
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2022) 12:74
https://doi.org/10.1007/s13278-022-00896-7

ORIGINAL ARTICLE

Community deception: from undirected to directed networks

Valeria Fionda1 · Saif Aldeen Madi2 · Giuseppe Pirrò2 

Received: 6 March 2022 / Revised: 22 May 2022 / Accepted: 25 May 2022 / Published online: 6 July 2022
© The Author(s) 2022

Abstract
Community deception is about hiding a target community that wants to remain below the radar of community detection
algorithms. The goal is to devise algorithms that, given a maximum number of updates (e.g., edge additions and removal),
strive to find the best way to perform such updates in order to hide the target community inside the community structure
found by a detection algorithm. So far, community deception has only been studied for undirected networks, although
many real-world networks (e.g., Twitter) are directed. One way to overcome this problem would be to treat the network as
undirected. However, this approach discards potentially helpful information in the edge directions (e.g., A follows B does
not imply that B follows A). The aim of this paper is threefold. First, to give an account of the state-of-the-art community
deception techniques in undirected networks underlying their peculiarities. Second, to investigate the community deception
problem in directed networks and to show how deception techniques proposed for undirected networks should be modified
and adapted to work on directed networks. Third, to evaluate deception techniques both in undirected and directed networks.
Our experimental evaluation on a variety of (large) directed networks shows that techniques that work well for undirected
networks fail short when directly applied to directed networks, thus underlying the need for specific approaches.

1  Introduction

Complex network analysis is a powerful technique to model
and analyze interactions between entities in complex sys-
tems (e.g., protein networks, social networks, signaling net-
works) (Strogatz 2001). One of the major tasks that can be
performed over these networks is community detection, that
is, the task of identifying a (non-overlapping) partition of
nodes of the network, providing some insights about their
structure (Fortunato and Hric 2016). Network analysis tools
are routinely used by a variety of actors from data analysts
that are interested, for instance, in suggesting items to buy
to the users of a network. The problem arises when these

spontaneously shared pieces of information are improperly
used, as in the Cambridge Analytica case, where private per-
sonal information about users and their social relationships
were used without their consent, or when information about
communities is used to block forms of self-organization
(King et al. 2013). Another example is the case of Bitcoin
trading, where communities were used to identify multiple
addresses belonging to the same user (Remy et al. 2017).

Hence, although community detection is an essential tool
for discovering functional building blocks within networks,
and to provide insights into the dynamics or modes of for-
mation of networks (Leicht and Newman 2008), the ques-
tion concerning what disclosing the community structure of
networks can cause to the users remains primarily unsolved.
The research community started to look into this problem
giving rise to a new strand of research dubbed as commu-
nity hiding (Waniek et al. 2018) or community deception
(Fionda and Pirrò 2018). The general idea is to promote
(simple) techniques that can be used by the participants to a
community that wants to remain below the radar of network
analysis techniques like community detection. This prob-
lem is particularly critical if who wants to evade community
detection tools are malevolent users (e.g., criminals or ter-
rorists) and who want to identify the communities are police
enforcement. More formally, given a target community C

 *	 Giuseppe Pirrò
	 pirro@di.uniroma1.it

	 Valeria Fionda
	 valeria.fionda@unical.it

	 Saif Aldeen Madi
	 madi@di.uniroma1.it

1	 Department of Mathematics and Computer Science,
University of Calabria, via Pietro Bucci 30B, 87036 Rende,
CS, Italy

2	 Department of Computer Science, Sapienza University
of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

http://orcid.org/0000-0002-7499-5798
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-022-00896-7&domain=pdf

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 2 of 24

inside a network G and a budget � of updates (e.g., edge
additions and removals), deception techniques investigate
the best way to perform such updates in a way that C can
escape community detection algorithms. To find the best
edge updates, some function �G(C) like modularity (New-
man and Girvan 2004), safeness (Fionda and Pirrò 2018),
permanence (Mittal et al. 2021) is optimized. The desid-
eratum is that, after applying the edge updates, the level of
hiding of C inside a community structure (set of communi-
ties) C = {C1,C2, ...Ck} found on the updated network G′
will increase.

So far, community deception has only been studied for
undirected networks, although many real-world networks
are directed. A notable example is Twitter, where users can
follow other users. When user A follows user B, an edge
is established from A to B. Several studies on community
detection (e.g., Leicht and Newman 2008) have shown that
edge directions are essential to discovering meaningful com-
munities in directed networks. The first challenge that we
face in this paper is how to devise deception techniques that
are aware of edge directions.

One way to approach this challenge would be to apply
deception techniques devised for undirected networks to
directed networks by simply ignoring edge directions. How-
ever, this approach discards potentially helpful information
contained in the edge directions (Leicht and Newman 2008;
Malliaros and Vazirgiannis 2013), such as the fact that if
there is an edge indicating that A follows B, this does not
imply that also B follows A unless there is also the edge
from B to A. Therefore, in this paper, we study how current
deception optimization measures can be recast to the case of
directed networks. Specifically, we study modularity, safe-
ness, and permanence through the lens of edge directions by
taking into account the characteristics of directed networks.
Returning to the above example, if A is a user with a few
followers but follows many other users, one will naturally
expect that the edge from A to B is more likely than that
from B to A. Thus when this latter edge is present, it has to
be considered differently from the edge from A to B.

From a practical perspective, users who want to use these
deception tools still need to figure out their peculiarities. The
second challenge that we face in this paper is to offer an
overview of the performance of the state-of-the-art decep-
tion techniques on a variety of networks. We analyze the
state of the art in terms of: (i) ability to quantify the level
of hiding of C inside C = {C1,C2, ...Ck} ; (ii) scalability in
terms of running time; (iii) practical applicability, that is,
how to implement the updates in a real network. As a by-
product, we make available the implementation of these
techniques in a library available online1.

1.1 � Contributions and outline

This paper studies the community deception problem from
two different angles. On the one hand, we provide a sys-
tematic analysis of the state-of-the-art community decep-
tion techniques in undirected networks. On the other hand,
we study the novel problem of community deception in
directed networks. Specifically, we make the following main
contributions:

1.	 A comprehensive overview of deception techniques in
undirected networks under a common framework.

2.	 A study of community deception in directed networks.
This problem has not been studied before. We show
that dealing with edge directions brings some non-triv-
ial issues since it becomes more involved to tell apart
whether a certain category of edge update is conveni-
ent deception-wise. In particular, edge directions bring
a further intrinsic difficulty toward deception since, in
directed networks, only one direction of edges can be
managed, that is, edges that C  ’s members can directly
add or delete.

3.	 An experimental evaluation along three main dimen-
sions: performance in terms of deception score, pres-
ervation of the community structure, and running time.
As a by-product, we make available a modular Python
library where new deception techniques can be easily
plugged.

This paper extends a previous paper published in CNA 2021
Fionda and Pirrò (2022). The present paper substantially dif-
fers in the following main respects. We expanded the intro-
duction to the community deception problem. We introduce
the novel problem of community deception in directed net-
works (Sect. 4). We conducted a completely new experimen-
tal evaluation for directed networks, including three novel
deception techniques as well as community detection algo-
rithms specifically devised for directed networks.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the community deception problem. Sec-
tion 3 reviews the state-of-the-art community deception
techniques in undirected networks. Section 4 introduces the
community deception problem in directed networks. Sec-
tion 5 reports on an experimental evaluation. We conclude
in Sect. 6.

2 � Background

The goal of community deception is to design algorithms
to deceive community detection algorithms. In particular,
given a community C , the goal is to determine a set � of

1  https://​commu​nityd​ecept​ion.​wordp​ress.​com/.

https://communitydeception.wordpress.com/

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 3 of 24  74

edge updates so that C will not be discovered by community
detection algorithms. A network G = (V ,E) is an undirected
graph that includes a set of n:=|V| vertices and m:=|E| edges.
We denote by deg(u)=|{(u, v) ∈ E}| the degree of u. The set
of communities (i.e., a community structure), discovered by
some community detection algorithm AD is denoted by C
={C1,C2, ...Ck }; Ci ∈ C denotes the i-th community.

Given a community Ci , we distinguish between intra-
community edges and inter-community edges. The set of
intra-community edges E(Ci) is the set of edges of the form
(u, v) ∶ u, v ∈ Ci , where both endpoints are members of Ci .
The set of inter-community edges Ẽ(Ci) is the set of edges of
the form (u, v) ∶ u ∈ Ci, v ∉ Ci , where one of the endpoint is
external to Ci . Given a community Ci and a node u ∈ Ci , we
indicate by E(Ci, u) (resp., Ẽ(Ci, u) ) the set of intra-commu-
nity (respectively, inter-community) edges of u. The degree
of a community is denoted by: �(Ci)=

∑
u∈Ci

�(u) , where �(u)
is the degree of node v. Given a network G = (V ,E) , we
indicate by E+ and E− the set of edge additions and dele-
tions, respectively, to be applied on G . Table 1 summarizes
the notation discussed above.

2.1 � Problem statement

Figure 1 reports a general deception framework. Given a net-
work G, the Detector module (implementing a community
detection algorithm) analyzes G to discover communities.
The underlying assumption that stresses the need for decep-
tion techniques is that disclosing (part of) C leads to privacy
leaks and should be avoided. The Deceptor module (imple-
menting a community deception algorithm) analyzes the net-
work G and suggests a set of edge rewiring involving nodes
in C that help C  ’s members to be hidden as a group. To find
the best set of edge updates, the Deceptor is based on some
function to be optimized such as modularity (minimization)
as in the case of DICE Waniek et al. (2018), node safeness
(maximization) as for SAFDEC (Fionda and Pirrò 2018), or
permanence (maximization) as for NEURAL (Mittal et al.
2021). After applying the modifications suggested by the
Deceptor and obtaining a new network G′ , the desideratum
is that the Detector by analyzing G′ is no more able to dis-
cover C  ; ideally because C  ’s members are scattered among
different communities. In order to quantify the privacy leak

Table 1   Notation table undirected deception techniques

Symbol Meaning Formula

� Product of the squared total degree of a community structure ∑
Ci∈C

�(C
i
)2

� Sum of the intra-edges of a community structure
∑

Ci∈C
�E(C

i
)�

m Number of edges in the network G = (V ,E) |E|
�(C

i
) Total degree of community C

i

∑
u∈Ci

�(u)

�(u) Degree of node u |{(u, v) ∶ (u, v) ∈ E}

V
u(C) Set of nodes reachable from u passing only via nodes in C  , excluding u itself

E(C
i
) Set of intra-community edges of community C

i
{(u, v) ∶ u, v ∈ C

i
}

Ẽ(C
i
) Set of inter-community edges of community C

i
{(u, v) ∶ u ∈ C

i
, v ∉ C

i
}

E(u,C
i
) Set of intra-community edges of node u belonging to the community C

i
{(u, v) ∶ u, v ∈ C

i
}

Ẽ(u,C
i
) Set of inter-edges of node u belonging to the community C

i
{(u, v) ∶ u ∈ C

i
, v ∉ C

i
}

Fig. 1   Community Deception: a
general framework

Detector

Deceptor

Deception
Evaluator

Detector Deception
Evaluator

G

Undirected or
Directed
Network

Communities

Target
Community

Updated
Undirected or Directed

Network

Communities

Target
Community

Without Deception

With Deception

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 4 of 24

caused by the Detector, the Deception Evaluator module
leverages some score such as the Deception Score (Fionda
and Pirrò 2018) reported in Definition 1.

