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Abstract
An important aspect of preventing fake news spreading in social networks is to proactively detect the users that are likely 
going to spread such news. Research in the domain of spreader detection is at a nascent stage compared to fake news detec-
tion. In this paper, we propose a graph neural network-based framework to identify nodes that are likely to become spread-
ers of false information. Using the community health assessment model and interpersonal trust (quantified using network 
topology and historical behavioral data), we propose an inductive representation learning framework to predict nodes of 
densely connected community structures that are most likely to spread fake news, thus making the entire community vulner-
able to the infection. We also analyze the performance of our model in the presence and absence of bots detected using an 
existing state-of-the-art bot detection model. Using topology- and activity-based trust properties sampled and aggregated 
from neighborhood of nodes, we are able to predict false information spreaders better than refutation information spreaders.

1 Introduction

Social media platforms have become a ubiquitous part of 
daily lives. People use these platforms to connect with loved 
ones, for entertainment and increasingly rely on them as 
their primary source of news. Research has in fact shown 
than around 70% of people now get their news from online 
sources and 37% of this is made up of social media platforms 
entirely (Newman et al. 2020). But with this increase in reli-
ance, there has also been a simultaneous rise in the massive 
diffusion of misinformation through these networks. This 
rise has brought a whole host of consequences with it, from 
swaying popular opinion during elections to generating mass 
panic during pandemics. Therefore, it is no surprise that 
researchers have been increasingly studying computational 
models for the detection and prevention of false informa-
tion (popularly called fake news). Most of the literature have 
focused on identifying the veracity of information. But it 

is not only important to detect false information but also 
identify people who are most likely to believe and spread the 
false information. The development of these detection strate-
gies can help contain and prevent the rapid spreading of fake 
news in social networks. While most existing work in fake 
news detection systems has focused on content- and propaga-
tion-based features, we propose a complementary approach 
that quantifies interpersonal trust using the social network 
topology and historical user activity. As the COVID-19 virus 
spread around the world, so did various rumors and false 
information regarding various aspects pertaining to it. The 
need for a spreader detection model and mitigation strategy 
for fake news has never been more evident. Thus, in this 
paper, we propose a novel spreader detection model that 
uses inductive representation learning allowing it to quickly 
identify spreaders before the false information penetrates 
deep into any densely connected community. The main con-
tributions of the paper are as follows: 

1.  We identify a gap in existing literature related to a lack 
of an authoritative benchmark dataset and thus collect 
and publish the MinFN dataset (Rath 2021) consisting 
of real-world Twitter data from 10 unique news events 
along with their related fake and true tweets, users who 
have retweeted these tweets, their user-metadata and 
their follower-followee networks.
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2.  We propose a fake news spreader detection framework 
using the Community Health Assessment model (Rath 
et al. 2019) and computational trust (Roy et al. 2016). 
To the best of our knowledge, this is the first fake news 
spreader detection model proposed that integrates fea-
tures extracted from both underlying network structure 
(instead of the propagation structure) and historical 
behavioral data (instead of the content of the news).

3.  We implement our framework using inductive represen-
tation learning (Hamilton et al. 2017) where we sam-
ple neighborhood of nodes in a weighted network and 
aggregate their trust-based features.

4.  We evaluate our proposed interpersonal trust-based 
framework the MinFN and empirically show that trust-
based modeling helps us identify false information 
spreaders with high accuracy, which makes the tech-
nique useful for fake news mitigation. We also investi-
gate the effects of bots on our models and show that a 
bot-filtration step is essential to ensure optimal perfor-
mance of our models.

5.  We further observe that our model’s accuracy when 
detecting false information spreaders is higher than 
that for true information spreaders. This indicates that 
people are usually able to reason about true informa-
tion from analyzing the content, and thus, trust in their 
neighbors is not a very significant factor. However, 
determining the veracity of false information that is 
plausibly true from content itself is difficult and hence 
we have to rely on sources we trust to make this judge-
ment. This makes nodes that are fake news spreaders 
and at the same time highly trusted by lots of people 
in the network, especially dangerous. We acknowledge 
that not all such uber-spreaders have ill intentions as 
some might be just ignorant. They all, nonetheless, have 
power to spread false information far and wide, with 
great speed.

This paper is an extended version of Rath et al. (2020). 
We build on the ideas and framework presented by first 
accounting for the effects of bots in our networks. We treat 
bots and humans separately, which is a major difference 
from Rath et al. (2020). We use stat-of-the-art bot detec-
tion techniques to accurately detect bots and then study the 
effects of their presence by running our models on networks 
void of bots which are more representative social networks 
comprised of actual people. We also present an exten-
sion of the dataset used in Rath et al. (2020) by providing 
a more comprehensive activity-feature-set for each user. 
We build new models that leverage this new set of features 

and compare their performance to our previous models. In 
addition, we also make the MinFN dataset public for other 
researchers to build on and evaluate their models furthering 
efforts to create a universal benchmark (Rath 2021).

The rest of the paper is organized as follows: We first 
discuss related work, then describe a motivating example 
for spreader detection from a network structure perspective, 
and summarize past ideas that the proposed research builds 
upon. We then explain the proposed framework and how we 
model interpersonal trust with it followed by experimen-
tal analysis. We do further analysis after bot filtration and 
increasing timeline data volume. Finally, we give our con-
cluding remarks and proposed future work.

2  Related work

In this section, we highlight related work from four domains 
that our proposed framework build upon. They are (1) False 
Information in social networks, (2) Graph Neural Networks, 
(3) Computational Trust in social networks, (4) Detection of 
Bots in social networks.

2.1  False information in social networks

Research in the domain of fake detection and containment of 
false information is vast and varied. We discuss work along 
three main dimensions: Fake News Detection, Fake News 
Spreader Detection, and Fake News Datasets. Our work lies 
in intersection of these three fields.

2.1.1  Fake news detection

In order to study the credibility and gauge the validty of 
claims, researchers have employed techniques that generally 
fall into four buckets: 

Content-based methods:  These methods rely on lexical 
features, syntactic features 
and topic features. Pérez-
Rosas et  al. (2017) identify 
five major categories of differ-
ences between fake and true 
content—‘Ngrams,’ ‘punctua-
tion,’ ‘psycholinguistic fea-
tures,’ ‘readability’ and ‘syn-
tax.’ Researchers have used 
these features to detect fake 
news (Potthast et al. 2017; Hu 
et al. 2014; Ito et al. 2015).
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Social Context-based methods:  These methods use the 
valuable data present in 
terms of human-content 
interaction data. From 
these data, researchers 
have extracted post-
based features, which 
rely on users’ individ-
ual opinions about the 
piece of information. 
Long (2017) concluded 
that the addition of 
these profile features 
led to a performance 
in existing fake news 
detec t ion  mode ls . 
Guess et  al. (2019) 
found cor relat ions 
between party affilia-
tion and how likely a 
user was to share fake 
posts on Facebook. 
Other researchers have 
extracted propagation-
based features from 
this interaction data, 
which uses the overall 
information dissemina-
tion network. Wu et al. 
(2015) gleaned from 
propagation networks 
that fake messages 
are first posted by an 
ordinary user then 
forwarded by opinion 
leaders before finally 
reaching a large num-
ber of ordinary users, 
whereas in the case of 
true messages, it is first 
posted by opinion lead-
ers and then reaches a 
large number of ordi-
nary users. They devel-
oped a hybrid SVM 
model which utilized 
propagation structure 
to detect fake news. Jin 
et  al. (2014) build on 
previous studies and 
built a propagation-
based model that used 
microblogs, sub-events 

and events for infor-
mat ion credibi l i ty 
validation.

