4.2

–	 Directed permanence (dper): this approach is 
described in Sect. 4.3.

5.2 � Datasets

As this paper aims to introduce deception for directed net-
works, we focused on various real directed social networks 
from a wide range of domains. These networks are available 
online456.

Table 5 gives an overview of the networks considered. 
The table also reports, for each network, the number of com-
munities found by the Detectors considered. We note that 
some of the detectors could not complete community detec-
tion on the more extensive networks after a timeout of 3h.

5.3 � Evaluation methodology

To test deception algorithms, we refer to the methodology 
introduced in our previous work (Fionda and Pirrò 2018). 
As an indicator of performance, we measure:

•	 Deception Score: this score, which ranges between 0 
and 1, combines a measure of reachability preservation 
among C  members, community spread (in how many 
communities are C  ’s members spread), and community 
hidings ( C  ’s members should be included in the largest 
communities) (Fionda and Pirrò 2018).

•	 Normalized Mutual Information(NMI) (Danon et  al. 
2005): this is a measure that we use to check how decep-
tion affects the original community structure. In particu-
lar, given the community structure before deception C 
and the community structure after deception C ’, we have 
NMI(C,C

�
) ∈ [0, 1].

•	 Running time: we also measured deception running time 
for the various algorithms without considering the time 
to find communities.

Related pieces of work (Mittal et al. 2021) considered com-
munity spread and community hiding separately. However, 
we believe that also reachability is relevant and that a good 
deceptor should be evaluate on all the above components 
simultaneously.

To pick the target community C , we looked at the dis-
tribution of the size of the communities. For each detec-
tion algorithm, we considered different C  (one for each 
experiment round) having sizes close to the center of the 

distribution. Experiments have been conducted on a PC i5 
CPU with 3.0 GHz (4 cores) and 16GBs RAM. The results 
reported are the average (95% confidence interval) of 5 runs.

5.4 � Evaluating directed community deception

We start with a discussion about the performance of the 
novel community deception approaches for directed net-
works presented in terms of deception score and NMI.

5.4.1 � Deception score

Figure 4 shows the results in terms of deception score for 
medium-size networks. The figure reports, for each col-
umn, the network considered, and for each row, the decep-
tion score measured as the capability of deceiving a specific 
detection algorithm. By looking at this figure, we make the 
following observations.

On small networks (e.g., Facebook), obtaining larger 
values for the deception score seems easier. In general, the 
deception score always reaches a value greater than 0.5. 
This can be considered a reasonably good value because 
the initial deception score was 0 (that is, C  was completely 
revealed). The deception score increases as the number of 
edge updates increase; this is consistent for all deception 
algorithms, detection algorithms, and networks. dsaf per-
forms better than the other algorithms in almost all settings. 
One exception is the leiden detection algorithm, where 
dmod seems to perform slightly better than dsaf. dper 
seems to be the less performing detection algorithm. We 
looked into the deception score’s community spread and 
reachability components to shed light on this behavior. In 
several cases, edge updates suggested by dper result in 
internal edge deletions that result in a disconnection of the 
community when the number of edge updates increases. 
gemsec seems to be a relatively robust detection algo-
rithm for all three deception approaches. This is especially 
true in the Anybeat network where, when the number of 
edge updates is below 60% of the number of edges in C  , the 
deception score remains quite low. Figure 5 shows the results 
for the largest networks considered. We note that only lei-
den and dm were able to complete the community detection 
task within a timeout of 3h. Even in larger networks, it can 
be observed that larger budget values (x-axis) correspond 
to larger values of the deception score. In particular, with 
a budget equal to 60% of the total number of edges in the 
community in all cases, the deception score is greater than 
0.5. We recall that experiments were conducted in the worst-
case scenario with a deception score pre-deception equal 
to 0 ( C  completely revealed). However, it is reasonable to 
assume that the initial deception score is larger; in real-
ity, when deception algorithms are applied, C  is not com-
pletely revealed. The larger the network, the more difficult 

4  https://​data4​goodl​ab.​github.​io/​datas​et.​html.
5  https://​snap.​stanf​ord.​edu.
6  https://​toreo​psahl.​com/​datas​ets.

https://data4goodlab.github.io/dataset.html
https://snap.stanford.edu
https://toreopsahl.com/datasets
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it becomes the hide. With the same budget percentage, the 
results in terms of deception score are lower. By further dig-
ging out on the results, we observe that for Epinions the 
number of communities found by leiden and dm is 795 
and 896, respectively. The average size of the C  considered 
in the experiments is around 400. hence, with 160 updates, 
dsaf can achieve a score greater than 0.5.