Definition 1  (Deception Score). Given a community C and
a community structure C = {C1,C2, ...Ck} found by some
Detector, the community deception score is defined as:
H(C,C) =

where |S(C)| is the number of connected components in the
s u b g r a p h i n d u c e d b y C

′s m e m b e r s ;
R(Ci,C) =

#C’s members in Ci found by AD

|C| ∀Ci ∈ C is the recall of
the Detector AD wr t a target community C  ;
P(Ci,C) =

#C�s members in Ci found by AD

|Ci| ∀Ci ∩ C ≠ � i s t he
precision.

One way to approach the community deception problem
would be to work directly with the deception score H  . How-
ever, this would require knowing how the community detec-
tion algorithm AD , that generated the community structure
C = {C1,C2, ...Ck} used in the computation of H  , works.
What is needed is a way to increase H by treating a commu-
nity detection algorithm AD as a black box. One can model
community deception in terms of the following optimization
problem to tackle this challenge.

Problem 2  [Community Deception] Given a network
G=(V, E), a target community C ⊆ V and a budget � of
updates, solving the community deception problem amounts
at solving the following optimization problem:

where G′=(V ,E�) and E′=(E ∪ E+) ⧵ E− and:
E+ ⊆ {(u, v) ∶ u ∈ C ∨ v ∈ C, (u, v) ∉ E}   ,

E− ⊆ {(u, v) ∶ u ∈ C ∨ v ∈ C, (u, v) ∈ E}   , a n d
|E+| + |E−| ≤ � .

In the above formulation, �(G,G�,C) is a function that
models a community deception algorithm while the budget
� limits the number of possible updates. In particular, the
function �(G,G�,C) computes a numerical value indicating
the improvement in the network G′ (obtained by applying �
modifications) in terms of the hiding of nodes in C  . Ideally,
the argmax function selects the network G′ (and, thus a set

�
1 −

�S(C)� − 1

�C� − 1

�
×

⎛
⎜⎜⎜⎝
1

2

⎛
⎜⎜⎜⎝
1 −max

Ci∈C̄
{R

�
Ci, C

�
} +

1

2

⎛
⎜⎜⎜⎝
1 −

∑
Ci∩C≠�

P(Ci, C)

�Ci ∩ C ≠ ��
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

argmax
G�

{�(G,G�,C)}

of � modifications) where the level of hiding is maximized.
The crucial difference between the deception function � and
the deception score H is that the former picks the � changes
that maximize � , while H quantifies (in an axiomatic way)
the desirable property that the target community C is hidden
inside C = {C1,C2, ...Ck} (Fionda and Pirrò 2018).

3 � Related work

Community deception (Fionda and Pirrò 2018) or hiding
(Waniek et al. 2018) studies how to hide a target community
C inside a community structure from community detection
algorithms. The idea is to find the best (deception-wise) set
of edge updates by optimizing some functions. In what fol-
lows, we review the state of the art. The notation for the
various deception techniques discussed in this section is
summarized in Table 1.

3.1 � Modularity‑based deception

Waniek et al. (2018) and Fionda and Pirrò (2018) devise
deception optimization functions based on (Newman 2006).

Definition 3  [Modularity] Given a network G , the modu-
larity of the partition of this network into communities C
={C1,C2, ...Ck } is given by:

where � =
∑

Ci∈C
�E(Ci)� and � =

∑
Ci∈C

�(Ci)
2.

The intuition behind using modularity for deception can
be summarized as follows: community detection quality is
related to the value of modularity, the higher, the better.
Then, by minimizing modularity wrt edge updates per-
formed by C  ’s members should lead community detection
algorithms astray. In particular modularity-based deception
maximizes the modularity loss ML=MG(C) −MG� (C).

In what follows, we focus on the approach described in
Fionda and Pirrò (2018) since Waniek et al.’s strategy does
not always bring a modularity loss and thus can fail to con-
tribute to the hiding of the members of C inside the com-
munity structure.

(1)MG(C) =
�

m
−

�

4m2

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 5 of 24  74

Intra-edge addition. The modularity loss of an intra-com-
munity edge addition (u, w) s.t. u,w ∈ Ci and {u, v} ∩ C ≠ �
giving G� = (V ,E ∪ {(u,w)}) is the following:

Inter-edge addition. The modularity loss of an inter-commu-
nity edge addition (u, w): u ∈ Ci ∩ C,w ∈ Cj , with Cj ≠ Ci
giving G� = (V ,E ∪ {(u,w)}) brings the following potential
modularity loss:

Intra-edge deletion. The modularity loss of an intra-edge
deletion (u, w) s.t. u,w ∈ Ci and {u, v} ∩ C ≠ � giving
G� = (V ,E ⧵ {(u,w)}) is the following:

Inter-edge deletion. The modularity loss of an inter-commu-
nity edge deletion (u, w): u ∈ Ci ∩ C,w ∈ Cj , with Cj ≠ Ci
giving G� = (V ,E ⧵ {(u,w)}) is the following:

3.2 � Safeness‑based deception

Safeness-based deception (Fionda and Pirrò 2018) has been
introduced to correct for some drawbacks of modularity-
based deception. In particular, with modularity-based decep-
tion, one needs to know the entire community structure to
pick the best edge update (that depends on the degree of the
community toward which a new edge should be inserted).
Safeness-based deception only requires information that can
be obtained from C  ’s members.

Definition 4  (Node Safeness) Let G = (V ,E) be a network,
C ⊆ V a community, and u ∈ C a member of C  . The safe-
ness of u in G is defined as:

where Vu(C) ⊆ C is the set of nodes reachable from u pass-
ing only via nodes in C  , E(u,C) (resp., Ẽ(u,C) ) is the set of
intra-C (resp., inter-C  ) edges, 𝜏,𝜒 > 0 , and � + �=1.

MG(C) −MG� (C) =
� − m

m(m + 1)
+

4m2(�(Ci) + 1) − �(2m + 1)

4m2(m + 1)2
.

M
G
(C) −M

G� (C) =
�

m(m + 1)

+
2m2(�(C

i
) + �(C

j
) + 1) − �(2m + 1)

4m2(m + 1)2

MG(C) −MG� (C) =
� − m

m(m − 1)
+

�(2m + 1) − 4m2(�(Ci) − 1)

4m2(m − 1)2
.

M
G
(C) −M

G� (C) =
�(2m − 1) − 2m2(�(C

i
) + �(C

j
) + 1)

4m2(m − 1)2

−
�

m(m − 1)

(2)�(u,C) ∶= �
|Vu(C)| − |E(u,C)|

|C| − 1
+ �

|Ẽ(u,C)|
�(u)

Definition 5  (Community Safeness) Given a network
G = (V ,E) and a community C ⊆ V  , the safeness of C is
defined as: �(C)=

∑
u∈C �(u,C)∕�C�

This approach instantiates the function � to be the safe-
ness gain �C=�(C�)-�(C) . It adopts a greedy strategy that,
at each step, chooses the edge update that gives the highest
�C  . Therefore, the goal is to understand what kind of update
is more profitable safeness-wise (Fionda and Pirrò 2018).

Intra-edge addition. An intra-C edge addition (u, w) s.t.
{u,w} ⊂ C can increase the safeness of the community only
if the edge connects previously disconnected portions of C  .
The possible safeness gain is:

where Cu ( Cw , respectively) is the connected component
of C to which u (w, respectively) belongs before the edge
addition.

Inter-edge addition. The best inter-C edge addition (u, w)
s.t. u ∈ C and w ∉ C giving G′=(V ,E ∪ {�uw}) is given by
nodes u ∈ argmin{

|Ẽ(u,C)|
�(u)

} . The safeness gain is:

Intra-edge deletion. Intra-C edges deletions do not always
correspond to a safeness gain. The best possible intra-C
edge deletion (u, w): u,w ∈ C safeness gain occurs when
the value of the following formula is maximum.

Inter-edge deletion. An inter-C edge deletion (u, w): u ∈ C,w
∉ C always corresponds to a safeness decrease.

3.3 � Permanence‑based deception

Mittal et al. (2021) devised NEURAL, a permanence-based
deception strategy, which aims at reducing permanence of
the network wrt C  . Permanence (2016) is a vertex-centric
metric that quantifies the containment of a node u in a net-
work community C:

∑
v∈Cu⧵{u}

�
|C

w
|

2(|C| − 1)
+

∑
v∈Cw⧵{w}

�
|C

u
|

2(|C
w
| − 1)

+ �
|C

w
| − 1

2(|C| − 1)
+ �

|C
u
| − 1

2(|C| − 1)
+

− �
|Ẽ(u,C)|

2�(u)(�(u) + 1)
− �

|Ẽ(w,C)|
2�(w)(�(w) + 1)

�
|Ẽ(u,C)|
�(u) + 1

− �
|Ẽ(u,C)|
�(u)

�
|Ẽ(u,C)|

2�(u)(�(u) − 1)
+ �

|Ẽ(w,C)|
2�(w)(�(w) − 1)

(3)Perm(u,G) =
|E(u,C)|
Emax(u)

×
1

�(u)
− (1 − Cin(u))

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 6 of 24

where Emax(u) is the maximum number of connections of u
to the same neighboring communities, Cin(u) the fraction of
actual and possible number of edges among the internal
neighbors of u. The permanence for a network G is then
defined as Perm(G) =

∑
u∈V Perm(u)

�V�  . NEURAL instantiates the
f u n c t i o n � t o b e t h e p e r m a n e n c e l o s s
Pl = Perm(G) − Perm(G�).

Intra-edge addition. An intra-community edge addi-
tion (u, w) s.t. u,w ∈ Ci and {u, v} ∩ C ≠ � does not always
ensure Pl > 0. The possible permanence loss for node u (a
similar loss can be also computed for node w) is:

Inter-edge addition. Adding an inter-community edge (u, w)
where u ∈ Ci ∩ C and w ∈ Cj , such that Cj ≠ Ci , always
results in Pl > 0. The loss is more if Cj is the community
that provides the maximum external pull for node u. In such
a case, the permanence loss is:

Intra-edge deletion. An intra-community edge deletion
(u, w) s.t. u,w ∈ Ci and {u, v} ∩ C ≠ � , always gives Pl > 0

Inter-edge deletion. Deleting an inter-community edge
(u, w) where u ∈ Ci ∩ C and w ∈ Cj such that Cj ≠ Ci never
results in Pl >0.

Other pieces of work (e.g., Nagaraja 2010; Magelinski
et al. 2021; Liu et al. 2019) have studied a different problem,
that is hiding (or at least changing) the whole community
structure instead of a target community. Another line of
research (e.g., Jia et al. 2020) has studied countermeasures,
that is, the robustness to attacks.

We observe that all these pieces of related work have
focused on undirected networks, although many real-world
networks (e.g., social networks like Twitter) are directed.
As pointed out by fundamental studies (e.g., Leicht and
Newman 2008; Malliaros and Vazirgiannis 2013; Fortu-
nato 2010), edge direction can play a fundamental role in
revealing more accurate communities in networks. Moreo-
ver, devising direction-oblivious deception techniques (e.g.,
treating directed networks as undirected) to escape from
direction-aware detection algorithms like leiden (Traag
et al. 2019) may undermine the overall goal of protecting a
community in a directed network.

