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Abstract
Virtual teams are becoming increasingly important. Since they are digital in nature, their “trace data” enable a broad set of 
new research opportunities. Online Games are especially useful for studying social behavior patterns of collaborative teams. 
In our study, we used longitudinal data from the massively multiplayer online game Travian collected over a 12-month period 
that included 4753 teams with 18,056 individuals and their communication networks. For predicting team performance, 
we selected several social network analysis-based attributes frequently used in team and leadership research. We find that 
using these features, the accuracy of predicting the team performance, in terms of R2 , is about 60%; whereas the accuracy 
of classifying the top-performing teams exceeds 95%. Moreover, we examine the ability to predict the team performance 
based on historic data of the network features, i.e., before several weeks. We find that the best accuracy can be achieved 
using the features in the present and the past, as well as the past performance. For a delay of one week, the accuracy of this 
model is about R2 = 97%.

Keywords  Performance prediction · Virtual teams · Social network analysis · Communication network · Machine learning · 
Massively multiplayer online game

1  Introduction

Traditionally, teams have worked together at the same loca-
tion, whereas today, virtual teams have become a reality in 
most organizations (Lipnack and Stamps 1999). A study 
conducted by the Society for Human Resource Management 
stated that approximately 66% of multinational organizations 
utilize virtual teams (Gilson et al. 2015). These new ways 
of collaboration produce a vast amount of “digital exhaust,” 
as Leonardi & Contractor call the electronic traces created 
by modern communication technologies (e.g., e-mail, mes-
senger or VOIP) (Leonardi and Contractor 2018).

When studying teams and their functioning, “communica-
tion has always been viewed as a key element” (Krackhardt 

and Hanson 2003). Especially when team members have 
never met in person, their communication “is often the only 
visible artifact of the group’s existence” (Ahuja et al. 2003). 
“Relational theories have depicted leadership as socially 
constructed through communication exchanges” (Cullen-
Lester et al. 2017). “Scholars adopting the social network 
approach further argue that by focusing on informal social 
contexts, i.e., social networks, researchers can examine ‘how 
work really gets done in organization’s (Cross and Parker 
2004)” (Jokisaari 2016). Cross and Parker claim that “one 
has to examine how people are connected to each other and 
to focus on the wider social environment rather than formal 
dyadic relations between a leader and her followers” (Jok-
isaari 2016).

Beside traditional work environments, a very promising 
field of research for studying teams is the analysis of Online 
Games. Within these virtual worlds, thousands of players 
are organized in virtual teams (Chan and Vorderer 2006). 
The Harvard Business Review stated: “Online game leaders 
operate in a context that may well foreshadow the business 
environment of the future” (Reeves et al. 2008). Massively 
Multiplayer Online Games (MMOGs) in particular allow and 
also require cooperation and competition on a large scale. 
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Unlike in traditional experiments, the participants solve 
engaging problems and challenges. It is not necessary to 
incentivize participants since they are already highly moti-
vated through the social interaction and the game design 
(Assmann et al. 2010). Castronova states that, even if “this 
place isn’t ‘real’ by any means [...], it does feel real enough 
to the users that they can fairly easily immerse themselves 
in it for hours on end, month after month, year after year, in 
a sort of parallel existence” (Castronova 2008).

In our previous work, Müller et al. (2020), we conducted 
our research within the environment of an online simulation 
game, called Travian.1 The game is organized in rounds last-
ing approximately one year. Therefore, repeated interaction 
between users plays an important role in the game’s social 
ecosystem. Within the early phase, players team up with 
others to form alliances containing up to 60 members. These 
alliances are necessary to protect each other and to achieve 
the goal, which is to be the first to complete a monument at 
the end of the game. The game can only be won in coopera-
tion and coordination. Therefore, intra-alliance communica-
tion plays an important role in succeeding. Communication 
takes place in an in-game messaging system (IGM) that is 
part of the game server. In addition to the IGM, where play-
ers can send self-written text messages to other team mem-
bers, there is an internal forum that can be used for team 
discussions and information sharing. In our current work, 
we limit ourselves to the exchange of free text messages 
between individuals on an intra-team basis.