On the largest network, google, the number of communi-
ties found by leiden is 2105, and the average size of the 
C  considered in the experiments is 500. In this case, with 
300 updates, dsaf can reach a deception score value greater 
than 0.5. We again note the leiden was the only algorithm 
able to complete the detection task within a 3h timeout.

Even in this case, we observe that the less effective sys-
tem is dper, which is around 20% and 15% less performing 

Fig. 4   Directed deception on medium-size networks
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than dsaf and dmod, respectively. One interesting case 
is the Academia social network, where nodes represent 
members that follow other members (hence the network is 
directed). On the one hand, we observe that dsaf even with 
lower budget values can achieve a significant result than the 
other approaches. On the other hand, we observe that dsaf 
seems to reach a saturation point where further edge updates 
do not add any benefit. The same is not true for dmod and 
dper, the performance of which has a significant increase 
when moving from a 30% to a 60% budget. Here, the average 
size of C  is 100.

By considering the results from the perspective of detec-
tion algorithms, we observe that leiden is more robust to 
the deception strategies than dm. The reason for this can be 
found in the fact that leiden finds communities by ensur-
ing that they are well-connected, while dm is an adaptation 
of modularity optimization to the directed case. Interest-
ingly, the direct competitor of dm would be leiden, also 
based on directed modularity. However, dsaf consistently 
performs better both on medium and large networks.

One final observation that we make is related to the char-
acteristics of the community C  considered and the category 
of edge updates most performed by the deception strategies. 
We note that the lower the number of intra-C  edges, the 
easier it becomes to hide it. This sounds natural as more 
intra-C  edges reinforce the notion of community itself, thus 
making it challenging to separate nodes within, increasing 
the deception score.

5.4.2 � Normalized mutual information (NMI)

The second dimension of the evaluation considered concerns 
the impact that community deception has on the original 

pre-deception communities found. Figure 6 reports the val-
ues of the NMI. Each column represents a deception algo-
rithm where the x-axis represents one of the networks and 
the y-axis the value of NMI.

The values of NMI for medium networks are always 
around 0.8, meaning that most of the community structure is 
preserved after applying deception. More specifically, dsaf 
appears to be the deception algorithm that better preserves 
the community structure, followed by dmod. The detection 
algorithms that seem to suffer less from deception in terms 
of NMI are surprise and infomap. On larger networks 
(Fig.  6 (b)), the NMI values are a bit higher in general. 
Still, we have that dper is the deception approach that most 
changes the community structure. To shed more light on the 
results, we investigated the relationship between the number 
of communities before and after deception (referred to as 
Δ ). Figure 7 reports the results for medium size networks 
when the budget is set to 60% of the number of edges in C  . 
We note that the number of communities after deception 
decreases; this is always true for the leiden, infomap 
and gemsec detection algorithms.

By relating the Δ reported in Fig. 7 and the initial num-
ber of communities found by each detection algorithm and 
reported in Table 5 we observe that for the Anybeat net-
work, the number of communities significantly increases 
(the initial number was 126 for leiden and becomes 167). 
For the surprise detection algorithm, the larger number 
of communities is observed in the email network (almost 
100 additional communities) for dsaf. In this case, dmod 
and dper decreased the overall number of communities. 
By looking at the deception score related to this case (see 
Fig. 4), we note that dsaf obtained a score higher than 
dmod and dper. The explanation for this improvement is 

Fig. 5   Directed deception on large-size networks
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(a) NMI on medium networks.

(b) NMI on large networks.