4 � Deception in directed networks

In this section, we study the community deception problem in
directed networks. Although many real-world networks (e.g.,
Twitter) are intrinsically directed, state-of-the-art deception

E(u,Ci) ⋅ (E(u,Ci) + 1)

Emax(u) ⋅ �(u) ⋅ (�(u) + 1)
+ Cin(u) − C�

in
(u)

E(u,Ci)(1 + Emax(u) + �(u))

Emax(u) ⋅ �(u) ⋅ (Emax(u) + 1) + (�(u) + 1)

techniques have only focused on undirected networks. One
way to solve the problem would be to ignore edge directions
simply. However, this is limiting for at least two reasons. First,
meaningful information about edge direction is discarded. In a
network like Twitter, the fact that A follows B does not imply
that B follows A. Second, as community detection has evolved
to take into account edge directions (e.g., Leicht and Newman
2008; Traag et al. 2019), we believe that community deception
should evolve to play a fairer game.

By referring to the framework reported in Fig. 1, in this
new setting, the input network G is now a directed network,
the Detector module can implement specific community
detection algorithms proposed to work on directed networks,
and the Deceptor will take edge direction into account when
suggesting a set of directed edge updates. Therefore, the
Deceptor can only consider edge additions and deletions
whose source node is in the target community.

We show how to derive the counterpart for each of the
three main deception strategies available for undirected
networks in the directed case. Moreover, to understand the
importance of taking edge directions into account and the
need for introducing deception approaches specifically tai-
lored to work on directed networks, we will discuss the net-
work reported in Fig. 2. The figure reports the same network
when edge direction is considered (Fig. 2(a)) and when it is
neglected (Fig.2(b)). We suppose that the Detector has iden-
tified two communities and the target community is C1 = { 0,
1, 2, 3, 4 } and it has been completely disclosed.

4.1 � Directed modularity‑based deception

In this section, we investigate how the modularity-based
deception analyzed in Section 3.1 can be adapted to work
on directed networks. In particular, we consider a slightly
modified version of the metric described by Leicht and New-
man (2008). The notation used to define directed modularity
is summarized in Table 2.

Definition 6  Let G = (V ,E) be a directed network, the
directed modularity of the partition of this network into
communities C={C1,C2, ...Ck } is given by:

81

(a) (b)

0

2

3
4

C1C1 C2C2

5 6

7

9

10

11

81

0

2

3
4

C1C1 C2C2

5 6

7

9

10

11

Fig. 2   Example of a directed network (a) and its undirected version
(b)

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 7 of 24  74

w h e r e � =
∑

Ci∈C
�E(Ci)�  , m = |E|  , a n d �⃗𝛿

= �o ⋅ �i =
∑

Ci∈C
�o(Ci)⋅ ∑

Ci∈C
�i(Ci) =

∑
Ci∈C

∑
u∈Ci

�o(u) ⋅
∑

Ci∈C

∑
u∈Ci

�i(u).

In terms of the general deception formulation (see Defini-
tion 2) the function � can be instantiated to be the directed
modularity loss �������⃗ML=����⃗MG(C) −

����⃗MG� (C) . We will analyze
the impact of the different types of edge updates on the
directed modularity loss.

Example 7  Consider the network in Fig. 2. The directed
modularity of the network in Fig. 2(a) is:

If we consider now its undirected version, reported in
Fig. 2(b), we obtain the following modularity score:

From this simple example, it is clear how neglecting edge
directions can significantly change the sense of “goodness”
assigned to a community structure. Indeed, in the case of
directed modularity, the obtained value is lower than 0, indi-
cating the absence of a community structure. In contrast, in

����⃗MG(C) =
𝜂

m
−

�⃗𝛿

m2

����⃗M
G
(C) =

𝜂

m
−

�⃗𝛿

m2
=

|E(C1)|+ |E(C2)|
21

−

(
𝛿
o
(C1) + 𝛿

o
(C2)

)
⋅

(
𝛿
i
(C1) + 𝛿

i
(C2)

)
212

=
6 + 10

21
−

(9 + 11) ⋅ (7 + 13)

212

=
16

21
−

20 ⋅ 20

212
= −0.145

MG(C) =
�

m
−

�

4m2
=

|E(C1)|+ |E(C2)|
21

−
�(C1)

2 + �(C2)
2

4 ⋅ 212

=
6 + 10

21
−

162 + 252

4 ⋅ 212
=

16

21
−

881

4 ⋅ 212
= 0.262

the undirected case, the value is higher than 0, indicating the
possible presence of a community structure.

4.1.1 � Intra‑edge addition

An intra-community edge addition (u, w) s.t. u,w ∈ Ci
and {u, v} ∩ C ≠ � g iv ing an updated network
G� = (V ,E ∪ {(u,w)}) does not always correspond to a
directed modularity loss. Indeed, the modularity loss is:

With few algebraic manipulations, we obtain the following
inequality �������⃗ML < 1

(m+1)2

�
𝜂 − m+ 𝛿

o
(C

i
)+ 𝛿

i
(C

i
) −

2m+1

m2

∑
Cj∈C̄

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

�
 .

Since the last term in the bracket is negligibly small, we can
conclude that �������⃗ML is negative if � − m ≥ �o(Cj)+ �i(Ci).

4.1.2 � Inter‑edge addition

An inter-community edge addition (u, w) s.t. u ∈ Ci ∩ C and
w ∈ Cw ≠ Ci giving an updated network G′=(V ,E ∪ {(u,w)})
does not always correspond to a directed modularity loss.
Indeed, the directed modularity loss is:

�������⃗ML= ����⃗M
G
(C) − ����⃗M

G� (C)

=

[
𝜂

m
−

1

m2

(
𝛿
o
(C

i
) ⋅ 𝛿

i
(C

i
)+

∑
Cj∈C̄⧵{Ci}

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

)]
+

−

[
𝜂 + 1

m + 1
−

1

(m + 1)2(
(𝛿

o
(C

i
)+ 1)(𝛿

i
(C

i
)+ 1) +

∑
Cj∈C̄⧵{Ci}

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

)]
=

=
m − 𝜂

m(m + 1)
+

1

m2(m + 1)2[
m

2(𝛿
o
(C

i
) + 𝛿

i
(C

i
)+ 1) − (2m+ 1)

∑
Cj∈C̄

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

]

Table 2   Notation table for
directed modularity

Symbol Meaning Formula

�⃗𝛿 Product of the total output degree and total input degree of a
community structure

�⃗𝛿 = 𝛿
o
⋅ 𝛿

i

�
o Total output degree of a community structure C

∑
Ci∈C

�
o
(C

i
)

�
i Total input degree of a community structure C

∑
Ci∈C

�
i
(C

i
)

�
o
(C

i
) Total output degree of community C

i

∑
u∈Ci

�
o
(u)

�
i
(C

i
) Total input degree of community C

i

∑
u∈Ci

�
i
(u)

�
o
(u) Output degree of node u |{(u, v) ∶ (u, v) ∈ E}|

�
i
(u) Input degree of node u |{(v, u) ∶ (v, u) ∈ E}|

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 8 of 24

By some algebraic manipulation, this can be reduced to:

Then, we can conclude that �������⃗ML is positive if and only if the
term inside square brackets is positive. That is if the follow-
ing inequality holds:

4.1.3 � Intra‑edge deletion

An intra-community edge deletion (u, w) s.t. u,w ∈ Ci
and {u, v} ∩ C ≠ � g iv ing an updated network
G� = (V ,E ⧵ {(u,w)}) does not always correspond to a
directed modularity loss. Indeed, the modularity loss is:

With few algebraic manipulations, we can conclude that
�������⃗ML > 1

(m−1)2

(
m − 𝜂+ 1 − 𝛿o(Ci) − 𝛿i(Ci)

)
 . Such inequality

shows that �������⃗ML will be positive if the term inside the brack-
ets is positive and thus if m − � ≥ �o(Ci)+ �i(Ci) − 1.

�������⃗ML =
𝜂

m
−

1

m2

((
𝛿
o
(C

i
)𝛿

i
(C

i
)
)
+
(
𝛿
o
(C

w
)𝛿

i
(C

w
)
)

+
∑

Cj∈C̄⧵{Ci,Cw}

𝛿
o
(C

j
)𝛿

i
(C

j
)

)
+

−

[
𝜂

m + 1
−

1

(m + 1)2(
(𝛿

o
(C

i
)+ 1)𝛿

i
(C

i
) + 𝛿

o
(C

w
)(𝛿

i
(C

w
)+ 1)

+
∑

Cj∈C̄⧵{Ci,Cw}

𝛿
o
(C

j
)𝛿

i
(C

j
)

)]

�������⃗ML=
1

m2(m + 1)2

[
𝜂(m2

+ m)+ m
2
(
𝛿
i
(C)

+ 𝛿
o
(C

w
)
)
−
(
2m+ 1

) ∑
Cj∈C̄

𝛿
o
(C

j
)𝛿

i
(C

j
)

]

𝜂(m2+ m)+ m2
[
𝛿i(Ci)+ 𝛿o(Cw)

]
≥
(
2m+ 1

) ∑
Cj∈C̄

𝛿o(Cj)𝛿i(Cj)

�������⃗ML = ����⃗MG(C) −
����⃗MG� (C) =

[
𝜂

m
−

1

m2

(
𝛿o(Ci) ⋅ 𝛿i(Ci)+

∑
Cj∈C̄⧵{Ci}

𝛿o(Cj) ⋅ 𝛿i(Cj)

)]
+

−

[
𝜂 − 1

m − 1
−

1

(m − 1)2

(
(𝛿o(Ci) − 1)(𝛿i(Ci) − 1) +

∑
Cj∈C̄⧵{Ci}

𝛿o(Cj) ⋅ 𝛿i(Cj)

)]
=

=
m − 𝜂

m(m − 1)
+

1

m2(m − 1)2

[
− m2(𝛿o(Ci) + 𝛿i(Ci) − 1) + (2m − 1)

∑
Cj∈C̄

𝛿o(Cj) ⋅ 𝛿i(Cj)

]

4.1.4 � Inter‑edge deletion

An inter-community edge deletion (u, w) s.t. u ∈ Ci ∩ C and
w ∈ Cw ≠ Ci giving an updated network G′=(V ,E ⧵ {(u,w)})
does not always correspond to a directed modularity loss.
Indeed, the modularity loss is:

By looking at the above formula, we can conclude that �������⃗ML
is negative if the term inside the square bracket is negative,
that is:

4.2 � Directed Safeness‑Based Deception

Starting for the Safeness defined for undirected networks

(see equation 2 and equation 5) we can study safeness in
directed networks. The notation used to define directed safe-
ness is summarized in Table 3.

We start by defining the safeness of a node in the directed
case.

�������⃗ML = ����⃗M
G
(C) − ����⃗M

G� (C)

=

[
𝜂

m
−

1

m2

(∑
Cj∈C̄

𝛿
o
(C

j
) ⋅ 𝛿

i
(C

j
)

)]
+

−

[
𝜂 − 1

m − 1
−

1

(m − 1)2(
(𝛿

o
(C

i
) − 1)𝛿

i
(C

i
) + 𝛿

o
(C

w
)(𝛿

i
(C

w
) − 1)

+
∑

Cj∈C̄⧵{Ci,Cw}

𝛿
o
(C

j
)𝛿

i
(C

j
)

)]

=
1

m2(m − 1)2

[
− 𝜂m2 + 𝜂m − m

2𝛿
i
(C

i
)

− m
2𝛿

o
(C

w
) + (2m − 1)

∑
Cj∈C̄

𝛿
o
(C

j
)𝛿

i
(C

j
)

]

−𝜂m2 + 𝜂m − m2𝛿i(Ci) − m2𝛿o(Cw) + (2m − 1)
∑
Cj∈C̄

𝛿o(Cj)𝛿i(Cj) < 0.