In Müller et al. (2020), the motivation for our research 
was to show that communication networks (or the infor-
mation they contain) can be applied as predictors for team 
performance. Therefore, we developed two distinct models. 
We applied a baseline model to enable our prediction task 
to cover the main effects originating from the game design. 
This baseline model includes the age, the time since forma-
tion of the team, and the group size (N), which plays an 
important role as the game favors alliances bigger in size. 
Secondly, we built a network model that extends the baseline 
model by including 13 network attributes, commonly used 
in team and leadership literature. A major finding of Müller 
et al. (2020) was that the network model outperforms the 
baseline model in terms of the accuracy of predicting the 
team performance.

In this paper, we build upon Müller et al. (2020) and 
extend it by adding a dynamic perspective on the networks, 
incorporating a temporal dimension in order to improve the 
performance prediction. By bringing in historical data, we 
examine the ability to predict the team current performance 
based on the past performance and/or the features of com-
munication networks (present and/or past).

Mainly, with a proper data preparation, we construct data-
sets that combine both the performance and the network fea-
tures at two different time points (used as present and past). 
Then, with such datasets, we examine different predictive 
models based on different combinations of a) past perfor-
mance, b) past network features, and c) current network fea-
tures, in order to predict the current performance.

The contributions of this paper are as follows: 

1.	 We demonstrate how social network patterns in com-
munication networks can be applied to predict team 
performance.

2.	 We provide an overview of the ability of different 
machine learning approaches to deliver accurate predic-
tion outcomes.

3.	 We examine the ability of various predictive models 
to predict the current performance based on different 
combinations of the past performance, and the past and 
current network features.

4.	 Finally, we deliver insight into a set of general aspects to 
consider when tackling the world of MMOG datasets.

The rest of the paper is organized as follows. Section 2 
shows related work; while Sect. 3 describes the mechanics 
of the game, the dataset and our preprocessing steps; and 
Sect. 4 shows how we calculate network features. In Sects. 5 
and 6, we describe how we analyze and predict performance; 
while Sect. 7 addresses the classifications of top-performing 
teams. Section 8 is dedicated to the performance prediction 
with historical data. Finally, Sect. 9 concludes the paper and 
describes limitations and future work.

2 � Related work

Online games are not limited to their potential as a labora-
tory where leadership and its outcomes can be studied.

“Anthropologists see new cultures, entrepreneurs see 
new markets, lawyers see new precedence, and social and 
political experts see new pressures and looming crises” Cas-
tronova (2008).

Given the “scientific research potential of virtual worlds” 
as discussed in the 2007 article in Science (Bainbridge 
2007), the fields of application are wide–especially in the 
area of team research, where massively multiplayer online 
games (MMOGs) and massively multiplayer role-playing 
games (MMORPGs) have been widely used (Pearce 2011; 
Chan and Vorderer 2006; Sourmelis et al. 2017). Assmann 
et al. assessed the “opportunities to overcome some limita-
tions of traditional research environments” (Assmann et al. 
2010). They point out that they “offer a unique opportunity 
to study virtual organizational structures” (Assmann et al. 
2010). In communication research, for example, Gloor et al. 1  https://​www.​travi​an.​com/​inter​natio​nal.

https://www.travian.com/international
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(2008) have been working on how online communication 
behavior can be optimized and how it is influencing indi-
vidual and team performance. Williams et al. (2011) con-
ducted an interdisciplinary “study of behavior within a game 
and also game activities that parallel those in ‘real life’ ”, 
whereas Korsgaard et al. (2010) worked in the area of “emer-
gence and persistence of trust and cooperation, as well as [in 
the area of] the impact of different communication media 
for coordination and information management in virtual 
organizations”. Other work investigated the effect of shared 
leadership within groups and its relationship with group trust 
development (Drescher et al. 2014). Further, MMOGs have 
been applied as research frameworks for military training 
and education (Bonk and Dennen 2005; De Freitas and Grif-
fiths 2007). Even combat activities within these games have 
been studied (Huang et al. 2009; Suznjevic et al. 2011).

Regarding the prediction of team performance, team pro-
cesses and leadership behavior have been studied frequently. 
Pobiedina et al. (2013), for example, have used role distribu-
tion, experience, the number of friends, and national diver-
sity in Dota2 to study their influence on team performance. 
Prediction models on team performance have been applied 
and tested by Shim and Srivastava (2010); Shim et al. (2011) 
using data from EverQuest and Halo3. Tawa et al. (xxx) 
analyzed interpersonal interactions in experimental setups 
in Second Life to study the effects of resource competition 
on racial group interactions.