Fig. 6   Directed deception evaluation in terms of NMI

Fig. 7   Variation of the number of communities on medium networks



Social Network Analysis and Mining (2022) 12:74	

1 3

Page 19 of 24  74

the significant change in the number of communities, which 
in turn corresponds to an increase in the community spread, 
that is, the number of communities where C  ’s members are 
scatted; indeed, this value went from 1 (the initial setting) to 
67. A similar observation can be made for the WikiVote 
network and the leiden detection algorithm; here, dsaf 
added a larger number of communities that resulted in a 
more significant deception score than dmod and dper.

Figure 8 reports the community variation for larger net-
works. We observe a similar behavior; the larger the number 
of new communities after deception, the larger the deception 
score. This is especially true for Epinion and Social-
Net for the leiden detection algorithm and the dsaf 
deception algorithm. We note that dsaf reaches a deception 
score of 0.7 (see Fig. 5).

Fig. 8   Variation of the number of communities on large networks

Fig. 9   Comparison between directed and undirected deception approaches on medium networks

Fig. 10   Comparison between directed and undirected deception 
approaches on medium networks

Fig. 11   Comparison between directed and undirected deception 
approaches on large networks
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5.5 � Comparison with undirected deception

We now compare our novel approaches for community 
deception in directed networks with the state of the art. These 
approaches were not designed to work on directed networks, 
which sounds like a limitation. Indeed, several real-world 
networks, as those considered in our evaluation, are directed, 
which underlines the importance of adding directions in social 
network relations. For example, the Academia network rep-
resents follower-followee relations that naturally carry a direc-
tion. To run the experiments with the state-of-the-art deception 
algorithms, we treated the networks as undirected and consid-
ered the same C  . In these experiments, we focus on a budget 
of updates equal to 60% of the edges of C  as this configuration 
worked best for all approaches. In what follows, we report on 
comparison in terms of deception score and running time.

5.5.1 � Deception score

We compare the deception score of directed and undirected 
community deception approaches on both medium and large 
networks. Figures 9 and 10 report results on medium-size 
networks. The figure considers for each column a detection 
algorithm. Moreover, the x-axis represents a network in each 
subfigure while the y-axis is the deception score.

In almost all networks, the directed approaches perform 
better than the undirected approaches. This is true for all 
detectors but leiden. Here, we observe that for the Face-
book network, the undirected approaches (excluding the 
random edge update approach) perform better. To shed more 
light on this aspect, we looked into the difference between 
the number of communities after and before deception. In 
this case, the undirected approaches introduced a larger 
number of communities than the directed ones. This rela-
tion between the number of communities after deception 
and deception score was also observed when focusing on 
directed approaches alone (see Sect. 5.4.2).

When moving to the large networks (Fig. 11) we note a clear 
superiority of the directed approaches. This is especially true 

for the Epinions network. When considering leiden, the 
best performing approach was dmod while with leiden, 
dsaf obtained slightly better results. One crucial observa-
tion is that the undirected algorithms performed significantly 
worse, reaching in only a few cases a deception score greater 
than 0.5. As one would expect, the worst-performing decep-
tor is RND, which adds/remove edges randomly starting from 
C  ’s members. Also, NEUR seems to perform worse than other 
undirected approaches. To shed more light on this behavior, 
we looked again at the changes in the community structure and 
the structure of C  ; even in this case, we observed that NEUR 
frequently performs internal edge deletions that disconnect C .

5.6 � Deception with ground truth communities

In this section, we want to investigate the impact of decep-
tion and detection techniques on networks for which the 
ground truth communities are available. To do so, we do 
not generate artificial networks and communities but resort 
to a real-world network of emails for which the communities 
are available. We are aware that Peel et al. (2017) observed 
that working with planted communities does not reflect the 
true data generating process for real networks, which is typi-
cally unknown. However, we still believe that the analysis 
can shed light on how detection algorithms abefore and after 
applying deception approach these communities. We con-
sidered the email available from the SNAP repository7, 
which represents communication between members of an 

Table 6   Average deception score with ground-truth communities

Deception score

Leiden dm Surprise Infomap Gemsec

dsaf 0.623 0.893 0.665 0.635 0.654
dmod 0.598 0.823 0.648 0.642 0.642
dper 0.578 0.789 0.514 0.612 0.591
DICE 0.468 0.658 0.498 0.502 0.471
modMin 0.512 0.662 0.501 0.512 0.484
SAF 0.532 0.698 0.503 0.594 0.493
NEUR 0.516 0.658 0.509 0.449 0.472
RND 0.235 0.123 0.256 0.226 0.194