Feature Fusion-based methods:  Since content-based 
features and propa-
gation-based features 
can be complementary, 
researchers have built 
fusion models that lev-
erage both types of fea-
tures (Shu et al. 2019; 
Della  Vedova et  al. 
2018; Volkova and Jang 
2018)

Deep Learning-based methods:  These methods seek to 
use techniques to glean 
a abstracted view of 
fake news spread. The 
most widely used meth-
ods involve Convolu-
tional Neural Networks 
(CNN), Recurrent Neu-
ral Networks (RNN), 
Generative Adversar-
ial Networks (GAN), 
and more recently 
Graph Convolutional 
Networks (GCN). Li 
et al. (2018) proposed 
a Bidirectional GRU 
model that utilized both 
directions of interaction 
information for fake 
news detection. Liu and 
Wu (2018) used CNNs 
and GRU to distinguish 
between true and false 
propagation paths. 
Chen et al. (2018) pro-
posed a deep attention 
neural network that 
captured contextual 
variations of relevant 
posts over time. We dis-
cuss recent works that 
utilize Graph Neural 
Networks and GCNs in 
the subsequent sections 
as it closely relates to 
our work.
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2.1.2  Fake news spreader detection

Although most work in the domain of fake news has focused 
on detection of the content or the news itself. There is a smaller 
body of work for the detection of users that are most likely to 
spread fake news. Early work in this field used common user-
metadata features like number of followers, number of followees 
(Almaatouq et al. 2016), user-profile-name, email, etc., (Ara-
pakis et al. 2017) to detect suspicious profiles. Other work has 
used camera-based sensors (Castillo et al. 2011) and mobile 
phone tracking data (Carlini et al. 2016), to detect spammers 
and fake profiles. Pennycook and Rand (2020) conducted a sur-
vey-based study that studied the cognitive basis for identifying 
people who would believe fake news. Karami et al. (2021) used 
psychological profiling, and Shu et al. (2018) used other explicit 
and implicit profile features to identify trait differences between 
true news and fake news spreaders. One of the shared tasks at 
the PAN @ CLEF conference in 2020 was Profiling Fake News 
Spreaders on Twitter (Rangel et al. 2020). There were over 60 
submissions that all tried to address this task  (Cardaioli et al. 
2020; Pizarro 2020; Vogel and Meghana 2020). The best accu-
racy that any of the submissions achieved was 75% as opposed 
to our best model which achieved an accuracy of 93% when 
detecting fake news spreaders. Giachanou et al. (2020) used 
CNNs and word embeddings to differentiate between users who 
spread fake news and who fact check it. This is the work that 
is closest to ours, but while Giachanou et al. (2020) proposes a 
model to differentiate between spreaders and checkers only, our 
framework is more general as it is able to distinguish between 
spreaders and any other type of user. We also achieve better 
performance with our model than Giachanou et al. (2020) (F1 
scores of 0.59 vs 0.93).

2.1.3  Fake news datasets

Guo et al. surveyed all the publicly available datasets used in 
the domain of Fake News research and found that although 

there are a few open datasets for each of the major social net-
works, there is still a lack of standardized universal bench-
mark dataset (Guo et al. 2020). They attribute this to the 
time-consuming and labor-intensive nature of collecting fake 
news spread data. Some popular datasets that use data from 
Twitter are summarized as follows: 

1. TwitterDS: Detecting Rumors from Microblogs with 
Recurrent Neural Networks (Ma et al. 2016)

2. Twitter15: Detect Rumors in Microblog Posts Using 
Propagation Structure via Kernel Learning (Ma et al. 
2017)

3. Twitter16: Detect Rumors in Microblog Posts Using 
Propagation Structure via Kernel Learning (Ma et al. 
2017)

4. PolitiFact: Fakenewsnet: A data repository with news 
content, social context and spatiotemporal information 
for studying fake news on social media (Shu et al. 2018)

5. GossipCop: Fakenewsnet: A data repository with news 
content, social context and spatiotemporal information 
for studying fake news on social media (Shu et al. 2018)

6. PHEME-R: Analyzing How People Orient to and Spread 
Rumors in Social Media by Looking at Conversational 
Threads (Zubiaga et al. 2016)

7. PHEME: All-in-one: Multi-task Learning for Rumor 
Verification (Kochkina et al. 2018)

8. MinFN: The Minnesota Fake News dataset that we pub-
lish as a part of this paper at (Rath 2021) (Table 1)

TwitterDS, Twitter15, Twitter16, PHEME are popular 
choices of datasets used in fake news research, but they all do 
not contain social-network information. Twitter15 and Twit-
ter16 contain the tweet propagation-tree data as well while 
TwitterDS does not. Politifact, GossipCop, and PHEME-R 
datasets have almost all the information that our model intends 
to utilize, but they lack in the volume of data that they examine. 

Table 1  Summary of dataset 
characteristics

#Users refer to the total number of unique users. Time refers to temporal time-stamp information associ-
ated with tweets, Text is the tweet text, User is the user metadata and Network is the follower-followee 
network for spreaders

Dataset #Users Time Text User Network Trust

TwitterDS 491,229 ✓ ✓ ✓

Twitter15 ✓ ✓ ✓

Twitter16 ✓ ✓ ✓

PolitiFact 1,540,190 ✓ ✓ ✓ ✓

GossipCop 1,354,724 ✓ ✓ ✓ ✓

PHEME-R 56,099 ✓ ✓ ✓ ✓

PHEME ✓ ✓ ✓

MinFN Table 4 ✓ ✓ ✓ ✓ ✓
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The critical difference in MinFN is that it provides network and 
twitter activity metadata for a false information and its refuta-
tion information. We summarize the MinFN dataset’s charac-
teristics in Table 4 which makes this difference more apparent.

2.2  Graph neural networks

Graph neural networks (Scarselli et al. 2008) are an emerg-
ing field of research that generalizes neural network models 
to graph structures. They have shown better performance 
over other node embeddings approaches which implement 
shallow learning methods. Some domains in which they 
have shown state-of-the-art improvement include computer 
vision (Defferrard et al. 2016; Monti et al. 2017), natural 
language processing (Yao et al. 2019; Zhang et al. 2018), 
molecular feature extraction (Duvenaud et al. 2015), extract-
ing features from highly multi-relational data (Schlichtkrull 
et al. 2018), neuroimage analysis to perform disease progres-
sion modeling for people with Parkinson’s disease (Zhang 
et al. 2018), traffic prediction (Yu et al. 2017) and for rec-
ommender systems (Monti et al. 2017; Ying et al. 2018) to 
name a few.  Hu et al. (2019) is a recent work that proposed 
a graph neural network model for fake news detection using 
news content, but they model propagation paths while we 
model network topology. Usefulness of Graph neural net-
works can be explained by the fact that we want to analyze 
how the network structure and the trust-based node fea-
tures can together be used to distinguish false information 
spreader from true information spreader. Other machine 
learning models do not capture this information.