Working with data from Travian, Wigand et al. (2012) 
proposed using centrality measures from the game’s mes-
sage network as performance indicators and for predictive 
modeling.

3 � Data

3.1 � The world of Travian

Travian is a commercial Massively Multiplayer Online 
Game (MMOG)  operated in 53 countries around the world. 
Up to 20,000 users play at any one time in game worlds 
adapted to the local market. The game world used for this 
study (travian.de) is a version that has been localized for 

German-speaking countries. The players start with one vil-
lage where they grow resources, level up their infrastruc-
ture, and build armies to protect their kingdom. Troops can 
also be used to raid resources from other players, instead of 
producing those resources themselves, or to fight wars to 
conquer new territories (Fig. 1).

In addition to founding and developing new villages, 
the most important aspect of the game is to be part of an 
alliance. The environment of the game is highly competi-
tive and only a high degree of cooperation allows a team 
to survive and achieve its goals. The alliance leaders are 
highly dependent on the contribution of every single mem-
ber. Therefore, there is a great amount of social pressure to 
take things seriously and to invest a significant amount of 
time. Players who do not show a certain amount of commit-
ment and/or performance (e.g., growth rate) are not invited 
to join alliances or are even dismissed. Alliance leaders face 
a trade-off when it comes to achieving a high-ranking posi-
tion. The easiest way to increase alliances ranking is to invite 
additional members to the alliance. But doing this comes at 
a price. Leading and coordinating bigger groups/organiza-
tions are challenging and evidence from the game shows 
that often a smaller team of highly experienced players is 
more effective in reaching their goals. Therefore, some-not 
all-top-ranked alliances opt to remain small in number rather 
than expand to include the maximum 60 members allowed. 
Looking at the data, it should also be mentioned that it takes 
a critical size of about 35–40 members to even be able to 
rank among the top-ranked alliances.

To enable communication between players, the game pro-
vides an in-game messaging system and an (internal) forum 
that can only be accessed by a specific alliance. For our 
study, we used messages sent via the IGM, which means that 
our data collection has been non-obtrusive and not reactive. 
All players were informed by the game operator about their 
(anonymous) participation in a scientific research project to 
which they agreed by accepting the general terms and con-
ditions. Completing additional surveys2 has been voluntary 
and had no impact on regular participation in the game.

Fig. 1   Travian - Screenshots from the game indicate different zoom levels (map, fields, and village) and final monument

2  Not part of this study.
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Alliances (as teams are called) can be established by 
players whose villages reach a certain threshold/number of 
inhabitants. An invitation is required for joining a team. The 
game tracks when this invitation has been sent and when it 
has been accepted. The same applies when members are 
leaving the team or have been dismissed. Teams can there-
fore be regarded as having clearly defined boundaries.

3.2 � The dataset

In 2009/10, the operator Travian Games GmbH granted 
access to its game databases, which enabled an extensive 
data collection for scientific research. The operator of the 
game provided a daily download of a cleaned version of the 
game database (MySQL). The majority of the players were 
from the German-speaking countries: Germany, Austria, and 
Switzerland. Participants were 77% male, averaging 30.3 
years old. 62% had a permanent employment. To comply 
with privacy protection, the operator removed all personal 
information and communication content before sharing the 
data with the researchers.

Alliance size ranged from 2 to 60 members, which is the 
maximum number of members that the game design allows. 
On average, the size of a group on any day is 14.5 individu-
als. As shown in Fig. 2, the distribution of group sizes is 
skewed with a long tail to the right, meaning that: many 
groups have small sizes, while few groups have large sizes, 
up to 60 members3.

A total of 4758 alliances have been formed during this 
particular game. The data collection period was 51 weeks 
(356 days). Using this raw data, we extracted the following 
two datasets:

3.2.1 � Performance dataset

The game Travian uses specific rankings, also referred to as 
alliance rankings, to indicate alliance performance. Rank-
ings are based on the sum of inhabitants each alliance mem-
ber has. The number of inhabitants a player has under him 
increases each time the player’s infrastructure is upgraded. 
The alliance with the most inhabitants is rated as number 
one, the alliance with the second-most inhabitants as number 
two, and so on. Rankings within the game are calculated in 
real time. Since our raw data only contained one data point 
(MySQL snapshot) per day, we reverse engineered the rank-
ing algorithm and adapted it via aggregation to a weekly 
measure. The decision for weekly aggregation was based 
on preliminary analysis of the data to avoid artifacts from 
the daily snapshots.