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 9 of 24  74

Definition 8  Consider a directed network G = (V ,E) , a com-
munity C ⊆ V  , and a node u ∈ C  . The directed safeness of
u in G is defined as:

The above formula split the two components of undi-
rected safeness to take into account edge directions. Indeed,
the Vu(C) of the undirected case is split into two terms Vu

o
(C)

and Vu
i
(C) that consider the portion of nodes in C that can

be reached from u via directed paths originating from u
and directed paths terminating in u, respectively. Similarly,
Eo(u,C) ( Ei(u,C) , respectively) indicates the set of incoming
(outgoing, respectively) edges linking u to other members
of C  ; Ẽo(u,C) ( ̃Ei(u,C) , respectively) indicates the set of
incoming (outgoing, respectively) edges linking u to nodes
not in C  ; and, �o(u) ( �i(u) , respectively) indicates the outgo-
ing (incoming, respectively) degree of u.

Example 9  Consider again the network reported in Fig. 2 and
let � = � =

1

2
 . To discuss safeness, we will focus on node

1; in the directed network, it is connected by two outgoing
edges to 2 and 8 and by three incoming edges from nodes 0,
3, and 5. Then, if we compute the directed safeness score of
node 3, we obtain the following:

�⃗𝜎(u,C) ∶=𝜏

(|Vu

o
(C)| − |E

o
(u,C)|)+ (|Vu

i
(C)| − |E

i
(u,C)|)

2 ⋅ (|C| − 1)

+ 𝜒

(
|�E

o
(u,C)|
𝛿
o
(u)

+
|�E

i
(u,C)|
𝛿
i
(u)

)

If we compute the safeness score of node 1 on the undirected
version of the network, we obtain:

On the one hand, in the directed version of the network,
node 1 can reach all the community nodes via outgoing and
incoming paths. On the other hand, one out of the three
incoming edges of node 1 is an inter-community edge; and
one of the two outgoing edges is an inter-community edge.
When it comes to the undirected version of the network, it
does not matter the direction in which the information can
be transmitted; all edges are treated in the same way mean-
ing that node 1 can reach all the other four nodes in C1 by
mean of its three intra-community edges and has two out
of five inter-community edges. This causes the decrease of
the safeness score from 0.73 to 0.325, meaning node 1 is
more subjected to be discovered as a member of C1 in the
undirected version w.r.t the directed one.

Similar to the case of undirected networks, the directed
community safeness can be defined by averaging the directed
node safeness of the nodes in C .

Definition 10  Given a directed network G = (V ,E) and a
community C ⊆ V , the directed safeness of C in G is defined
as:

In terms of the general deception formulation (see Defi-
nition 2) this approach instantiates the function � to be the
directed safeness gain �⃗𝜉C= �⃗𝜎(C�)- �⃗𝜎(C) . Then, in the follow-
ing, we will discuss the impact of the different types of edge
updates on the directed safeness score.

�⃗𝜎(3,C) ∶=
1

2

(|V1

o
(C)| − |E

o
(1,C)|)+ (|V1

i
(C)| − |E

i
(1,C)|)

2 ⋅ (|C| − 1)

+
1

2

(
|�E

o
(1,C)|
𝛿
o
(1)

+
|�E

i
(1,C)|
𝛿
i
(1)

)
=

=
(4 − 1) + (4 − 2)

2 ⋅ 2 ⋅ 4
+

1

2

(
1

2
+

1

3

)

= 0.313 + 0.417 = 0.73

�(1,C) ∶ =
1

2

|V1(C)| − |E(1,C)|
|C| − 1

+
1

2

|Ẽ(1,C)|
�(1)

=
4 − 3

2 ⋅ 4
+

2

2 ⋅ 5
= 0.125 + 0.2 = 0.325

(4)�⃗𝜎(C) =
∑
u∈C

�⃗𝜎(u,C)∕|C|

Table 3   Notation table for directed safeness

Symbol Meaning Formula

V
u

o
(C) Nodes in C (excluding u itself) reachable

from u:
(i) passing only via nodes in C and
(ii) following directed paths originating

from u
V
u

i
(C) Nodes in C (excluding u itself) that can

reach u:
(i) passing only via nodes in C and
(ii) by following directed paths terminat-

ing in u
E
o
(u,C) Outgoing edges of u to members of C {(u, v) ∣ v ∈ C}

E
i
(u,C) Incoming edges of u from members of C {(v, u) ∣ v ∈ C}

Ẽ
o
(u,C) Outgoing edges of u to non members of C {(u, v) ∣ v ∉ C}

Ẽ
i
(u,C) Incoming edges of u from non members

of C
{(v, u) ∣ v ∉ C}

�
o
(u) Output degree of node u |{(u, v)}|

�
i
(u) Input degree of node u |{(v, u)}|

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 10 of 24

4.2.1 � Intra‑edge addition

An intra-C edge addition (u, w) s.t. u,w ∈ C giving an
updated network G� = (V ,E ∪ {(u,w)}) does not always
introduce a directed safeness gain. Indeed, after the addition
of the edge (u, w), if w ∉ Vu

o
(C) , u will be able to reach w and

all the nodes in Vw
o
(C) ⧵ Vu

o
(C) . The same holds for w that

will be able to reach u and all the nodes in Vu
i
(C) ⧵ Vw

i
(C) , if

u ∉ Vw
i
(C) . Then, the possible increase of the safeness score

for the nodes u and w is the following:

Obviously, such edge addition always results in a safeness
decrease if w ∈ Vu

o
(C) and u ∈ Vw

i
(C).

4.2.2 � Inter‑edge addition

Any inter-C edge addition (u, w) s.t. u ∈ C and w ∉ C giv-
ing an updated network G′=(V ,E ∪ {(u,w)}) always corre-
sponds to a directed safeness increase. Indeed, the directed
safeness node increase for u is

�⃗𝜎(u,C�) − �⃗𝜎(u,C) = 𝜏
(|Vw

o
(C) ⧵ Vu

o
(C)| + 1) − 1

2(|C| − 1)

+ 𝜒
|�E

o
(u,C)|

𝛿
o
(u)(𝛿

o
(u) + 1)

�⃗𝜎(w,C�) − �⃗𝜎(w,C) = 𝜏
(|Vu

i
(C) ⧵ Vw

i
(C)| + 1) − 1

2(|C| − 1)

+ 𝜒
|�E

i
(w,C)|

𝛿
i
(w)(𝛿

i
(w) + 1)

�⃗𝜎(u,C�) − �⃗𝜎(u,C) = 𝜒
|�E

o
(u,C)| + 1

𝛿
o
(u) + 1

− 𝜒
|�E

o
(u,C)|
𝛿
o
(u)

= 𝜒
𝛿
o
(u) − |�E

o
(u,C)|

𝛿
o
(u)(𝛿

o
(u) + 1)

that is always greater or equals to 0 since �o(u) ≥ |Ẽo(u,C)| .
Note that the maximum increase in directed safeness hap-
pens for all the nodes u such that u ∈ argmin{

|Ẽo(u,C)|
�o(u)

}.

4.2.3 � Intra‑edge deletion

An intra-C edge deletion (u, w) s.t. u,w ∈ C giving an
updated network G� = (V ,E ⧵ {(u,w)}) does not always
bring a directed safeness gain. Indeed, let Vu−

o
(C) ( Vw−

i
(C) ,

respectively) be the nodes of C that cannot be reached by
following directed paths originating from u (ending in w,
respectively) after the deletion of the edge (u, w). Then, the
possible increase of the safeness score for the nodes u and
w is the following:

Obviously, such edge addition always results in a safeness
increase if Vu−

o
(C) = � and Vw−

i
(C) = � , that is u and w will

be able to reach exactly the same C  ’s members if (u, w) is
deleted.

4.2.4 � Inter‑edge deletion

Any inter-C edge deletion (u, w) s.t. u ∈ C and w ∉ C giv-
ing an updated network G′=(V ,E ⧵ {(u,w)}) always corre-
sponds to a directed safeness decrease. Indeed, the directed
safeness node increase for u is

�⃗𝜎(u,C�) − �⃗𝜎(u,C) = 𝜏
1−|Vu−

o
(C)|

2(|C| − 1)
+ 𝜒

|�Eo(u,C)|
𝛿o(u)(𝛿o(u) − 1)

�⃗𝜎(w,C�) − �⃗𝜎(w,C) = 𝜏
1 − Vw−

i
(C)

2(|C| − 1)
+ 𝜒

|�Ei(w,C)|
𝛿i(w)(𝛿i(w) − 1)

�⃗𝜎(u,C�) − �⃗𝜎(u,C) = 𝜒
|�E

o
(u,C)| − 1

𝛿
o
(u) − 1

− 𝜒
|�E

o
(u,C)|
𝛿
o
(u)

= 𝜒
|�E

o
(u,C)| − 𝛿

o
(u)

𝛿
o
(u)(𝛿

o
(u) + 1)

Table 4   Notation table for
directed permanence

Symbol Meaning Formula

E
o
(u,C

i
) Outgoing edges of u to members of C

i
{(u, v) ∣ u ∈ C

i
}

E
i
(u,C

i
) Incoming edges of u from members of C

i
{(v, u) ∣ v ∈ C

i
}

E
max

o
(u) Maximum number of edges originated from u connect-

ing u to a neighbour community
max

C∈C
|{(u, v) ∣ v ∈ C}|

E
max

i
(u) Maximum number of incoming edges of u connecting

u to a neighbour community
max

C∈C
|{(v, u) ∣ v ∈ C}|

C
in
(u) Clustering coefficient of u’s neighbours |{(v,w)∈E∶v,w∈Nu}|

�(u)(�(u)−1)

�(u) Degree of u |{(u, v)}| + |{(v, u)}|

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 11 of 24  74

that is always greater or equals to 0 since �o(u) ≥ |Ẽo(u,C)|.

4.3 � Directed permanence‑based deception

This section shows how permanence can be adapted to
directed networks. The notation used in this section is sum-
marized in Table 4. We start by defining directed node
permanence.

Definition 11  Let G = (V ,E) be a directed network, and
u ∈ V a node in G. The directed node permanence of u is
defined as:

 where Eo(u,Cu) and Ei(u,Cu) denote the internal outgoing
and incoming connections of u within its own community
Cu resp., Emax

o
(u) and Emax

i
(u) the maximum number of out-

going and incoming connections of u to its neighboring
communities resp., Cin(u) =

|{(v,w)∈E∶v,w∈Nu}|
�(u)(�(u)−1)

 , where
Nu = {v ∶ (v, u) ∈ E ∨ (u, v) ∈ E} are the neighbors of u, the
fraction of actual and possible number of edges among the
internal neighbors of u (i.e., the clustering coefficient among
the internal neighbors of u, where �(u) indicates the total
degree of u). As in the case of undirected networks, also for
directed networks for all vertices u that do not have any
inter- outgoing and/or incoming connections permanence is
considered equal to the clustering coefficient, i.e.,
��������⃗Perm(u) = Cin(u) . Moreover, if the total number of internal
outgoing and incoming connections of u is less than 2 the
clustering coefficient Cin(u) is set to be 0.