2.3  Computational trust in social networks

Computational trust in social networks is a widely studied 
domain in which researchers have tried to assign trust scores 
to nodes of a network. Mui (2002) proposed a computational 
model for trust and reputation in social networks based on 
history of past interactions. Eigentrust by Kamvar et al. 
(2003) assigned global trust value to people sharing and 
distributing files in a P2P network which helped an ordinary 
user in the network to identify malicious peers and isolate 
them from the network. Mishra and Bhattacharya (2011) 
proposed a model to compute the bias and prestige of nodes 
in social networks which used an iterative matrix algorithm 
using edge weights. Roy et al. (2016) proposed the Trust in 
Social Media algorithm that assigned a pair of complemen-
tary trust scores called trustingness and trustworthiness to 
nodes. Our proposed research builds upon Roy’s work.

2.4  Detection of bots in social networks

In order to mitigate the ill-effects of bots on social media 
platforms, researchers have proposed various bot detection 

methodologies. Ferrara et al. (2016) proposed a taxonomy 
for bot detection methods which included graph-based, fea-
ture-based, crowd-sourcing-based and hybrid approaches. 
Although there are a plethora of methods of differentiating 
between bots and humans, like that of Chu et al. (2013) that 
uses behavioral biometrics like mouse and keystroke pat-
terns, our research leverages existing feature-based machine 
learning approaches to detect bots. BotOrNot Davis et al. 
(2016) is a well-known publicly available system that uses 
a wide array of features to decide if a certain account is a 
bot. Amleshwaram et al. (2013) proposed CATS which uses 
a list of URLs, entropy and community structures to detect 
spam bots on Twitter. Kudugunta and Ferrara proposed mul-
tiple models that use account-level features, tweet data or a 
combination of the two. One of their proposed deep learn-
ing architectures was able to detect bots using only a single 
tweet and user metadata (Kudugunta and Ferrara 2018). We 
build on models that they proposed for bot detection based 
on account-level features.

3  Motivation and preliminaries

To understand the role of network structure in fake news 
spreader detection, consider the scenario illustrated in Fig. 1. 
The network contains eight communities. Subscript of a node 
denotes the community it belongs to. In the context of Twit-
ter, directed edge B1 → A1 represents B1 follows A1 . Thus, a 
tweet flows from A1 to B1 . If B1 decides to retweet A1 ’s tweet, 
we say that B1 has endorsed A1 ’s tweet, and that B1 trusts A1 . 
Communities in social networks are modular groups, where 

Fig. 1  Motivating example. Red nodes denote fake news spreaders
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within-group members are tightly connected, and intra-com-
munity trust is higher, compared to trust between members 
in different communities, who are at best loosely connected. 
The more B trusts A, the higher the chance that B will retweet 
A’s tweet, and thus propagate A’s message, whether it is true 
or false. The figure illustrates the spread of fake news starting 
from D1 as it spreads across the network through A3 till A8 . 
We consider two scenarios for spreader detection:

1. Information reaches neighborhood of a community: 
Consider the scenario when a message is propagated by D1 , 
a neighborhood node for community 3. Node A3 is exposed 
and is likely to spread the information, thus beginning spread 
of information into a densely connected community. Thus, it 
is important to predict nodes in the boundary of communi-
ties that are likely to become information spreaders.

2. Information penetrates the community: Consider the sce-
nario where A3 decides to propagate a message. Nodes B3 , D3 
and E3 , which are immediate followers of A3 , are now exposed 
to the information. Due to their close proximity, they are vulner-
able to believing the endorser. The remaining nodes of the com-
munity ( C3 , F3 ) are two steps away from A3 . Similarly, for com-
munity 8 when the message has reached node A8 , nodes D8 and 
F8 are one step away and remaining community members ( E8 , 
C8 , B8 ) are two steps away. Intuitively, in a closely knit com-
munity structure, if one of the nodes decides to spread a piece 
of information, the likelihood of it spreading quickly within the 
entire community is very high. Thus, it is important to detect 
nodes within a community that are likely to become informa-
tion spreaders to protect the health of the entire community.

Next, we discuss some concepts that our proposed model 
builds upon.

3.1  Community health assessment model

A social network has the characteristic property to exhibit 
community structures that are formed based on inter-node 
interactions. Communities tend to be modular groups where 
within-group members are highly connected, and across-
group members are loosely connected. Thus, members 
within a community would tend to have a higher degree of 
trust among each other than between members across differ-
ent communities. If such communities are exposed to fake 
news propagating in its vicinity, the likelihood of all commu-
nity members getting infected would be high. Motivated by 
the idea of ease of spreading within a community, we use the 
Community Health Assessment model. The model identifies 
three types of nodes with respect to a community: neighbor, 
boundary and core nodes, which are explained below: 

1. Neighbor nodes: These nodes are directly connected to 
at least one node of the community. The set of neighbor 
nodes is denoted by Ncom . They are not a part of the 
community.

2. Boundary nodes: These are community nodes that are 
directly connected to at least one neighbor node. The set 
of boundary nodes is denoted by Bcom . It is important to 
note that only community nodes that have an outgoing 
edge toward a neighbor nodes are in Bcom.

3. Core nodes: These are community nodes that are only 
connected to members within the community. The set of 
core nodes is denoted by Ccom.

The idea was proposed in Rath et al. (2019) to show how 
trust plays a more important role in spreading fake news 
compared to true news. The neighbor, boundary, and core 
nodes for communities in Fig. 1 are listed in Table 2 (Fig. 2).

3.2  Trustingness and trustworthiness

In the context of social media, researchers have used social net-
works to understand how trust manifests among users. The Trust 
in Social Media (TSM) algorithm is a technique that assigns a 
pair of complementary trust scores to each node in a network 

Fig. 2  Community health assessment model

Table 2  Neighbor, boundary and core nodes for communities in 
Fig. 1

com N
com

B
com

C
com

1 D2 C1 A1,B1,E1,D1,F1,G1

2 A6,E6 C2,D2 A2,B2,E2,F2

3 D1,D5,E6 A3,C3 B3,D3,E3,F3

4 D3 C4 A4,B4,D4,E4,F4

5 D4,D8,E8 D5,A5,C5 E5,B5

6 A5 D6 A6,B6,C6,E6

7 B6 A7 B7,C7,D7,E7,F7 , G7

8 F7 A8 B8,C8,D8,E8,F8
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called Trustingness and Trustworthiness. Trustingness (ti) quan-
tifies the propensity of a node to trust its neighbors and Trust-
worthiness (tw) quantifies the willingness of the neighbors to 
trust the node. The TSM algorithm takes a user network, i.e., a 
directed graph G⇐V⇔E⇒ , as input together with a specified 
convergence criteria or a maximum permitted number of itera-
tions. In each iteration for every node in the network, trustingness 
and trustworthiness are computed using the following equations:

where u, v, x ∈ V are user nodes, ti(v) and tw(u) are trust-
ingness and trustworthiness scores of v and u, respectively, 
w(v, x) is the weight of edge from v to x, out(v) is the set of 
out-edges of v, in(u) is the set of in-edges of u, and s is the 
involvement score of the network. Involvement is basically 
the potential risk a node takes when creating a link in the 
network, which is set to a constant empirically. The details 
of the algorithm are excluded due to space constraints and 
can be found in Roy et al. (2016).

3.3  Believability

Believability is an edge score derived from the Trustingness and 
Trustworthiness scores (Rath et al. 2017). It helps us to quantify 
the potential or strength of directed edges to transmit informa-
tion by capturing the intensity of the connection between the 
sender and receiver. Believability for a directed edge is com-
puted as a function of the trustworthiness of the sender and the 
trustingness of the receiver.