As the game proceeds, player’s villages develop, and 
the overall number of inhabitants increases constantly. Fig-
ure 3 shows how the number of inhabitants evolves over 
time. In order to use the number of inhabitants as a per-
formance measure, we needed to normalize it in a way 
that makes it comparable across weeks since start of the 
game world. Thus, we used min–max normalization on a 
weekly basis. Let H(a, w) denote the number of inhabitants 
of alliance a at week w, then: Hmin(w) = mina{H(a,w)} and 
Hmax(w) = maxa{H(a,w)} are, respectively, the minimum 
and maximum number of inhabitants per alliance at week 
w. The performance P(a, w) of alliance a at week w is then 
stated as:

P(a,w) =
H(a,w) − Hmin(w)

Hmax(w) − Hmin(w)

Fig. 2   Distribution of alliance size Fig. 3   Number of inhabitants per alliance over time

3  Over time, players join and leave alliances, and hence, the over-
all size of a group (over a long period of time) can easily exceed 60 
members.
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3.2.2 � Communication dataset

This dataset indicates intra-alliance communications among 
players as expressed on a weekly basis. Each entry associ-
ates the IDs of two players: the sender and the receiver of 
a message, with the alliance ID (of which the sender and 
receiver are members) and the week ID (during which the 
message was sent).

Table 1 provides some statistics about both datasets, 
including the number of records, number of alliances, num-
ber of weeks, and number of alliance-week pairs.

3.3 � Pre‑processing

From Table 1, we observe that the two datasets have differ-
ent numbers of alliances, weeks, and alliance-week pairs; 
hence, there are some incompatible data entries. This is due 
to the availability of raw data, with only one data point per 
day available for performance data, as opposed to the avail-
ability of real-time communication data. For instance, there 
are some data entries that appear in the performance 
dataset but not in the communication dataset, and vice 
versa. Moreover, in some alliance-week pairs, the number 
of alliance members in the performance dataset is differ-
ent from the number in the communication dataset. To 
fix these issues, we performed the following pre-processing 
steps.

–	 Since we did not possess performance data within the 
first week of existence of some alliances, we opted to 
exclude this first week of all alliances.

–	 Since some alliances have missing communication infor-
mation at the end of their lifespan, we opted to exclude 
the last week(s) of those alliances.

–	 To fix the discrepancy in the number of alliance members 
between the two datasets, we opted to use the maximum 
of these two numbers as the number of alliance members, 
for all alliance-week pairs. This step allowed us to mini-
mize data loss by merging all available information from 
the two data sets.

Overall, as a result of pre-processing steps, we got rid of 
incompatible data. To this end, the communication data-
set consists of (the remaining) 14,954 alliance-week pairs 
(corresponding to 50 weeks, and 1,852 alliances). The num-
ber of remaining entries is reduced to 510,285 (97%).

Figure 4 gives an overview of the distribution of alliances 
over time. Figure 4-a shows a histogram of the alliance age 
(in weeks), where we observe a skewed relationship between 
the age and the number of alliances having that age (sur-
vived that number of weeks). Most alliances have a rela-
tively short lifespan, whereas few alliances survived for an 
extended period of time. Figure 4-b shows how the number 
of alliances changes over the entire period of the game.

4 � Communication networks

Based on the communication dataset, we constructed 
the communication network as a directed graph for each 
alliance-week pair. Since we are interested in network struc-
ture, not in communication frequency, we opted to use the 
unweighted version of the graph. In this type of network, 
the nodes are the alliance members, and an edge links a 

Table 1   Statistics of datasets

Dataset Performance Communication

No. of records 53,766 526,002
No. of alliances 4753 2074
No. of weeks 51 52
No. of alliance-week pairs 53,766 16,532

Fig. 4   Alliance distribution over time (N: alliance members)
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node u to another v, whenever the member represented by u 
sends one or more messages to another player represented 
by v; i.e., whenever there is an entry in the communication 
dataset that associates u to v with the corresponding alliance 
and week. Figure 5 shows two examples of communication 
networks.