Example 12  Consider again the directed network reported in
Fig. 2(a), the directed permanence of node 1 is the following:

If we consider the undirected version of the same network,
the permanence of node 1 will be the following:

��������⃗Perm(u,G) ∶=

(|Eo(u,Cu)|
2 ⋅ Emax

o
(u) ⋅ 𝛿o(u)

+
|Ei(u,Cu)|

2 ⋅ Emax
i

(u) ⋅ 𝛿i(u)

)
−
(
1 − Cin(u)

)

��������⃗Perm(1,G) ∶=

(|E
o
(1,C1)|

2 ⋅ Emax

o
(1) ⋅ 𝛿

o
(1)

+
|E

i
(1,C1)|

2 ⋅ Emax

i
(1) ⋅ 𝛿

i
(1)

)
−
(
1 − C

in
(1)

)
=

(
1

2 ⋅ 1 ⋅ 2
+

2

2 ⋅ 1 ⋅ 3

)
− (1 −

3

5 ⋅ 4
)

= (0.25 + 0.33) − (1 − 0.15) = −0.27

Perm(1,G) ∶=
I(1)

Emax(1) ⋅ �(1)
−
(
1 − Cin(1)

)
=

3

2 ⋅ 5
−
(
1 −

2 ⋅ 3

5 ⋅ 4

)
= 0.3 − (1 − 0.3) = −0.4

Then, for this example, the permanence of node 1 in the
directed version is higher than the permanence in the undi-
rected case, meaning that in the undirected version, node 1
is less committed to staying in C1 than that in the directed
version.

The directed permanence of w.r.t. a target community is
defined as:

Definition 13  Given a directed network G = (V ,E) and a
target community C  , the directed permanence of C in G is
defined as:

In terms of the general deception formulation (see Defi-
nition 2) this approach instantiates the function � to be the
directed permanence loss ��⃗Pl= ��������⃗Perm(C,G)- ��������⃗Perm(C,G�) .
Then, in the following we will discuss the impact of the
different types of edge updates on the directed permanence
loss:

4.3.1 � Intra‑edge addition

An intra-community edge addition (u, w) s.t. u,w ∈ Ci
and {u, v} ∩ C ≠ � g iv ing an updated network
G� = (V ,E ∪ {(u,w)}) does not always correspond to a
directed permanence loss. In the following we will analyze
the directed permanence loss for u, a similar reasoning will
apply to w. Then, the directed permanence loss of u is:

The first term (i.e., |Eo(u,Ci)|−�o(u)
2Emax

o
(u)�o(u)

(
�o(u)+ 1

) ) is always lower or

equals to zero since �o(u) ≥ Io(u) . The second term (i.e.,
(Cin(u) − C�

in
(u)) ) can be lower or greater than 0 depending

on how the clustering coefficient change after the edge
addition.

Note that the addition of the edge (u, w) will also increase
the directed permanence of all the nodes v that have both u

(5)��������⃗Perm(C,G) =

∑
u∈C

��������⃗Perm(u,G)

�C�

|Eo(u,Ci)|
2Emax

o
(u)�o(u)

− (1 − Cin(u)) −
|Eo(u,Ci)|+ 1

2Emax
o

(u)(�o(u)+ 1)
+ (1 − C�

in
(u))

=
|Eo(u,Ci)| − �o(u)

2Emax
o

(u)�o(u)
(
�o(u)+ 1

) + (Cin(u) − C�
in
(u))

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 12 of 24

and w in its neighborhood, since their clustering coefficient
Cin(v) will increase.

4.3.2 � Inter‑edge addition

Any inter-community edge addition (u, w) s.t. u ∈ Ci ∩ C
and w ∈ Cw ≠ Ci giving an updated network G′

=(V ,E ∪ {(u,w)}) always results in a directed permanence
loss. Consider first the case in which Emax

o
(u) does not change

after the edge addition, then the directed permanence loss
of u is:

that is always greater or equals to 0 since Io(u) is at least 0.
Consider now the case in which Emax

o
(u) changes after the

edge addition, then the new value will be Emax
o

(u)+ 1 . In this
case the directed permanence loss of u is:

that is always greater than 0 since it holds that
|E

o
(u,C

i
)|(Emax

o
(u)+ 1

)(
𝛿
o
(u)+ 1

)
> |E

o
(u,C

i
)|Emax

o
(u)𝛿

o
(u).

Moreover, note that the maximum permanence loss is
obtained in the second case when the edge is added to the
community toward which u already has the maximum num-
ber of edges.

4.3.3 � Intra‑edge deletion

An intra-community edge deletion (u, w) s.t. u,w ∈ Ci
and {u, v} ∩ C ≠ � g iv ing an updated network
G� = (V ,E ⧵ {(u,w)}) always results in a directed perma-
nence loss. Indeed, after the deletion of the edge (u, w), we
have that |Eo(u,Ci)|, |Ei(w,Ci)|, �o(u), �i(w) will be decreased
by 1. Consider first the directed permanence loss of node
u (a similar reasoning will apply also to node w). We will
restrict the analysis to edges whose deletion will decrease
Cin(u) , to the new value C�

in
(u) ≤ Cin(u) . Then the directed

permanence loss of u is:

that is always greater or equals to 0 since �o(u) ≥ |Eo(u,Ci)|
and C�

in
(u) ≤ Cin(u).

Note that the deletion of the edge (u, w) will also decrease
the directed permanence of all the nodes v that have both u

|Eo(u,Ci)|
2Emax

o
(u)�o(u)

−
|Eo(u,Ci)|

2Emax
o

(u)(�o(u)+ 1)
=

|Eo(u,Ci)|
2Emax

o
(u)�o(u)

(
�o(u)+ 1

)

|Eo(u,Ci)|
2Emax

o
(u)�o(u)

−
|Eo(u,Ci)|

2
(
Emax
o

(u)+ 1
)
(�o(u)+ 1)

=
|Eo(u,Ci)|

(
Emax
o

(u)+ 1
)(
�o(u)+ 1

)
− |Eo(u,Ci)|Emax

o
(u)�o(u)

2Emax
o

(u)
(
Emax
o

(u)+ 1
)
�o(u)

(
�o(u)+ 1

)

|Eo(u,Ci)|
2Emax

o
(u)�o(u)

− (1 − Cin(u)) −
|Eo(u,Ci)| − }1

2Emax
o

(u)(�o(u) − 1)
+ (1 − C�

in
(u))

=
�o(u) − |Eo(u,Ci)|

2Emax
o

(u)�o(u)
(
�o(u) − 1

) + (Cin(u) − C�
in
(u))

and w in its neighborhood, since their clustering coefficient
Cin(v) will decrease.

4.3.4 � Inter‑edge deletion

Any inter-community edge deletion (u, w) s.t. u ∈ Ci ∩ C
and w ∈ Cw ≠ C giving an updated network G′

=(V , sE ⧵ {(u,w)}) never brings a directed permanence loss.
Consider first the case in which Emax

o
(u) does not change

after the edge deletion, then the directed permanence loss
of u is:

that is always lower or equals to 0 since |Eo(u,Ci)| is at least
0.

Consider now the case in which Emax
o

(u) changes after the
edge deletion, then the new value will be Emax

o
(u) − 1 . In this

case the directed permanence loss of u is:

4.4 � Directed deception in practice

In this section, we will analyze the behavior of the different
deception strategies on the synthetic network reported in

|Eo(u,Ci)|
2Emax

o
(u)�o(u)

−
|Eo(u,Ci)|

2Emax
o

(u)(�o(u) − 1)
=

−|Eo(u,Ci)|
2Emax

o
(u)�o(u)

(
�o(u) − 1

)

|E
o
(u,C

i
)|

2Emax
o

(u)�
o
(u)

−
|E

o
(u,C

i
)|

2
(
Emax
o

(u) − 1
)
(�

o
(u) − 1)

=
|E

o
(u,C

i
)|(1 − Emax

o
(u) − �

o
(u)

)

2Emax
o

(u)
(
Emax
o

(u)+ 1
)
�
o
(u)

(
�
o
(u)+ 1

)

1

3

0

6

7

8

2

4

5 9

10

11

C1C1

C2C2

C3C3

(b)

81

(a)

0

2

3
4

C1C1 C2C2

5 6

7

9

10

11

1

3

0

6

7

8

2

4

5

9

1011

C1C1

C2C2(c)

1

3

0

6
7

8

2

4

5

9
10

11

C1C1

C2C2

C3C3

(d)

Fig. 3   Deception on directed networks with different deception tech-
niques: (b) directed modularity, (c) directed safeness, and (d) directed
permanence

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 13 of 24  74

Fig. 3 (a). The two communities shown in the figure have
been identified by running the infomap detection algo-
rithm (Rosvall and Bergstrom 2008). In the following, we
suppose that the target community is C1 = { 0, 1, 3, 4, 5 } and
it has been completely disclosed. Moreover, we will consider
a budget of update � = 4.

Effect of directed modularity deception. The modularity-
based deceptor on the directed network in Fig. 3(a) will sug-
gest, in order, the following edge updates:

1.	 Inter-community edge addition (0, 8);
2.	 Inter-community edge addition (3, 6);
3.	 Inter-community edge addition (1, 7);
4.	 Inter-community edge addition (4, 6);

If we run the same detector on the network obtained after
applying the four modifications suggested, we obtain the
network reported in Fig 3(b). As it can be noted, the detec-
tor identifies three communities, and the target community’s
members are spread between C1 and C2.

Effect of directed safeness deception.
The safeness-based deceptor on the directed network in

Fig. 3(a) will suggest, in order, the following edge updates:

1.	 Inter-community edge addition (4, 10);
2.	 Inter-community edge addition (3, 6);
3.	 Inter-community edge addition (1, 10);
4.	 Inter-community edge addition (4, 9);

If we run the detector on the network obtained after apply-
ing the four modifications suggested, we obtain the network
reported in Fig 3(c). As it can be noted, the detector identi-
fies two communities with the target community’s members
spread in both of them.

Effect of directed permanence deception.
The permanence-based deceptor on the directed net-

work in Fig. 3(a) will suggest, in order, the following edge
updates:

1.	 Intra-community edge deletion (1, 2);
2.	 Intra-community edge deletion (3, 1);
3.	 Inter-community edge addition (0, 5);
4.	 Intra-community edge deletion (0, 1);

If we run the detector on the network obtained after apply-
ing the four modifications suggested, we obtain the network
reported in Fig 3(d). As it can be noted, the detector identi-
fies three communities with the target community’s mem-
bers spread in two of them.

We want to point out that there is a slight difference in the
interpretation of intra- and inter-community edge updates

among the three different deception strategies described in
the previous section. Consider the case in which the target
community in the network in Fig. 3 is C = {0, 1, 3, 5, 8} .
Then, directed modularity and directed permanence catego-
rize intra- and inter-edge updates by considering the com-
munity structure identified by the detector, meaning that, for
example, the addition of the edge (1,5) would be considered
as an inter-edge addition that could decrease both modular-
ity and permanence, while, of course, it is not a good update
w.r.t. the target community C  . Instead, the directed safe-
ness does not suffer from this problem since it always looks
at intra-C and inter-C edge updates. Thus, when applying
modularity and permanence deception algorithms, one
should also check that the intra- and inter-community edge
updates suggested meet the requirement related to the iden-
tity of the target community C  . By considering the example
network reported in Fig. 3 such differences cannot be appre-
ciated since the target community is completely revealed.