More specifically, given users u and v in the context of micro-
blogs such as Twitter, a directed edge from u to v exists if u 
follows v. The believability quantifies the strength that u trusts 
on v when u decides to follow v. Therefore, u is very likely to 
believe in v if: 

1. v has a high trustworthiness score, i.e., v is highly likely to 
be trusted by other users in the network, or

2. u has a high trustingness score, i.e., u is highly likely to trust 
others.

So, the believability score is supposed to be proportional to the 
two values above, which can be jointly determined and com-
puted as follow:

The idea has been previously applied in Rath et al. (2017) 
where a classification model was built to identify rumor 

(1)

(

ti(v) =
∑

∀x∈out(v)

(

w(v, x)

1 + (tw(x))
s

)

)

(2)tw(u) =
∑

∀x∈in(u)

(

w(x, u)

1 + (ti(x))s

)

(3)Believability(u → v) = tw(v) ∗ ti(u)

spreaders in Twitter user network based on believability 
measure. Based on Zhao and Rosson (2009), information 
posted by a person the reader has deliberately selected to 
follow on Twitter is perceived as useful and trustworthy, 
which intuitively implies that follow relation can be consid-
ered as proxy for trust.

4  Proposed approach

4.1  Problem formulation

Given a directed social network G⇐V⇔E⇒ comprising 
disjoint modular communities ( � ), with each community 
( com ∈ � ) having well-defined neighbor nodes ( Ncom ), 
boundary nodes ( Bcom ) and core nodes ( Ccom ). Aggregat-
ing topology-based (top) and activity-based (act) trust 
properties from nodes sampled from depth K (where 
NbrK=1(b) ⊆ Ncom ), we want to predict boundary nodes b 
that are most likely to become information spreaders ( bsp ). 
Similarly, we aggregate nodes sampled from depth K (where 
NbrK=1(c) ⊆ Bcom ) to predict core nodes c that are most 
likely to become information spreaders ( csp).

4.2  Inductive representation learning model

Most researchers have studied fake news dissemination after 
the spreading of the information. But, any mitigation strat-
egy that seeks to minimize the spread of fake news will have 
to work dynamically and adapt to the fast-changing nature 
of fake news spread. Therefore, keeping this in mind, we 
employ a machine learning technique that is scalable and 
can adapt efficiently to growing graph structures.

Most studies have analyzed the dissemination of fake news 
after the spreading of the news. But, any viable mitigation sys-
tem will have to work in real time and adapt to the fast evolving 
nature of fake news network. Therefore, keeping this in mind, 
we employ a adaptive and scalable technique that is efficient for 
large evolving graph structures. It is important that the model 
is able to quickly learn meaningful representations for newly 
seen (i.e., exposed) nodes without relying on the complete net-
work structure. Most graph representation learning techniques, 
however, employ a transductive approach to learning node rep-
resentations which optimizes the embeddings for nodes based 
on the entire graph structure. We employ an inductive approach 
inspired from GraphSAGE (Hamilton et al. 2017) to generate 
embeddings for the nodes as the information spreading network 
gradually evolves. It learns an aggregator function that general-
izes to unseen node structures which could become potential 
information spreaders. The idea is to simultaneously learn the 
topological structure and node features from the neighborhood 
(Nbr) nodes, by training a set of aggregator functions instead of 
individual node embeddings. Using an inductive representation 
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learning model, we learn features of the exposed population 
(i.e., followers of the spreaders) by aggregating trust-based 
features from their neighborhood nodes. Fig. 3 shows how we 
model the proposed approach with community health assess-
ment perspective. Nodes outside the solid oval represent Ncom , 
between solid and dotted oval represents Bcom and within the 
dotted oval represents Ccom . (a) shows that false information 
spread has reached the two neighbor nodes (highlighted in 
red). Three boundary nodes (circled in red) are exposed to the 
information. In (b), we learn representations for the exposed 
boundary nodes by aggregating features of their local neighbor-
hood structure (denoted by white nodes). Two out of the three 
boundary nodes that become spreaders are highlighted and the 
exposed core nodes are circled. Similarly, in (c), we learn rep-
resentations for the exposed core nodes by aggregating their 
local neighborhood features. One core node becomes a spreader 
and the community is now vulnerable to fake news spreading.

The proposed framework is explained as follows: First, we gen-
erate a weighted information spreading network based on inter-
personal trust. We then sample neighborhood with a probability 
proportional to the trust-based edge weights. For the sampled 
neighborhood, we aggregate their feature representations. Finally, 
we explain the loss function used to learn parameters of the model.

4.3  Generating weighted graph

Graph of the information spreading network has edge weights 
that quantify the likelihood of trust formation between send-
ers and receivers. Once we compute these edge scores using 
techniques mentioned in Table 3, we normalize weights for all 
out-edges connecting the boundary node.

Similarly, we normalize weights for all in-edges connecting 
the boundary node.

4.4  Sampling neighborhood

Instead of sampling neighborhood as a uniform distribution, 
we sample a subset of neighbors proportional to the weights of 
the edges connecting them. Sampling is done recursively till 
depth K. The idea is to learn features from neighbors propor-
tional to the level of inter-personal trust. Algorithm 1 explains 
the sampling strategy. 

(4)ŵbx =
belbx

∑

∀x∈out(b) belbx

Fig. 3  Community health assessment model perspective for fake news spreading

Algorithm 1: Sample neighborhood (SA)
Input: G(V, E): Information spreading network,
K: Sampling depth, Bcom: Boundary nodes of community.
Output: NbrK(b): Sampled neighborhood for b till depth K.
φ ← Disjoint modular communities in G;
for each com ∈ φ do

for each b ∈ Bcom do
Nbr0(b) ← {b}
for k = 1 . . .K do

Nbrk(b) ← Nbrk−1(b) ∪ SAk(b)Eq 4

end for
end for

end for
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4.5  Aggregating features

After sampling neighborhood as an unordered set, we aggre-
gate the embeddings of sampled nodes till depth K recur-
sively for each boundary node. The intuition is that at each 
depth, the boundary nodes incrementally learn trust-based 
features from the sampled neighborhood. Three aggregation 
architectures namely mean, LSTM and pooling explained 

in Hamilton et al. (2017) can be used. For simplicity, we 
only apply the mean aggregator, which takes the mean of 
representations hk−1

u
 where u ∈ Nbrk−1(b) . The aggregator 

is represented as follows:

Algorithm 2 explains the aggregation strategy. 

(5)hk
b
← �(Wk

b
.Mean({hk−1

b
} ∪ {hk−1

u(∀u∈Nbr(b))
)})

Fig. 4  Inductive representation learning model for detection of false 
information spreaders

Table 3  Trust based strategy for sampling and aggregating

Sample Topology (top) Activity (act)

w
xv

bel
xv

RT
xv

Aggregate trusting others ti(x) ∑

∀i∈t

�

1 if i = RT
x

0 otherwise.

n(t)

trusted by others tw(x)
∑

∀i∈t in(RTx )

n(t)

Algorithm 2: Aggregate features (GE)
Input: G(V, E): Information spreading network,
K: Sampling depth, Bcom: Boundary nodes of community, xv(∀v∈V):
Node features.
Output: zkb : Embedding vector for b.
φ ← Disjoint communities in G;
for each com ∈ φ do

for each b ∈ Bcom do
h0
b ← xb

for k = 1 . . .K do
hk
Nbr(b) ← GEk(hk−1

u(∀u∈Nbr(b)))

hk
b ← σ(W k

b .Concat(hk−1
b , hk

Nbr(b)))Eq. 5

end for
hk
b ← hk

b/||hk
b ||2

end for
zkb ← hk

b

end for

4.6  Learning parameters

The weight matrices in Algorithm 2 are tuned using stochas-
tic gradient descent on a loss function in order to learn the 
parameters. We train the model to minimize cross-entropy.