Overall, we have communication networks for 14,954 
alliance-week pairs (corresponding to 1,852 alliances, and 
50 weeks). In addition to the number of nodes, N, and the 
number of edges, E, we calculated several network metrics 
for each network, including: density, average in-degree, tran-
sitivity, reciprocity, centralization, and k-core:

–	 Density: the ratio of the number of actual edges to the 
number of possible edges: 

–	 Average in-degree (avg_din).
–	 Transitivity: the fraction of present triangles to all pos-

sible triangles (triads).
–	 Reciprocity: the ratio of the number of edges pointing in 

both directions to the total number of edges.

4.1 � Centralization

In network analysis, centrality is a node-level index of the 
structural importance of nodes. Many metrics have been 
developed in the literature to measure the centrality of 
nodes, including degree centrality, closeness centrality, and 
betweenness centrality (Freeman 1978; Wasserman and 
Faust 1994). Let c1,⋯ , cn be node-level centrality measures, 
where ci is the centrality of node i by some metric. It is often 
useful to standardize the ci ’s by their maximum possible 
value: c̃i = ci∕cmax

While centrality is a node-level index, centralization is a 
group-level index that refers to how centralized the network 
is, i.e., to what extent the network is dominated by the most 
central node. Let c∗ = max{c1,⋯ , cn} . Let S =

∑
i[c

∗ − ci] . 

density =
2E

N(N − 1)

Then S = 0 if all nodes are equally central; S is large if one 
node is more central than the other nodes. Thus, network 
centralization is stated as:

where the “max” in the denominator is over all possible net-
works. With this formula, we get 0 ≤ C ≤ 1 . In particular, 
C = 0 when all nodes have the same centrality (e.g., cycle), 
whereas C = 1 if one actor has maximal centrality and all 
others have minimal (e.g., star).

As such, degree centralization is given by:

closeness centralization:

betweenness centralization:

For our alliance communications networks, we actually cal-
culated five centralization metrics: three versions of degree 
centralization using in-degree, out-degree, and degree, as 
well as closeness and betweenness centralization.

4.2 � k‑Core

A k-core is a maximum subgraph that contains nodes of 
degree k or more. In our networks, for each node, we find the 
core number: kcore(u), u ∈ G , from which we then compute 
three network features:

–	 k-core kmax : kmax = maxu∈G{kcore(u)}

–	 k-core size: number of nodes in the k-core, i.e., nodes 
whose core number is kmax.

–	 k-core relative size: fraction of nodes in the k-core to all 
nodes in the network.

To this end, we obtain a new dataset that summarizes the 
communication network of each of the ⟨alliance, week⟩ 
pairs (14,954 pairs). Where each pair is associated with 14 
attributes.

As a new attribute, we introduce the age of the alliance, 
as we assume a strong interdependence with the maturity 
of the group. The age of an alliance at a given week (stated 
in weeks) is the number of weeks elapsed since the alliance 
creation. Formally, the age of an alliance a at week w is 
stated as:

C =

∑
i[c

∗ − ci]

max
∑

i[c
∗ − ci]

Cd =

∑
i[c

d∗ − cd
i
]

2(N − 1)(N − 2)

Cc =
2N − 3

3(N − 1)(N − 2)

∑

i

[̃cc∗ − c̃c
i
]

Cb =

∑
i [̃c

b∗ − c̃b
i
]

N − 1

(a) (b)

Fig. 5   Two examples of communication networks
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where firstweek(a) denotes the first week within the life-span 
of the alliance a.

We also excluded the cases with the number of alliance 
members N ≤ 3 . The result of this step was the removal of 
1,542 alliance-week pairs. Hence, the dataset then consisted 
of the remaining 13,412 alliance-week pairs.

The last step is to join the network attributes 
dataset with the performance dataset, such that for each 
alliance-week pair, we have the network features along with 
the performance of the alliance during that week.