5 � Experimental evaluation

This section reports on an experimental evaluation of the
community deception approaches devised for directed net-
works. We set three main goals. The first one is to assess the
feasibility of community deception approaches in directed
networks. In particular, we want to gain some insight into
how our approaches, which rework the state of the art in a
directed network context, are effective. The second goal is
to compare community deception approaches for directed
networks with the state of the art that has focused on undi-
rected networks. The comparison will shed further light
on our novel techniques’ effectiveness in hiding capabili-
ties. The third goal is to assess the scalability, in terms of
running time, of our novel approaches and make a parallel
with deception in undirected networks. We also measure the
impact of the deception strategies on the whole community
structure by measuring the similarity between communities
before and after deception. In what follows, we describe the
experimental setting (Sect. 5.1), the datasets (Sect. 5.2), and
then report on the experimental results. The algorithms have
been implemented in Python. Code and datasets are avail-
able online2

5.1 � Experimental setting

To introduce the experimental setting, we refer to the general
framework outlined in Sect. 1 and provide details about the
actors involved.

2  https://​commu​nityd​ecept​ion.​wordp​ress.​com/.

https://communitydeception.wordpress.com/

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 14 of 24

5.1.1 � Detectors

We considered a variety of community detection algorithms
(detectors) that will act as adversaries to the deception tech-
niques. To make the comparison meaningful for our context,
we focus on approaches that work on directed networks. We
considered the following algorithms available in the cdlib
library:3

•	 Leiden (Traag et al. 2019) (leiden): a community
detection algorithm that corrects for some issues of the
Louvain algorithm (Blondel et al. 2008) and can work on
directed networks.

•	 Directed modularity (Leicht and Newman 2008) (dm):
this algorithm is an extension of the modularity maximi-
zation algorithm devised for undirected networks (New-
man 2004).

•	 Surprise community (Traag et al. 2015) (surprise):
this algorithm uses the notion of asymptotic surprise,
which assesses the quality of the partition of a network
into communities.

•	 InfoMap (Rosvall and Bergstrom 2008) (infomap): a
detection algorithms that leverages information theory
(the shortest description length for a random walk) to
return a community structure.

•	 Gemsec (Rozemberczki et al. 2019) (gemsec): an
approach that leverages random walks to approximate the
point-wise mutual information matrix obtained by pool-
ing normalized adjacency matrix powers. This matrix is
decomposed by an approximate factorization technique
which is combined with a k-means-like clustering cost.

5.1.2 � Deceptors

To tackle community deception in directed networks, we
considered the following two categories of deceptors:

•	 Approaches devised for undirected networks: to make the
experiments possible for these approaches, we treat the
directed network under consideration as undirected. We
considered:

–	 Delete Internal Connect External (Waniek et al.
2018) (DICE): this community deception algorithm
is based on the heuristic of deleting intra-community
edges and adding inter-community edges. DICE is
based on the assumption that such kinds of edge
updates always minimize modularity.

–	 Modularity Minimization (Fionda and Pirrò 2018)
(modMin): this approach corrects for some issues
with DICE; the authors of modMin showed that in
some cases, DICE fails to perform edge updates that
minimize modularity.

–	 Safeness-based deception (Fionda and Pirrò 2018)
(SAF): this approach introduces safeness maximiza-
tion for community deception.

–	 Permanence-based deception (Mittal et al. 2021)
(NEUR): this approach is based on permanence mini-
mization.

–	 Random edge updates (RND): we consider an
approach that randomly selects both the type of
update and the endpoints of the edge addition/dele-
tion.

•	 Approaches devised for directed networks: for this cat-
egory of deceptors we consider edge direction. In this
case, we considered all the novel approaches described
in the present paper.

–	 Directed modularity (dmod): this is the approach
described in Sect. 4.1

Table 5   Datasets and
communities found by the
Detectors considered

Network |V| |E| Number of communities

leiden dm surprise infomap gemsec

Freeman ∼50 ∼500 5 5 7 6 5
Email ∼1K ∼25K 28 32 21 12 16
AnyBeat ∼12K ∼67K 129 81 143 156 112
WikiVote ∼7K ∼103K 30 34 43 51 49
Facebook-like ∼900 ∼142K 6 5 6 7 5
Epinions ∼75K ∼508K 795 986 – – –
Slashdot ∼77K ∼905K 825 1115 – – –
SocialNet ∼82K ∼1M 841 1120 – –
Academia ∼200K ∼1.4M 89 93 – – –
GooglePlus ∼211K ∼1.5M 2105 – – – –

3  https://​cdlib.​readt​hedocs.​io.

https://cdlib.readthedocs.io

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 15 of 24  74

–	 Directed safeness (dsaf): this approach is described
in Sect. 4.2

–	 Directed permanence (dper): this approach is
described in Sect. 4.3.

5.2 � Datasets

As this paper aims to introduce deception for directed net-
works, we focused on various real directed social networks
from a wide range of domains. These networks are available
online456.

Table 5 gives an overview of the networks considered.
The table also reports, for each network, the number of com-
munities found by the Detectors considered. We note that
some of the detectors could not complete community detec-
tion on the more extensive networks after a timeout of 3h.

5.3 � Evaluation methodology

To test deception algorithms, we refer to the methodology
introduced in our previous work (Fionda and Pirrò 2018).
As an indicator of performance, we measure:

•	 Deception Score: this score, which ranges between 0
and 1, combines a measure of reachability preservation
among C members, community spread (in how many
communities are C  ’s members spread), and community
hidings ( C  ’s members should be included in the largest
communities) (Fionda and Pirrò 2018).

•	 Normalized Mutual Information(NMI) (Danon et al.
2005): this is a measure that we use to check how decep-
tion affects the original community structure. In particu-
lar, given the community structure before deception C
and the community structure after deception C ’, we have
NMI(C,C

�
) ∈ [0, 1].

•	 Running time: we also measured deception running time
for the various algorithms without considering the time
to find communities.

Related pieces of work (Mittal et al. 2021) considered com-
munity spread and community hiding separately. However,
we believe that also reachability is relevant and that a good
deceptor should be evaluate on all the above components
simultaneously.

To pick the target community C , we looked at the dis-
tribution of the size of the communities. For each detec-
tion algorithm, we considered different C (one for each
experiment round) having sizes close to the center of the

distribution. Experiments have been conducted on a PC i5
CPU with 3.0 GHz (4 cores) and 16GBs RAM. The results
reported are the average (95% confidence interval) of 5 runs.

5.4 � Evaluating directed community deception

We start with a discussion about the performance of the
novel community deception approaches for directed net-
works presented in terms of deception score and NMI.

5.4.1 � Deception score

Figure 4 shows the results in terms of deception score for
medium-size networks. The figure reports, for each col-
umn, the network considered, and for each row, the decep-
tion score measured as the capability of deceiving a specific
detection algorithm. By looking at this figure, we make the
following observations.

On small networks (e.g., Facebook), obtaining larger
values for the deception score seems easier. In general, the
deception score always reaches a value greater than 0.5.
This can be considered a reasonably good value because
the initial deception score was 0 (that is, C was completely
revealed). The deception score increases as the number of
edge updates increase; this is consistent for all deception
algorithms, detection algorithms, and networks. dsaf per-
forms better than the other algorithms in almost all settings.
One exception is the leiden detection algorithm, where
dmod seems to perform slightly better than dsaf. dper
seems to be the less performing detection algorithm. We
looked into the deception score’s community spread and
reachability components to shed light on this behavior. In
several cases, edge updates suggested by dper result in
internal edge deletions that result in a disconnection of the
community when the number of edge updates increases.
gemsec seems to be a relatively robust detection algo-
rithm for all three deception approaches. This is especially
true in the Anybeat network where, when the number of
edge updates is below 60% of the number of edges in C  , the
deception score remains quite low. Figure 5 shows the results
for the largest networks considered. We note that only lei-
den and dm were able to complete the community detection
task within a timeout of 3h. Even in larger networks, it can
be observed that larger budget values (x-axis) correspond
to larger values of the deception score. In particular, with
a budget equal to 60% of the total number of edges in the
community in all cases, the deception score is greater than
0.5. We recall that experiments were conducted in the worst-
case scenario with a deception score pre-deception equal
to 0 ( C completely revealed). However, it is reasonable to
assume that the initial deception score is larger; in real-
ity, when deception algorithms are applied, C is not com-
pletely revealed. The larger the network, the more difficult

4  https://​data4​goodl​ab.​github.​io/​datas​et.​html.
5  https://​snap.​stanf​ord.​edu.
6  https://​toreo​psahl.​com/​datas​ets.

https://data4goodlab.github.io/dataset.html
https://snap.stanford.edu
https://toreopsahl.com/datasets

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 16 of 24

it becomes the hide. With the same budget percentage, the
results in terms of deception score are lower. By further dig-
ging out on the results, we observe that for Epinions the
number of communities found by leiden and dm is 795
and 896, respectively. The average size of the C considered
in the experiments is around 400. hence, with 160 updates,
dsaf can achieve a score greater than 0.5.

On the largest network, google, the number of communi-
ties found by leiden is 2105, and the average size of the
C considered in the experiments is 500. In this case, with
300 updates, dsaf can reach a deception score value greater
than 0.5. We again note the leiden was the only algorithm
able to complete the detection task within a 3h timeout.

Even in this case, we observe that the less effective sys-
tem is dper, which is around 20% and 15% less performing

Fig. 4   Directed deception on medium-size networks

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 17 of 24  74

than dsaf and dmod, respectively. One interesting case
is the Academia social network, where nodes represent
members that follow other members (hence the network is
directed). On the one hand, we observe that dsaf even with
lower budget values can achieve a significant result than the
other approaches. On the other hand, we observe that dsaf
seems to reach a saturation point where further edge updates
do not add any benefit. The same is not true for dmod and
dper, the performance of which has a significant increase
when moving from a 30% to a 60% budget. Here, the average
size of C is 100.

By considering the results from the perspective of detec-
tion algorithms, we observe that leiden is more robust to
the deception strategies than dm. The reason for this can be
found in the fact that leiden finds communities by ensur-
ing that they are well-connected, while dm is an adaptation
of modularity optimization to the directed case. Interest-
ingly, the direct competitor of dm would be leiden, also
based on directed modularity. However, dsaf consistently
performs better both on medium and large networks.

One final observation that we make is related to the char-
acteristics of the community C considered and the category
of edge updates most performed by the deception strategies.
We note that the lower the number of intra-C edges, the
easier it becomes to hide it. This sounds natural as more
intra-C edges reinforce the notion of community itself, thus
making it challenging to separate nodes within, increasing
the deception score.

5.4.2 � Normalized mutual information (NMI)

The second dimension of the evaluation considered concerns
the impact that community deception has on the original

pre-deception communities found. Figure 6 reports the val-
ues of the NMI. Each column represents a deception algo-
rithm where the x-axis represents one of the networks and
the y-axis the value of NMI.

The values of NMI for medium networks are always
around 0.8, meaning that most of the community structure is
preserved after applying deception. More specifically, dsaf
appears to be the deception algorithm that better preserves
the community structure, followed by dmod. The detection
algorithms that seem to suffer less from deception in terms
of NMI are surprise and infomap. On larger networks
(Fig. 6 (b)), the NMI values are a bit higher in general.
Still, we have that dper is the deception approach that most
changes the community structure. To shed more light on the
results, we investigated the relationship between the number
of communities before and after deception (referred to as
Δ ). Figure 7 reports the results for medium size networks
when the budget is set to 60% of the number of edges in C  .
We note that the number of communities after deception
decreases; this is always true for the leiden, infomap
and gemsec detection algorithms.