Table 7   NMI(C
G
,C

B
) comparing ground-truth communities and 

communities returned by a detection algorithm

NMI(C
G
,C

B
)

Leiden dm Surprise Infomap Gemsec

0.891 0.877 0.797 0.862 0.872

Table 8   NMI(C
G
,C

A
) comparing ground-truth communities and 

communities after deception

NMI(C
G
,C

A
)

Leiden dm Surprise Infomap Gemsec

dsaf 0.585 0.591 0.563 0.546 0.603
dmod 0.591 0.594 0.574 0.567 0.57
dper 0.581 0.515 0.559 0.536 0.586
DICE 0.593 0.504 0.591 0.504 0.581
modMin 0.533 0.582 0.629 0.597 0.589
SAF 0.514 0.586 0.615 0.512 0.609
NEUR 0.593 0.565 0.625 0.536 0.598
RND 0.589 0.562 0.624 0.547 0.586

7  https://​snap.​stanf​ord.​edu/​data/​email-​Eu-​core.​html.

https://snap.stanford.edu/data/email-Eu-core.html
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EU institution with ground-truth communities witnessing 
the membership of individuals in one of the 42 departments. 
The network consists of ∼ 1K nodes,  25K edges, and 42 
ground-truth communities.

For this experiment, we proceeded as follows. Given a 
community detection algorithm D , we considered each of 
the communities returned as the target community C  ; the 
number of communities is reported in Table 5. Then, we 
considered a budget of updates equals to the 50% of the 
number of nodes in C  . In this setting, we have three sets 
of communities: (i) CG : ground-truth communities; (ii) 
CB : communities returned by D before applying a decep-
tion algorithm; (iii) CA : communities returned by D after 
applying the deception algorithm. We measured the average 
deception score and NMI values.

Table 6 reports results in terms of deception score. From 
the table, it emerges that the performance of deception algo-
rithms is consistent with results observed in Fig. 10 where a 
smaller number of communities (one for each of the 5 exper-
iment rounds) were tested as C  . Even in this case, dsaf 
outperforms all the competitors, with approaches devised 
for undirected networks offering inferior performance. An 
interesting case is rnd, which performs worse than before. 
This indicates that the deception strategies do not heavily 
depend on the particular community chosen. However, we 
noticed that when the size of C  is small, it is, in general, 
easier to obtain larger values of deception.

We now discuss the different values of NMI score, start-
ing from the analysis of the difference between ground-
truth communities and communities returned by a detection 
algorithm, that is, communities before applying deception 
algorithms.

Table 7 shows that NMI values are above 0.75, witness-
ing a quite high level of similarity between the ground-truth 

communities and the communities found by each detection 
algorithm. This experiment provides insights into the per-
formance of detection algorithms on this particular network, 
with leiden being the most performing one. We now move 
to the analysis of the NMI values by comparing ground-truth 
communities and communities after applying community 
deception techniques.

We observe from Table 8, that NMI values are much 
lower than those returned when comparing ground-truth 
communities with communities returned by a detection algo-
rithm before applying deception techniques. As an example, 
for the leiden detection algorithm and the dsaf decep-
tion algorithm, which was the best performing detection 
algorithm, we note that values of NMI drop from 0.891 to 
0.585 on average. This means that no matter which of the 
42 ground-truth communities we chose as C  , there will be a 
significant difference between the ground truth communities 
and the communities returned after applying dsaf. This 
same reasoning applies to all other deception techniques. 
However, we have two observations. First, not always lower 
values of NMI correspond to higher values of the deception 
score, which is what ultimately community deception strives 
to obtain. As an example, although the value of NMI for the 
DICE deception algorithm when considering communities 
returned by the dm detection algorithm is lower than that of 
dsaf, we observe that with the latter, a much larger value of 
the deception score was obtained (see Table 6). This reason-
ing is evident when considering the RND deception strategy, 
which adds and removes edges without any clear objective. 
In fact, while the NMI values are always above 0.5 the cor-
responding deception score values are very low.