The loss function is modeled to predict whether the 
boundary node is an information spreader ( bSp ) or a non-
spreader ( bS̄p ). y represents the actual class (2-dimensional 

(6)Loss(ŷ, y) = −
∑

∀b∈Bcom

∑

i∈{bSp,bS̄p}

yi log ŷi
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multinomial distribution of [1,0] for spreader and [0,1] for 
non-spreader) and ŷ represents the predicted class.

We extend the model for Ccom to identify the core node 
spreaders ( cSp ) and non-spreaders ( cS̄p ). Considering 
boundary nodes have denser neighborhood compared to 
core nodes, we later analyze whether the proposed model 
is more sensitive to density of neighborhood structure or 
the aggregated features. Fig. 4 shows visual representation 
of our model. The implementation code is made publicly 
available.1

4.7  Modeling interpersonal trust

Interpersonal trust has been shown to be effective in the 
detection of rumor spreaders (Rath et al. 2017). We thus use 
trust measures as edge weights for our networks. We first 
apply a non-uniform neighborhood sampling strategy using 
weighted graph (where edge weights quantify the likelihood 
of trust formation). We then aggregate two trust features: 
(1) the likelihood of trusting others and (2) the likelihood 
of being trusted by others. We use two kinds of interper-
sonal-trust: topology-based (top) computed from the social 
network topology and activity-based (act) computed using 
timeline activity data collected for every node using Twitter 
API. We use trustingness (ti(x)) and trustworthiness (tw(x)) 
scores of node x obtained from the TSM algorithm as proxy 
for topology-based trust features and the fraction of time-
line statuses of x that are retweets ( RTx ) denoted by 

∑

∀i∈t{1 
if i = RT

x
 else 0}∕n(t) and average number of times x’s 

tweets are retweeted ( n(RTx) ) denoted by 
∑

∀i∈t in(RTx)
∕n(t) 

as activity-based trust features (t represents most recent 
tweets posted on x’s timeline). For an edge from x to v, the 
topology-based edge weight is the believability score ( belxv ) 
and activity-based edge weight is the number of times x is 
retweeted by v ( RTxv ). Trust-based sampling and aggregation 
strategy are summarized in Table 3.

5  Experiments and results

5.1  Construction of the MinFN dataset

In order to validate our model, we empirically test it out on 
real-world Twitter data belonging to 10 unique new events. 
For each news event, we collect tweets that spread some 
fake news about the event and also collect corresponding 
refuting true tweets. We rely on altnews.in, a popular fact 
checking website, to discern the validity of a tweet. From a 
source tweet, we extract the source tweeter and the retweet-
ers of this tweet (proxy for spreaders). We then collect the 

follower-following network of the spreaders (proxy for net-
work) and also the timeline data for all nodes in the network 
(to generate trust-based features) using the Twitter API.2. 
We evaluate our model on false information networks (F) 
and the refuting true information networks (T) separately, 
we also evaluated on the networks obtained by combining 
them ( F ∪ T  ). Metadata for the network dataset aggregated 
for all news events are summarized in Table 4.

5.2  Settings and protocols

We generated the topology-based trust measures by run-
ning the Trust Scores in Social Media (TSM) algorithm on 
every network to obtained ti, tw for all nodes and bel for 
all edges. We set the hyper-parameters using recommenda-
tions from Roy et al. (2016) (number of iterations = 100, 
involvement score = 0.391). We extract the disjoint modular 
communities of every network using Louvain community 
detection algorithm (Blondel et al. 2008) and identified the 
neighbor, boundary and core nodes for every community 
using the Community Health Assessment model. We then 
generated the activity-based trust measures from timeline 
data of the nodes. The embeddings are generated using the 
forward propagation method shown in Algorithm 2, assum-
ing that the model parameters are learnt using Equation 6. 
Due to a class imbalance, we undersample the majority class 
to obtain balanced spreader and non-spreader class distribu-
tion. The size of hidden units is set to 128 and the learning 
rate is set to 0.001. We used rectified linear units as the non-
linear activation function. The batch size was adjusted for 
optimal performance depending on the size of training data-
set. Due to the heavy-tailed nature of degree distributions of 
edges in social networks, we downsample before modeling, 
which ensured that the neighborhood information is stored in 
dense adjacency lists. This drastically reduces our run time, 
which is ideal for early detection of spreaders. We also set 
sampling depth K = 1 because the network constitutes only 
immediate follower-following nodes of the spreaders. We 
compared results for the following three types of models:

5.2.1  Node feature only

Classification models that use only node features. Three 
baselines used are as follows:

(1) Trusting others Intuitively, users with high likelihood 
to trust others tend to be spreaders of false information. 
This model learns a threshold based on correlation between 
‘trusting others’ features (both topology- and activity-based) 
and user ground truth.

2 https:// devel oper. twitt er. com/ en/ docs/ twitt er- api.1 https:// github. com/ Bhavt oshRa th/ Proac tive_ Sprea der_ Detec tion.

https://developer.twitter.com/en/docs/twitter-api
https://github.com/BhavtoshRath/Proactive_Spreader_Detection
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(2) Trusted by others Intuitively, users with high likelihood 
to be trusted by others tend to be spreaders of false informa-
tion. Like the previous model, this model learns a threshold 
based on correlation between ‘trusted by others’ features (both 
topology- and activity-based) and user ground truth.

(3) Interpolation This model linearly combines ‘trusting 
others’ and ‘trusted by others’ features to find an optimal 
threshold.

5.2.2  Network structure only

Classification model that uses features extracted from graph 
structure. One baseline used is

(4) LINE: This model applies LINE (Tang et al. 2015) 
which serves as transductive learning baseline.

5.2.3  Node feature + network structure

Classification models that use features extracted using both 
network structure and node features. Following models, 
including the baseline (GCN) and proposed models are as 
follows:

(5) GCNtop : This model implements graph convolu-
tional networks (Kipf and Welling 2017)-based transduc-
tive learning model that aggregates topology features from 
neighborhood.

(6) GCNact : This is the graph convolutional networks-
based model that aggregates activity features from 
neighborhood.

(7) SArandGEtop : This model applies the inductive learning 
by sampling neighborhood considered as uniform distribu-
tion and aggregating only topology-based features.

(8) SArandGEact : This model applies the inductive learning 
by sampling neighborhood considered as uniform distribu-
tion and aggregating only activity-based features.

(9) SAtopGEtop : Instead of random sampling, we sample 
on the believability (bel) weighted network and aggregate 
their topology-based features.

(10) SAtopGEact : Sampling approach is identical to (11) 
but we aggregate neighborhood’s activity-based features.

(12) SAactGEtop : We sample neighborhood non-uniformly 
on the retweet count (RT) weighted network and aggregate 
their topology-based features.

(13) SAactGEact : Sampling approach is identical to (14) 
but we aggregate neighborhood’s activity-based features.