By relating the Δ reported in Fig. 7 and the initial num-
ber of communities found by each detection algorithm and
reported in Table 5 we observe that for the Anybeat net-
work, the number of communities significantly increases
(the initial number was 126 for leiden and becomes 167).
For the surprise detection algorithm, the larger number
of communities is observed in the email network (almost
100 additional communities) for dsaf. In this case, dmod
and dper decreased the overall number of communities.
By looking at the deception score related to this case (see
Fig. 4), we note that dsaf obtained a score higher than
dmod and dper. The explanation for this improvement is

Fig. 5   Directed deception on large-size networks

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 18 of 24

(a) NMI on medium networks.

(b) NMI on large networks.

Fig. 6   Directed deception evaluation in terms of NMI

Fig. 7   Variation of the number of communities on medium networks

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 19 of 24  74

the significant change in the number of communities, which
in turn corresponds to an increase in the community spread,
that is, the number of communities where C  ’s members are
scatted; indeed, this value went from 1 (the initial setting) to
67. A similar observation can be made for the WikiVote
network and the leiden detection algorithm; here, dsaf
added a larger number of communities that resulted in a
more significant deception score than dmod and dper.

Figure 8 reports the community variation for larger net-
works. We observe a similar behavior; the larger the number
of new communities after deception, the larger the deception
score. This is especially true for Epinion and Social-
Net for the leiden detection algorithm and the dsaf
deception algorithm. We note that dsaf reaches a deception
score of 0.7 (see Fig. 5).

Fig. 8   Variation of the number of communities on large networks

Fig. 9   Comparison between directed and undirected deception approaches on medium networks

Fig. 10   Comparison between directed and undirected deception
approaches on medium networks

Fig. 11   Comparison between directed and undirected deception
approaches on large networks

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 20 of 24

5.5 � Comparison with undirected deception

We now compare our novel approaches for community
deception in directed networks with the state of the art. These
approaches were not designed to work on directed networks,
which sounds like a limitation. Indeed, several real-world
networks, as those considered in our evaluation, are directed,
which underlines the importance of adding directions in social
network relations. For example, the Academia network rep-
resents follower-followee relations that naturally carry a direc-
tion. To run the experiments with the state-of-the-art deception
algorithms, we treated the networks as undirected and consid-
ered the same C  . In these experiments, we focus on a budget
of updates equal to 60% of the edges of C as this configuration
worked best for all approaches. In what follows, we report on
comparison in terms of deception score and running time.

5.5.1 � Deception score

We compare the deception score of directed and undirected
community deception approaches on both medium and large
networks. Figures 9 and 10 report results on medium-size
networks. The figure considers for each column a detection
algorithm. Moreover, the x-axis represents a network in each
subfigure while the y-axis is the deception score.

In almost all networks, the directed approaches perform
better than the undirected approaches. This is true for all
detectors but leiden. Here, we observe that for the Face-
book network, the undirected approaches (excluding the
random edge update approach) perform better. To shed more
light on this aspect, we looked into the difference between
the number of communities after and before deception. In
this case, the undirected approaches introduced a larger
number of communities than the directed ones. This rela-
tion between the number of communities after deception
and deception score was also observed when focusing on
directed approaches alone (see Sect. 5.4.2).

When moving to the large networks (Fig. 11) we note a clear
superiority of the directed approaches. This is especially true

for the Epinions network. When considering leiden, the
best performing approach was dmod while with leiden,
dsaf obtained slightly better results. One crucial observa-
tion is that the undirected algorithms performed significantly
worse, reaching in only a few cases a deception score greater
than 0.5. As one would expect, the worst-performing decep-
tor is RND, which adds/remove edges randomly starting from
C  ’s members. Also, NEUR seems to perform worse than other
undirected approaches. To shed more light on this behavior,
we looked again at the changes in the community structure and
the structure of C  ; even in this case, we observed that NEUR
frequently performs internal edge deletions that disconnect C .

5.6 � Deception with ground truth communities

In this section, we want to investigate the impact of decep-
tion and detection techniques on networks for which the
ground truth communities are available. To do so, we do
not generate artificial networks and communities but resort
to a real-world network of emails for which the communities
are available. We are aware that Peel et al. (2017) observed
that working with planted communities does not reflect the
true data generating process for real networks, which is typi-
cally unknown. However, we still believe that the analysis
can shed light on how detection algorithms abefore and after
applying deception approach these communities. We con-
sidered the email available from the SNAP repository7,
which represents communication between members of an

Table 6   Average deception score with ground-truth communities

Deception score

Leiden dm Surprise Infomap Gemsec

dsaf 0.623 0.893 0.665 0.635 0.654
dmod 0.598 0.823 0.648 0.642 0.642
dper 0.578 0.789 0.514 0.612 0.591
DICE 0.468 0.658 0.498 0.502 0.471
modMin 0.512 0.662 0.501 0.512 0.484
SAF 0.532 0.698 0.503 0.594 0.493
NEUR 0.516 0.658 0.509 0.449 0.472
RND 0.235 0.123 0.256 0.226 0.194

Table 7   NMI(C
G
,C

B
) comparing ground-truth communities and

communities returned by a detection algorithm

NMI(C
G
,C

B
)

Leiden dm Surprise Infomap Gemsec

0.891 0.877 0.797 0.862 0.872

Table 8   NMI(C
G
,C

A
) comparing ground-truth communities and

communities after deception

NMI(C
G
,C

A
)

Leiden dm Surprise Infomap Gemsec

dsaf 0.585 0.591 0.563 0.546 0.603
dmod 0.591 0.594 0.574 0.567 0.57
dper 0.581 0.515 0.559 0.536 0.586
DICE 0.593 0.504 0.591 0.504 0.581
modMin 0.533 0.582 0.629 0.597 0.589
SAF 0.514 0.586 0.615 0.512 0.609
NEUR 0.593 0.565 0.625 0.536 0.598
RND 0.589 0.562 0.624 0.547 0.586

7  https://​snap.​stanf​ord.​edu/​data/​email-​Eu-​core.​html.

https://snap.stanford.edu/data/email-Eu-core.html

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 21 of 24  74

EU institution with ground-truth communities witnessing
the membership of individuals in one of the 42 departments.
The network consists of ∼ 1K nodes, 25K edges, and 42
ground-truth communities.

For this experiment, we proceeded as follows. Given a
community detection algorithm D , we considered each of
the communities returned as the target community C  ; the
number of communities is reported in Table 5. Then, we
considered a budget of updates equals to the 50% of the
number of nodes in C  . In this setting, we have three sets
of communities: (i) CG : ground-truth communities; (ii)
CB : communities returned by D before applying a decep-
tion algorithm; (iii) CA : communities returned by D after
applying the deception algorithm. We measured the average
deception score and NMI values.

Table 6 reports results in terms of deception score. From
the table, it emerges that the performance of deception algo-
rithms is consistent with results observed in Fig. 10 where a
smaller number of communities (one for each of the 5 exper-
iment rounds) were tested as C  . Even in this case, dsaf
outperforms all the competitors, with approaches devised
for undirected networks offering inferior performance. An
interesting case is rnd, which performs worse than before.
This indicates that the deception strategies do not heavily
depend on the particular community chosen. However, we
noticed that when the size of C is small, it is, in general,
easier to obtain larger values of deception.

We now discuss the different values of NMI score, start-
ing from the analysis of the difference between ground-
truth communities and communities returned by a detection
algorithm, that is, communities before applying deception
algorithms.

Table 7 shows that NMI values are above 0.75, witness-
ing a quite high level of similarity between the ground-truth

communities and the communities found by each detection
algorithm. This experiment provides insights into the per-
formance of detection algorithms on this particular network,
with leiden being the most performing one. We now move
to the analysis of the NMI values by comparing ground-truth
communities and communities after applying community
deception techniques.

We observe from Table 8, that NMI values are much
lower than those returned when comparing ground-truth
communities with communities returned by a detection algo-
rithm before applying deception techniques. As an example,
for the leiden detection algorithm and the dsaf decep-
tion algorithm, which was the best performing detection
algorithm, we note that values of NMI drop from 0.891 to
0.585 on average. This means that no matter which of the
42 ground-truth communities we chose as C  , there will be a
significant difference between the ground truth communities
and the communities returned after applying dsaf. This
same reasoning applies to all other deception techniques.
However, we have two observations. First, not always lower
values of NMI correspond to higher values of the deception
score, which is what ultimately community deception strives
to obtain. As an example, although the value of NMI for the
DICE deception algorithm when considering communities
returned by the dm detection algorithm is lower than that of
dsaf, we observe that with the latter, a much larger value of
the deception score was obtained (see Table 6). This reason-
ing is evident when considering the RND deception strategy,
which adds and removes edges without any clear objective.
In fact, while the NMI values are always above 0.5 the cor-
responding deception score values are very low.

The second observation is that low NMI values after
applying deception in a way show that although not spe-
cifically designed to hide the whole community structure,

Fig. 12   Running time (s) in medium networks

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 22 of 24

deception techniques have effects not only on C but also
on the other communities. This comes as no surprise since
hiding C  , that is, moving its members across communities,
changes the structure of each community that releases or
receives C  ’s members.

5.6.1 � Deception running time

Our last set of experiments was devoted to investigating the
running times of both directed and undirected deception
approaches. This will indicate whether considering edge

directions brings an additional cost. Moreover, we also
insert an asymptotic complexity analysis our novel decep-
tion strategies.

In this set of experiments for all approaches, we consid-
ered a budget of updates equal to the 60% of the number
of edges in C  . Figures 12 and 13 show the running time
for medium networks. Each column of the figures considers
a detection approach. Moreover, in each chart, the x-axis
represents a network. We observe that all approaches both
directed and undirected run in a few seconds for the smaller
networks (e.g., Freeman, Facebook). An exception is the
modMin algorithm in the Facebook and Email networks
when considering leiden and dm, respectively. We further
investigated this behavior and hypothesized that it is difficult
to exclude bridge edges from possible edge deletions. The
same happens in the email network when considering lei-
den. We recall that both SAF and modMin try to exclude
the deletion of internal bridge edges that would disconnect
C .

In general, attacks on the output of leiden and dm
appear to be the most costly in terms of running time. We
also observe that directed approaches, especially dper,
require more time than undirected ones in most cases. This
comes as no surprise since, from the analysis conducted in
this paper (Sect. 4), finding the best edge updates requires a
more involved formula where the edge direction and in/out
node degrees play a significant role.

Figure 14 reports running time on the largest net-
works. We observe that here the running time significantly
increases; this is especially true for the GooglePlus net-
work and the leiden algorithm, where the dper algo-
rithm required almost 400 seconds to perform the updates.
By further analyzing the numbers, we observed that for
the largest network, that is, GooglePlus the number of
updates to be performed was in the order of the hundreds.
However, in reality, one can expect that communities that
want to implement deception strategies would have a smaller
size. This would be reasonable since coordinating among a
large group of people can quickly become problematic; in
fact, edge updates need to be performed in a real scenario by
friending/unfriending or following/unfollowing other nodes.