The second observation is that low NMI values after 
applying deception in a way show that although not spe-
cifically designed to hide the whole community structure, 

Fig. 12   Running time (s) in medium networks
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deception techniques have effects not only on C  but also 
on the other communities. This comes as no surprise since 
hiding C  , that is, moving its members across communities, 
changes the structure of each community that releases or 
receives C  ’s members.

5.6.1 � Deception running time

Our last set of experiments was devoted to investigating the 
running times of both directed and undirected deception 
approaches. This will indicate whether considering edge 

directions brings an additional cost. Moreover, we also 
insert an asymptotic complexity analysis our novel decep-
tion strategies.

In this set of experiments for all approaches, we consid-
ered a budget of updates equal to the 60% of the number 
of edges in C  . Figures 12 and 13 show the running time 
for medium networks. Each column of the figures considers 
a detection approach. Moreover, in each chart, the x-axis 
represents a network. We observe that all approaches both 
directed and undirected run in a few seconds for the smaller 
networks (e.g., Freeman, Facebook). An exception is the 
modMin algorithm in the Facebook and Email networks 
when considering leiden and dm, respectively. We further 
investigated this behavior and hypothesized that it is difficult 
to exclude bridge edges from possible edge deletions. The 
same happens in the email network when considering lei-
den. We recall that both SAF and modMin try to exclude 
the deletion of internal bridge edges that would disconnect 
C .

In general, attacks on the output of leiden and dm 
appear to be the most costly in terms of running time. We 
also observe that directed approaches, especially dper, 
require more time than undirected ones in most cases. This 
comes as no surprise since, from the analysis conducted in 
this paper (Sect. 4), finding the best edge updates requires a 
more involved formula where the edge direction and in/out 
node degrees play a significant role.

Figure   14 reports running time on the largest net-
works. We observe that here the running time significantly 
increases; this is especially true for the GooglePlus net-
work and the leiden algorithm, where the dper algo-
rithm required almost 400 seconds to perform the updates. 
By further analyzing the numbers, we observed that for 
the largest network, that is, GooglePlus the number of 
updates to be performed was in the order of the hundreds. 
However, in reality, one can expect that communities that 
want to implement deception strategies would have a smaller 
size. This would be reasonable since coordinating among a 
large group of people can quickly become problematic; in 
fact, edge updates need to be performed in a real scenario by 
friending/unfriending or following/unfollowing other nodes.

Asymptotic complexity analysis. For the sake of com-
pleteness, Table 9 reports the asymptotic complexity of the 
deception approaches analyzed in the paper. Note that the 
asymptotic complexity is the same for the approaches run-
ning on directed and undirected networks. The complexity 
of DICE and RND is not reported in the table since, at each 
iteration, the update is selected randomly. Thus, the theo-
retical complexity only depends on the number of updates 
( � ) that have to be performed. In the case of modularity 
minimization (row 1 in Table 9) the initialization (corre-
sponding to the computation of � , � , and the (input/output) 
total degrees of the communities. Then, the best update to 

Fig. 13   Running time (s) in medium networks

Fig. 14   Running time (s) in large networks

Table 9   Asymptotic complexity analysis of the deception approaches 
for undirected and directed networks

Deception measure Asymptotic complexity

Modularity O(|E| + |V| + � ⋅ (k + |EC| + |VC|))
Safeness O(� ⋅ (|EC| + |VC|))
Permanence O(� ⋅ (|VC| + |EC|2))
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be performed can be computed in O(k + |EC| + |VC|) , where 
k is the number of communities found by the community 
detection algorithm and derives from the computation of 
the best inter-edge addition, while the term |EC| + |VC| is 
necessary to compute new bridge edges in C  if the per-
formed update is an intra-edge deletion. The asymptotic 
complexity of the safeness-based algorithm is dominated 
by the computation of the best � updates. Indeed, in this 
case, the initialization has a cost O(|EC| + |VC|) needed for 
the computation of the connected components of C  and the 
intra and inter (input/output) degree of the nodes of C  . Then, 
the cost of computing each update is O(|EC| + |VC|) , where 
the cost of computing the best inter-community addition 
is O(|VC|) (to find the node bringing the maximum safe-
ness gain). The cost of computing the best intra-community 
deletion is O(|EC| + |VC|) since it is dominated by the rec-
omputing of the new bridges after the deletion. Finally, the 
asymptotic complexity of the permanence-based algorithm 
is O(� ⋅ (|VC| + |EC|2)) (as reported in row 3 of Table 9). In 
this case the cost of the initialization is O(|VC| ⋅ |EC|)) to 
compute intra and inter (input/output) degrees and clustering 
coefficients. Moreover, each update can be computed with 
a cost of O(|VC| + |EC|2) , where the best intra-community 
edge addition and intra-community edge deletion can be 
computed with a cost O(|VC| ⋅ |EC|)) , dominated by the rec-
omputation of the clustering coefficient for each possible 
modification. The computation of the best inter-community 
edge addition can be computed in O(|VC|).