We compare our models against baseline models (1)–(3) 
inspired from (Rath et al. 2018) that considers features based 
on trust. Baseline model (4) considers features based on net-
work structure only (Tang et al. 2015). Proposed models 
(5)–(13) integrate both neighborhood structure and node 
features. We analyze the best combination of sampling and 
aggregating strategy that predicts spreader node with highest 
accuracy. For evaluation, we did a 80-10-10 train-validation-
test split of the dataset. We used fivefold cross-validation 
and four common metrics: Accuracy, Precision, Recall and 
F1 score. Accuracy is defined over the two classes as fol-
lows: Accu. = # of correctly predicted users

Total#of users
 , Precision is defined as 

Prec. =
TP

TP+FP
 , the Recall is defined as Rec. = TP

TP+FN
 , and 

F1 is defined as F1 =
2∗Prec.∗Rec.

Prec.+Rec.
 , where TP, FP and FN are 

true positive rate, false positive rate and false negative rate, 
respectively. We only show results for the spreader class.

5.3  Results and analysis

We evaluated our proposed model on 10 debunked news 
events. For each news event, we obtained three types of net-
works: network for the false information (F), for the true 
information (T) refuting it and the network obtained by 
combining them ( F ∪ T  ). Thus, we ran our models on 30 
large-scale networks.

5.3.1  Boundary node analysis (less dense Nbr)

Table 5 summarizes results for the boundary node prediction 
aggregated for all news. The results show that F performs 
better than T on almost every metrics, while F ∪ T performs 
poorly. The poor performance of F ∪ T  networks could be 
attributed to the fact that there is minimal overlap of nodes 
in F and T networks (12%) which causes the F ∪ T networks 
to have sparser communities. Also, false and true informa-
tion spreaders are together considered as spreader class which 
could be affecting the model performance. While comparing 
the baseline models, Trusted by others model performs bet-
ter than the Trusting others model with an improvement in 
accuracy of 4.8%, 5% and 1.5% for F, T and F ∪ T networks, 
respectively. Interpolation model shows a further improvement 
of 2.3%, 2.3% and 1.1% for F, T and F ∪ T networks, respec-
tively, over trustingness model. LINE and GCN baselines 
show significant improvement on all metrics for F networks 
compared to T or F ∪ T networks. We see further substantial 

Table 4  A summary of the metadata of the MinFN dataset

F T

No. of nodes 1,709,246 1,161,607
No. of edges 3,770,532 2,086,672
No. of spreaders 2,337 671
No. of communities 63 40
No. of nodes in N 205,975 94,707
No. of spreaders in N 21,657 6,317
No. of nodes in B 216,410 136,378
No. of spreaders in B 2,159 618
No. of nodes in C 1,492,836 1,025,229
No. of spreaders in C 87 24
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increase in performance for each type of network using induc-
tive learning models. Comparing the two random sampler 
models (i.e., SArandGEtop , SArandGEact ), we see that topol-
ogy-based features of the neighborhood perform better than 
activity-based features. Similar trend is observed for topology-
based sampler models (i.e., SAtopGEtop , SAtopGEact ) where 
model using topology-based aggregator performs better than 
activity-based aggregator. Same is the case for activity-based 
sampler models (i.e., SAactGEtop , SAactGEact ). Integrating top 
and act does not show any significant improvement over top 
only models. Thus, we can conclude that interpersonal trust-
based modeling in the inductive learning framework is able to 
predict false information spreaders better than true information 
spreaders. We also observe that topology-based sampling and 
aggregating strategies perform better than activity-based strate-
gies. The low performance of activity-based strategies could be 
attributed to the fact that many Twitter users are either inactive 

users or users with strict privacy settings whose timeline data 
could not be retrieved. Also, recent 10 activities on a user’s 
timeline might be insufficient data to capture activity-based 
trust dynamics. For each type of network, we observe that 
SAtopGEtop model performs the best, with F having accuracy 
of 93.3%, which is higher than 12.3% and 52.1% over T and 
F ∪ T networks, respectively. Figure 5 shows the performance 
metrics of this model for the 10 news events (N1–N10) for 
the best performing a) Node feature only (Interpolation), b) 
Network structure only (LINE) and c) Node feature + network 
structure ( SAtopGEtop ) models. On comparing F1 metric per-
formance, we observe clearer distinction (with F networks 
performing better than T, which in turn is better than F ∪ T ) 
in performance for SAtopGEtop compared to Interpolation and 
LINE. Interpolation model has the least distinction in per-
formance which can be attributed to the fact that it does not 
capture the features based on the network structure. Thus, we 

Fig. 5  Metric performance for boundary node prediction for news events (N1–N10) for the best performing a Node feature only, b Network 
structure only and c Node feature + network structure models



Social Network Analysis and Mining (2022) 12:66 

1 3

Page 13 of 19 66

can conclude that underlying network structure around false 
information is very different compared to the network struc-
ture around true information. An interesting observation is the 
high precision values for T. This is because the percentage of 
predicted spreaders which are non-spreaders tends to be lower 
for T network than for F network.

5.3.2  Core node analysis (more dense Nbr)

Table 6 summarizes results of the model for predicting core 
nodes aggregated for all news. The overall performance 
trend is identical to the results shown for boundary nodes in 
Table 5. Among the baseline models, Interpolation model 
performs better than Trusted by others and Trusting others 
models. LINE- and GCN-based models show significant 
improvement over trust feature baselines on all metrics. 
Among inductive learning models, topology-based trust 
modeling shows better performance than activity-based 
trust modeling. Also, F networks perform better than T net-
works, which in turn perform better than F ∪ T  networks. 
Among random sampler models, SArandGEtop has the high-
est accuracy of 84.2%, 72.6% and 65.6% for F, T and F ∪ T  
networks, respectively. Among topology-based sampler 
models, SAtopGEtop performs better over SAtopGEact with an 
increase in accuracy of 2.8%, 4.5% and 7.1% for F, T and 
F ∪ T networks, respectively. Activity-based sampler models 
also show identical trend with SAactGEtop performing better 
than SAactGEact with an increase in accuracy of 2.6%, 9% 
and 4.6% for F, T and F ∪ T  networks, respectively. Among 
all models, SAtopGEtop shows the best overall performance. 
Figure 6 shows the performance metrics of this model for the 
10 news events (N1–N10) for the best performing a) Node 

feature only, b) Network structure only and c) Node feature 
+ network structure models. As in Fig. 5, True information 
network for N10 is excluded from analysis as it did not have 
sufficient spreaders to train our model on. A clear observa-
tion is that the metric performance for the three types of 
networks is not as distinct as in Fig. 5. We notice that though 
the number of core nodes is much higher than boundary 
nodes, the number of core spreaders is much smaller than 
boundary node spreaders. Thus, the model fails to learn 
meaningful representations for core nodes due to smaller 
training dataset.

Summary: Sophisticated models that include both node 
features and network structure outperform simpler node fea-
ture only and network structure only models. Comparing the 
prediction performance of core and boundary spreaders, we 
can conclude that our model’s performance is more sensitive 
to training dataset size compared to density of neighborhood.