Asymptotic complexity analysis. For the sake of com-
pleteness, Table 9 reports the asymptotic complexity of the
deception approaches analyzed in the paper. Note that the
asymptotic complexity is the same for the approaches run-
ning on directed and undirected networks. The complexity
of DICE and RND is not reported in the table since, at each
iteration, the update is selected randomly. Thus, the theo-
retical complexity only depends on the number of updates
( � ) that have to be performed. In the case of modularity
minimization (row 1 in Table 9) the initialization (corre-
sponding to the computation of � , � , and the (input/output)
total degrees of the communities. Then, the best update to

Fig. 13   Running time (s) in medium networks

Fig. 14   Running time (s) in large networks

Table 9   Asymptotic complexity analysis of the deception approaches
for undirected and directed networks

Deception measure Asymptotic complexity

Modularity O(|E| + |V| + � ⋅ (k + |EC| + |VC|))
Safeness O(� ⋅ (|EC| + |VC|))
Permanence O(� ⋅ (|VC| + |EC|2))

Social Network Analysis and Mining (2022) 12:74	

1 3

Page 23 of 24  74

be performed can be computed in O(k + |EC| + |VC|) , where
k is the number of communities found by the community
detection algorithm and derives from the computation of
the best inter-edge addition, while the term |EC| + |VC| is
necessary to compute new bridge edges in C if the per-
formed update is an intra-edge deletion. The asymptotic
complexity of the safeness-based algorithm is dominated
by the computation of the best � updates. Indeed, in this
case, the initialization has a cost O(|EC| + |VC|) needed for
the computation of the connected components of C and the
intra and inter (input/output) degree of the nodes of C  . Then,
the cost of computing each update is O(|EC| + |VC|) , where
the cost of computing the best inter-community addition
is O(|VC|) (to find the node bringing the maximum safe-
ness gain). The cost of computing the best intra-community
deletion is O(|EC| + |VC|) since it is dominated by the rec-
omputing of the new bridges after the deletion. Finally, the
asymptotic complexity of the permanence-based algorithm
is O(� ⋅ (|VC| + |EC|2)) (as reported in row 3 of Table 9). In
this case the cost of the initialization is O(|VC| ⋅ |EC|)) to
compute intra and inter (input/output) degrees and clustering
coefficients. Moreover, each update can be computed with
a cost of O(|VC| + |EC|2) , where the best intra-community
edge addition and intra-community edge deletion can be
computed with a cost O(|VC| ⋅ |EC|)) , dominated by the rec-
omputation of the clustering coefficient for each possible
modification. The computation of the best inter-community
edge addition can be computed in O(|VC|).

6 � Conclusions

Despite the plethora of approaches to discovering commu-
nities, there is not enough awareness that people can act
strategically to evade such network analysis tools. This is
particularly critical if who wants to evade such tools are
malevolent users and who run the tools are police enforce-
ment. We introduced the problem of hiding a target com-
munity C from detection algorithms in directed networks.
This problem is interesting for two main reasons. First, sev-
eral real-world networks have edge directions. Therefore,
discarding the directions would necessarily result in an
information loss. This loss may affect community detection
algorithms. This is why specific approaches to finding com-
munities in directed networks have been devised. Second,
community deception was only studied in undirected net-
works. We showed that when throwing out edge direction
information, the state of the art fails to reach a reasonable
level of hiding of C inside a community structure. We also
showed that it is possible to restore performance similar to
that obtained in the undirected scenario when considering
direction-aware deception. Specifically, we presented three

novel deception strategies. Our theoretical analysis shows
that finding the best deception strategy in terms of edge
updates is more involved because of the need to distinguish
between incoming and outgoing edges for each node. Our
extensive experimental evaluation indicates that deception in
the directed case is feasible and strictly related to the number
of novel communities introduced after applying a deception
strategy. Moreover, directed deception is a bit more expen-
sive but still scalable with the size of the network in terms
of running time.

There are a number of future research directions. The first
is studying deception in the context of network embeddings.
Indeed, besides traditional community detection techniques,
several approaches perform community discovery via (node
and possibly edge) embeddings. Existing deception tech-
niques are not suitable to work in such a setting. The main
challenge here consists in the fact that while in a non-embed-
ding setting, one can study the impact of edge updates on
some optimization functions (i.e., modularity minimization),
understanding how updates reflect into the embedding space
is not trivial.

Another exciting line of future research is the investiga-
tion of how deception and social bots (Khaund et al. 2022)
can benefit from one another. Since social bots mimic the
social behaviors of humans, one could think of using social
bots to automatize the deception process. The analysis of
deception as a cooperative and collective action (Yuce et al.
2014) is also worthy of investigation.

Moreover, we are also interested in applying deception
in practice. Indeed, our algorithmic techniques need to be
mapped into real-world networks like Facebook or Twit-
ter. The challenge here is how to turn community deception
into a collective effort from C  ’s members that, instructed
by deception algorithms, rewire � updates according to a
deception function � . Note that while community detection
algorithms require complete network knowledge, deception
algorithms should ideally only need to know C  ’s mem-
bers and their links. In a network like Facebook, intra-C
(resp., inter-C  ) edge deletions can be simply implemented
by “Unfriending” some C  ’s members (resp., external mem-
bers). In Twitter, the same behavior can be achieved by
“Unfollowing” some C  ’s members (resp., external mem-
bers). As for additions, in Facebook, which requires the
acceptance of friendship requests, an intra-C edge addition
would not represent a problem. Conversely, an inter-C edge
addition, which requires discovering new network members,
can be implemented by picking the target node between col-
leagues, famous people, classmates, or even random people
(by sending several friendship requests). This would reflect
in just “Following” some network members on Twitter.
Understanding how to implement these policies “silently”
is undoubtedly challenging.

	 Social Network Analysis and Mining (2022) 12:74

1 3

74  Page 24 of 24

Funding  Open access funding provided by Università degli Studi di
Roma La Sapienza within the CRUI-CARE Agreement.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast
Unfolding of Communities in Large Networks. J Stat Mech
2008(10):P10008

Chakraborty T, Srinivasan S, Ganguly N, Mukherjee A, Bhowmick
S (2016) Permanence and community structure in complex net-
works. ACM TKDD 11(2):1–34

Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing
community structure identification. J Stat Mech Theory Exp
1(9):P09008

Fionda V, Pirrò G (2018) Community deception or: how to stop fearing
community detection algorithms. IEEE Trans Knowl Data Eng
30(4):660–673

Fionda V, Pirrò G (2022) Community deception in networks: where
we are and where we should go. In: Rosa Maria B, Chantal C,
Hocine C, Esteban M, Rocha LM, Sales-Pardo M (eds) Complex
networks & their applications X. Springer International Publish-
ing, Cham, pp 144–155

Fortunato S (2010) Community detection in graphs. Phys Rep
486(3):75–174

Fortunato S, Hric D (2016) Community detection in networks: a user
guide. Phys Rep 659:1–44

Jia J, Wang B, Cao X, Gong NZ (2020). Certified robustness of com-
munity detection against adversarial structural perturbation via
randomized smoothing. In Proceedings of The Web Conference
2020, pp 2718–2724

Khaund T, Kirdemir B, Agarwal N, Liu H, Morstatter F (2022) Social
bots and their coordination during online campaigns: a survey.
IEEE Trans Comput Soc Syst 9(2):530–545

King G, Pan J, Roberts ME (2013) How censorship in china allows
government criticism but silences collective expression. Am Polit
Sci Rev 107:326–343

Leicht EA, Newman MEJ (2008) Community structure in directed net-
works. Phys Rev Lett 100(11):118703

Liu Y, Liu J, Zhang Z, Zhu L, Li A (2019) Rem: from structural entropy
to community structure deception. Adv Neural Inf Process Syst
32:12938–12948

Magelinski T, Bartulovic M, Carley KM (2021) Measuring node con-
tribution to community structure with modularity vitality. IEEE
Trans Netw Sci Eng 8(1):707–723

Malliaros FD, Vazirgiannis M (2013) Clustering and community detec-
tion in directed networks: a survey. Phys Rep 533(4):95–142

Mittal S, Sengupta D, Chakraborty T (2021) Hide and seek: outwitting
community detection algorithms. IEEE Transactions on Compu-
tational Social Systems

Nagaraja S (2010) The impact of unlinkability on adversarial commu-
nity detection: effects and countermeasures. In PETS, pp 253–272

Newman MEJ (2004) Fast algorithm for detecting community structure
in networks. Phys Rev E 69(6):066133

Newman MEJ (2006) Modularity and community structure in net-
works. PNAS 103(23):8577–8582

Newman MEJ, Girvan M (2004) Finding and evaluating community
structure in networks. Phys Rev E 69(2):026113

Peel L, Larremore DB, Clauset A (2017) The ground truth about
metadata and community detection in networks. Sci Adv
3(5):e1602548

Remy C, Rym B, Matthieu L (2017). Tracking bitcoin users activity
using community detection on a network of weak signals. In Inter-
national conference on complex networks and their applications,
pp 166–177. Springer

Rosvall M, Bergstrom CT (2008) Maps of random walks on complex
networks reveal community structure. PNAS 105(4):1118–1123

Rozemberczki B, Davies R, Sarkar R, Sutton C (2019). Gemsec: graph
embedding with self clustering. In: Proceedings of the 2019 IEEE/
ACM international conference on advances in social networks
analysis and mining, pp 65–72

Strogatz SH (2001) Exploring complex networks. Nature
410(6825):268–276

Traag VA, Aldecoa R, Delvenne J-C (2015) Detecting communities
using asymptotical surprise. Phys Rev E 92(2):022816

Traag VA, Waltman L, Van Eck NJ (2019) From louvain to leiden:
guaranteeing well-connected communities. Sci Rep 9(1):1–12

Waniek M, Michalak TP, Wooldridge MJ, Rahwan T (2018) Hiding
individuals and communities in a social network. Nat Human
Behav 2(2):139–147

Yuce ST, Agarwal N, Wigand RT, Lim M, Robinson RS (2014) Bridg-
ing women rights networks: analyzing interconnected online col-
lective actions. J Glob Inf Manag 22(4):1–20

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Community deception: from undirected to directed networks
	Abstract
	1 Introduction
	1.1 Contributions and outline

	2 Background
	2.1 Problem statement

	3 Related work
	3.1 Modularity-based deception
	3.2 Safeness-based deception
	3.3 Permanence-based deception

	4 Deception in directed networks
	4.1 Directed modularity-based deception
	4.1.1 Intra-edge addition
	4.1.2 Inter-edge addition
	4.1.3 Intra-edge deletion
	4.1.4 Inter-edge deletion

	4.2 Directed Safeness-Based Deception
	4.2.1 Intra-edge addition
	4.2.2 Inter-edge addition
	4.2.3 Intra-edge deletion
	4.2.4 Inter-edge deletion

	4.3 Directed permanence-based deception
	4.3.1 Intra-edge addition
	4.3.2 Inter-edge addition
	4.3.3 Intra-edge deletion
	4.3.4 Inter-edge deletion

	4.4 Directed deception in practice

	5 Experimental evaluation
	5.1 Experimental setting
	5.1.1 Detectors
	5.1.2 Deceptors

	5.2 Datasets
	5.3 Evaluation methodology
	5.4 Evaluating directed community deception
	5.4.1 Deception score
	5.4.2 Normalized mutual information (NMI)

	5.5 Comparison with undirected deception
	5.5.1 Deception score

	5.6 Deception with ground truth communities
	5.6.1 Deception running time

	6 Conclusions
	References