6 � Conclusions

Despite the plethora of approaches to discovering commu-
nities, there is not enough awareness that people can act 
strategically to evade such network analysis tools. This is 
particularly critical if who wants to evade such tools are 
malevolent users and who run the tools are police enforce-
ment. We introduced the problem of hiding a target com-
munity C  from detection algorithms in directed networks. 
This problem is interesting for two main reasons. First, sev-
eral real-world networks have edge directions. Therefore, 
discarding the directions would necessarily result in an 
information loss. This loss may affect community detection 
algorithms. This is why specific approaches to finding com-
munities in directed networks have been devised. Second, 
community deception was only studied in undirected net-
works. We showed that when throwing out edge direction 
information, the state of the art fails to reach a reasonable 
level of hiding of C  inside a community structure. We also 
showed that it is possible to restore performance similar to 
that obtained in the undirected scenario when considering 
direction-aware deception. Specifically, we presented three 

novel deception strategies. Our theoretical analysis shows 
that finding the best deception strategy in terms of edge 
updates is more involved because of the need to distinguish 
between incoming and outgoing edges for each node. Our 
extensive experimental evaluation indicates that deception in 
the directed case is feasible and strictly related to the number 
of novel communities introduced after applying a deception 
strategy. Moreover, directed deception is a bit more expen-
sive but still scalable with the size of the network in terms 
of running time.

There are a number of future research directions. The first 
is studying deception in the context of network embeddings. 
Indeed, besides traditional community detection techniques, 
several approaches perform community discovery via (node 
and possibly edge) embeddings. Existing deception tech-
niques are not suitable to work in such a setting. The main 
challenge here consists in the fact that while in a non-embed-
ding setting, one can study the impact of edge updates on 
some optimization functions (i.e., modularity minimization), 
understanding how updates reflect into the embedding space 
is not trivial.

Another exciting line of future research is the investiga-
tion of how deception and social bots (Khaund et al. 2022) 
can benefit from one another. Since social bots mimic the 
social behaviors of humans, one could think of using social 
bots to automatize the deception process. The analysis of 
deception as a cooperative and collective action (Yuce et al. 
2014) is also worthy of investigation.

Moreover, we are also interested in applying deception 
in practice. Indeed, our algorithmic techniques need to be 
mapped into real-world networks like Facebook or Twit-
ter. The challenge here is how to turn community deception 
into a collective effort from C  ’s members that, instructed 
by deception algorithms, rewire � updates according to a 
deception function � . Note that while community detection 
algorithms require complete network knowledge, deception 
algorithms should ideally only need to know C  ’s mem-
bers and their links. In a network like Facebook, intra-C  
(resp., inter-C  ) edge deletions can be simply implemented 
by “Unfriending” some C  ’s members (resp., external mem-
bers). In Twitter, the same behavior can be achieved by 
“Unfollowing” some C  ’s members (resp., external mem-
bers). As for additions, in Facebook, which requires the 
acceptance of friendship requests, an intra-C  edge addition 
would not represent a problem. Conversely, an inter-C  edge 
addition, which requires discovering new network members, 
can be implemented by picking the target node between col-
leagues, famous people, classmates, or even random people 
(by sending several friendship requests). This would reflect 
in just “Following” some network members on Twitter. 
Understanding how to implement these policies “silently” 
is undoubtedly challenging.
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