6  Additional experimental analysis

6.1  Bot detection

Bot accounts interact with humans and influence interac-
tions by spreading information rapidly. One of the most 
well-known instances of bots having a large effect on human 
behavior was that of the 2016 U.S elections (Bessi and Fer-
rara 2016). In order to obtain more representative networks, 
we filter out bots to include only humans to better quantify 
interpersonal and individual trust. We use a bot detection 
model proposed by Kudugunta and Ferrara (2018) where 
they used an AdaBoost classifier trained on an exhaustive set 

Table 5  Results comparison of our different models against existing baselines for boundary node spreader prediction

Trusting others, Trusted by others and Interpolation are baseline models from (Rath et al. 2018). LINE is a transductive baseline from (Tang 
et al. 2015), and GCNtop , GCNact serve as vanilla baselines of GCN models
Bold values represents the highest value in the metric column

F T � ∪ �

Accu. Prec. Rec. F1 Accu. Prec. Rec. F1 Accu. Prec. Rec. F1

Trusting others 0.58 0.612 0.329 0.396 0.615 0.697 0.450 0.519 0.510 0.522 0.888 0.603
Trusted by others 0.608 0.631 0.384 0.455 0.646 0.713 0.500 0.585 0.518 0.513 0.916 0.638
Interpolation 0.622 0.635 0.426 0.498 0.661 0.768 0.496 0.588 0.524 0.526 0.846 0.611
LINE 0.709 0.784 0.593 0.669 0.692 0.763 0.567 0.647 0.589 0.602 0.517 0.554
SArandGEtop 0.870 0.879 0.862 0.866 0.776 0.858 0.667 0.748 0.599 0.605 0.570 0.583
SArandGEact 0.777 0.845 0.689 0.754 0.728 0.814 0.612 0.688 0.566 0.572 0.539 0.547
GCNtop 0.839 0.887 0.784 0.832 0.775 0.921 0.595 0.723 0.592 0.649 0.646 0.647
GCNact 0.807 0.849 0.750 0.796 0.740 0.835 0.591 0.693 0.576 0.640 0.612 0.626
SAtopGEtop 0.937 0.918 0.965 0.939 0.834 0.927 0.732 0.815 0.616 0.630 0.561 0.592
SAtopGEact 0.912 0.899 0.935 0.915 0.800 0.884 0.699 0.777 0.584 0.601 0.504 0.545
SAactGEtop 0.838 0.854 0.816 0.833 0.763 0.817 0.686 0.743 0.582 0.589 0.542 0.559
SAactGEact 0.804 0.853 0.737 0.786 0.735 0.800 0.634 0.706 0.561 0.570 0.542 0.539
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of user-based features to achieve an accuracy of 99.81%. The 
MinFN dataset (Rath 2021) consisted of the following meta-
data for each user:  Id, Screen Name, Name, Statuses Count, 
Favorites Count, Followers Count, Friends Count, Listed 
Count, Verified, Protected, Created At, Location which was 
fewer than the features trained by Kudugunta et al. So we 
first tested the performance of the model with our limited 
set of features on a publicly available bot detection data-
set (Cresci et al. 2017). The classifier achieved an accuracy 
of 98% thus proving that using our set of user features could 
identify bots with an almost identical accuracy.

6.2  Effects of bots on performance

Table 7 shows the analysis of bots in our dataset. We found 
that the bots are just as prevalent in fake news networks as 

the refuting true news network, further emphasizing the role 
of humans in fake news spread. We notice that around 5% 
of nodes in each network were classified as bots. Among 
spreaders (Table  8), we observe that higher number of false 
information spreaders tend to be bots compared to true infor-
mation spreaders (except for N1 and N9). We then analyzed 
performance of our model after filtering out bots from the 
network as trust-based features are more representative of 
actual people’s behavior. In Table 9, we can observe the 
increase in performance when we train and test our models 
on networks without bots as compared to networks with a 
mixture of bots and genuine users. We observe that when 
training on 100 historical tweets on networks without bots, 
the performance increases by 2.8% for SArandGEact , 1% for 
SAtopGEact , 4.6% for SAactGEtop and 3.6% for SAactGEact . 
The performance gains are even higher for T and F ∪ T  

Fig. 6  Metric performance for core node prediction for news events (N1–N10) for the best performing a Node feature only, b Network structure 
only and c Nade feature + network structure models
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network. In Table 10, we can observe similar trends with 
performance increase of 4.7% for SArandGEact , 0.5% for 
SAtopGEact , 1.5% for SAactGEtop and 0.4% for SAactGEact . 
Similar trend is observed for T and F ∪ T  network. The per-
formance gains from the bot filtration process are visualized 
in Fig. 7. This leads us to conclude that the filtration of bots 
is an essential step to better predict likely spreaders using 
trust-based features. Thus, including a pre-processing phase 
of bot filtration helps further increase the performance of the 
inductive learning model.

6.3  Effects of timeline data volume on performance

A major bottleneck for act-based models analyzed in 
Sect.  5.3 was having limited timeline data (recent 10 

activities on a user’s timeline). We further extended our 
dataset by collecting 100 recent timeline tweets in order to 
test whether increasing timeline data to capture more rep-
resentative activity-based trust features increased perfor-
mance of act-based models, and whether sampling ( SAact ) 
or aggregating ( GEact ) strategy showed better improvements. 
We report the F1 score performance of act-based inductive 
representation learning models ( SArandGEact , SAtopGEact , 
SAactGEtop and SAactGEact ) for 10- and 100-most recent 
timeline tweets.

Table 9 shows results for the boundary node predic-
tion problem. We observe that for network with bots, the 
performance increases by 6.2% for SArandGEact , 4.3% for 
SAtopGEact , 6.9% for SAactGEtop and 5.2% for SAactGEact 
when 100 timeline tweets are used to quantify trust features 

Table 6  Results comparison of different models and baselines for core node spreader prediction

Trusting others, Trusted by others and Interpolation are baseline models from Rath et al. (2018). LINE is a transductive baseline from Tang et al. 
(2015), and GCNtop , GCNact serve as vanilla baselines of GCN model
Bold values represents the highest value in the metric column

F T � ∪ �

Accu. Prec. Rec. F1 Accu. Prec. Rec. F1 Accu. Prec. Rec. F1

Trusting others 0.553 0.643 0.298 0.388 0.569 0.585 0.338 0.414 0.521 0.511 0.95 0.659
Trusted by others 0.569 0.628 0.411 0.481 0.614 0.694 0.503 0.508 0.540 0.523 0.952 0.673
Interpolation 0.609 0.730 0.400 0.492 0.640 0.681 0.438 0.521 0.550 0.548 0.764 0.608
LINE 0.721 0.821 0.625 0.681 0.672 0.870 0.467 0.579 0.577 0.572 0.676 0.602
SArandGEtop 0.842 0.900 0.802 0.838 0.726 0.880 0.574 0.664 0.656 0.651 0.707 0.665
SArandGEact 0.798 0.893 0.700 0.764 0.658 0.742 0.448 0.523 0.597 0.631 0.512 0.548
GCNtop 0.755 0.972 0.524 0.681 0.739 0.698 0.839 0.762 0.683 0.731 0.537 0.619
GCNact 0.731 0.741 0.705 0.722 0.701 0.735 0.641 0.684 0.657 0.691 0.561 0.619
SAtopGEtop 0.916 0.940 0.892 0.912 0.836 0.895 0.787 0.825 0.734 0.725 0.823 0.750
SAtopGEact 0.891 0.929 0.849 0.884 0.800 0.931 0.684 0.769 0.685 0.703 0.677 0.682
SAactGEtop 0.868 0.941 0.788 0.854 0.771 0.962 0.598 0.712 0.648 0.688 0.651 0.641
SAactGEact 0.846 0.847 0.858 0.846 0.707 0.827 0.581 0.661 0.619 0.694 0.522 0.567

Table 7  Analysis of information spreaders that are bots

Number of users in F + number of users in T ≠ number of users in F ∪ T  because there are users that are common between F and T

No. of Nodes No. of bots % No. of Nodes No. of bots % No. of Nodes No. of bots %
(F + T) (F + T) (F + T) (F) (F) (F) (T) (T) (T)

N1 2,677,924 123,934 4.63 90,199 1,797,059 5.02 49,697 1,164,162 4.27
N2 1,230,559 49,654 4.04 35,458 885,598 4.00 19,666 453,537 4.34
N3 2,198,524 114,168 5.19 60,098 1,228,479 4.89 66,679 1,169,681 5.70
N4 2,900,925 152,346 5.25 135,771 2,607,629 5.21 27,343 433,616 6.31
N5 3,019,066 180,577 5.98 143,824 2,150,820 6.69 58,483 1,168,820 5.00
N6 2,420,000 99,824 4.12 96,315 2,387,610 4.03 32,570 1,297,371 2.51
N7 1,606,924 89,669 5.58 37,626 627,147 6.00 65,082 1,166,528 5.58
N8 2,663,392 114,324 4.29 78,471 2,036,162 3.85 52,539 1,058,482 4.96
N9 4,030,000 229,246 5.69 75,418 1,197,935 6.30 167,828 2,999,865 5.59
N10 2,729,312 111,462 4.08 81,237 2,174,023 3.74 39,979 704,006 5.68
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instead of 10 timeline tweets. For network without bots, 
the performance increases by 5.5% for SArandGEact , 1.9% 
for SAtopGEact , 9% for SAactGEtop and 6.8% for SAactGEact . 
Similar trend is observed for T and F ∪ T  networks as well. 
Table 10 shows results for the core node prediction problem. 
For network with bots, the performance increases by 3.8% 
for SArandGEact , 3.8% for SAtopGEact , 7.5% for SAactGEtop 
and 4.9% for SAactGEact when using 100 timeline tweets 
instead of 10. For network without bots, the performance 
increases by 5.7% for SArandGEact , 3% for SAtopGEact , 6.2% 
for SAactGEtop and 4.8% for SAactGEact . We observe identical 
trend for T and F ∪ T  networks.

An interesting observation is that the performance of 
SAtopGEact is better than SAactGEact , i.e., sampling strategy 
based on topology features is better than activity features 

Table 8  Analysis of bots among spreaders of fake news and true news

F T

Spreaders Bots Spreaders Bots

N1 2721 1 454 2
N2 968 2 436 1
N3 1402 6 528 4
N4 4764 101 485 0
N5 3410 0 314 0
N6 3598 9 496 0
N7 716 2 867 0
N8 955 2 505 0
N9 2521 0 1977 2
N10 2329 3 747 1

Table 9  F1 score comparison of 
inductive learning models with/
without bots and for 10/100 
timeline tweets (t) for boundary 
node prediction

Bold values represents the highest value in the metric column

F T � ∪ �

With bots Without bots With bots Without bots With bots Without bots

10 t 100 t 10 t 100 t 10 t 100 t 10 t 100 t 10 t 100 t 10 t 100 t

SArandGEact 0.754 0.801 0.781 0.824 0.688 0.734 0.713 0.759 0.547 0.588 0.566 0.621
SAtopGEact 0.915 0.955 0.947 0.965 0.777 0.827 0.787 0.861 0.545 0.588 0.607 0.631
SAactGEtop 0.833 0.891 0.855 0.932 0.743 0.768 0.756 0.837 0.559 0.616 0.577 0.643
SAactGEact 0.786 0.827 0.802 0.857 0.706 0.756 0.726 0.782 0.539 0.591 0.569 0.639

Table 10  F1 score comparison 
of inductive learning models 
with/without bots and for 
10/100 timeline tweets (t) for 
core node prediction

Bold values represents the highest value in the metric column

F T � ∪ �

With bots Without bots With bots Without bots With bots Without bots

10 t 100 t 10 t 100 t 10 t 100 t 10 t 100 t 10 t 100 t 10 t 100 t

SArandGEact 0.764 0.793 0.786 0.831 0.523 0.678 0.567 0.691 0.548 0.59 0.566 0.673
SAtopGEact 0.884 0.918 0.896 0.923 0.769 0.838 0.788 0.874 0.682 0.761 0.692 0.799
SAactGEtop 0.854 0.918 0.877 0.932 0.712 0.766 0.738 0.809 0.641 0.689 0.677 0.703
SAactGEact 0.846 0.888 0.851 0.892 0.661 0.701 0.677 0.713 0.567 0.617 0.598 0.645

Fig. 7  F1 scores sensitivity analysis for SA
act
GE

act
 due to timeline data volume and bot filtration
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which suggests that during sampling phase (i.e., choosing 
neighbors whose features are aggregated), network topol-
ogy is more crucial than activity-based features being 
aggregated. This suggests the efficacy of believability-based 
weights assigned to edges is a better measure of interper-
sonal trust compared to simple retweet-based weights. 
Another interesting observation is that the best performing 
model in Table 9 and 10 (i.e., SAtopGEact ) outperforms the 
best performing model in Tables 5 and 6 (i.e., SAtopGEtop ) on 
the same network (network with bots). This can be attributed 
to the fact that using aggregation strategy-based on activity 
features from 100 timeline tweets generates more representa-
tive features of trust compared to 10 timeline tweets, and 
also they outperform topology features. We thus conclude 
that SAtopGEact outperforms SAtopGEtop when sufficiently 
large number of timeline tweets are used to quantify act-
based trust features.

Figure 7 compares the sensitivity of our model on the 
presence of bots in the network and the volume of time-
line data used to aggregate trust-based features for all news 
events for SAactGEact model specifically. We conclude that 
inductive learning model performs better in the absence of 
bots and when we have larger volume of timeline data to 
extract features from.

7  Conclusions and future work

In this paper, we proposed a framework that uses inductive 
representation learning and community health assessment 
model to identify fake news spreaders. We also make public 
a massive dataset comprised of real-world Twitter data from 
10 unique news events and use this dataset to empirically 
validate our framework.

Using interpersonal trust-based properties, we could iden-
tify spreaders with high accuracy and also showed that the 
proposed model identifies false information spreaders more 
accurately than true information spreaders. We analyzed our 
models on networks comprised of only humans and a mix-
ture of humans and bots. We found that a bot-filtration step is 
quintessential to ensure a representative network and found 
significant performance increases in the absence of bots.

The key hypothesis we tested is that interpersonal trust 
plays a significantly more important role in identifying false 
information spreaders than true information spreaders. The 
intuition behind this being that true information is usually 
easy to accept, and blatantly false information is easy to 
reject; however, most false information is false, yet plausi-
bly true, making it harder for people to accept/reject it on 
their own, and thus depending on the source they received 
it from. Identified false information spreaders can then be 
quarantined and true news spreaders can be promoted, thus 
serving as an effective mitigation strategy.

Using experimental analysis on real-world Twitter data, 
we showed that topology-based features and sampling strate-
gies help in spreader detection more than activity-based fea-
tures and sampling. And although topology-based features 
are more important, we did find that having more representa-
tive activity features (using larger volume of timeline data) 
increases the performance. The proposed framework can be 
used to identify people who are likely to become spreaders 
in real time on large networks due to our usage of induc-
tive representation learning which can adapt to fast evolv-
ing spread networks. In the future, we want to include other 
proxies of trust such as how long a user has been active on 
the social media platform, whether the user has a history of 
refuting false information, etc. In this paper, we used only 
the immediate follower-following network of the informa-
tion spreaders. In the future, we would want to extend this to 
greater sampling depths and study its effect on our model’s 
performance.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13278- 022- 00890-z.
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