5 � Analysis

Now, since we have completed our dataset, we start looking 
at the features we have at hand. First, we look at the correla-
tion of these features with the target feature, the performance 
of an alliance in a week. This can be seen in Fig. 6 (including 
alliance age). We observe that the features that are the most 
correlated with the performance are the number of nodes 
N (alliance members), and the number of edges E. Some 
other features also have a relatively high positive correlation 
with the performance, including the avg. in-degree, k-core k, 
k-core size, and age. There are also other features that show 
a relatively high negative correlation with the performance, 
including the closeness centralization (cntrz_cc), and k-core 
relative size (kcore_rel_size). The remaining features have 

age(a,w) = w − firstweek(a) + 1

weak, positive, or negative correlation, such as density, cen-
tralization, transitivity, and reciprocity.

In order to have insight into how the performance is 
related to each feature, Fig. 7 shows scatter plots of each 
feature with respect to the performance.

6 � Performance prediction

In this section, we address the prediction of the alliance per-
formance based on the network attributes. For this purpose, 
we used our final dataset, which comprises 13,412 records 
(alliance-week pairs) corresponding to 1,431 alliance over 
50 weeks. Besides the alliance ID, the week, and the per-
formance, it consists of 15 features including the alliance 
age and the attributes of the communication network. Since 
many of these features have their values on different scales, 
we opt to perform a min–max scaling of all features such 
that their values are in the range [0,1].

Then, we split the dataset into 80% training, and 20% test 
subsets. As a prediction algorithm, we used the classic linear 
regression approach (also known as Ordinary Least Squares 
(OLS)), as implemented in the linear regression module of 
python’s scikit-learn library.4

For the evaluation of the prediction accuracy, we use the 
coefficient of determination ( R2 ), which is stated as:

where yi and ŷi are the actual and predicted values of the 
target variable (the alliance performance in our case). The 
coefficient of determination is the proportion of the variance 
in the dependent variable that is predictable from the inde-
pendent variables. Thus, it is a statistical measure of how 
well the regression predictions approximate the real data 
points. An R2 of 1 indicates that the regression predictions 
perfectly fit the data.5

In this paper, we consider two models for the prediction 
task:

–	 Baseline model: The purpose of this model is to cover 
the main effects originating from the game design, i.e., 
the features that are not related to the communication 
network, namely the number of alliance members N, and 
the alliance age. Actually, having more alliance members 

R2(y, ŷ) = 1 −

∑
i(yi − ŷi)

2

∑
i(yi − y)2

Fig. 6   Correlation of network attributes with the performance

4  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​linear_​
model.​Linea​rRegr​ession.​html.
5  In Müller et al. (2020), we used the adjusted R2 (see Theil 1961), 
however, we stick with R2 in this paper since the number of features is 
small comparing to the number of instances; hence, there is no need 
for the adjusted R2.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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automatically leads to a higher-ranking position. Holding 
a certain limit in alliance members is required, but not 
sufficient for reaching a high-ranking position. There-
fore, we included group size (N) to capture this effect. 
Secondly, groups need time to form and to arrive at the 
performing stage (Tuckman and Jensen 1977). Therefore, 
we included time since foundation of the alliance (age).

–	 Network model: As a second step, we extended the 
baseline model by adding 13 network features derived 
from the intra-alliance communication networks. To 
capture (collective) leadership structures, we included 
density, centralization (D’Innocenzo et al. 2016; Nico-
laides et al. 2014), and k-core (Seidman 1983; Contractor 
et al. 2012). We used average in-degree to track prestige 
(Moreno 1946). Finally, we included transitivity and reci-

procity to cover the most important structural tendencies 
(Wasserman and Faust 1994).

Namely, the baseline model comprises two features: the 
number of nodes N, and the age of the alliance. The network 
model comprises 15 features: N, E, density, avg_din, cntrz_
dc, cntrz_dc_in, cntrz_dc_out, cntrz_cc, cntrz_bc, kcore_k, 
kcore_size, kcore_rel_size, transitivity, reciprocity, and age.

We used the 80% training set to train the linear regression 
model, and the 20% test set is then used to test the trained 
model.

The prediction results, in terms of R2 , for the two models 
(baseline, and network) are shown in Fig. 8. We can see that 
while the accuracy of the baseline model is 0.52, the network 
model achieves an accuracy of 0.595. This corresponds to 

Fig. 7   Scatter plots of network 
features with performance. The 
data points are colored based 
on N, the number of nodes/
members (lighter points indicate 
more members)
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14% increase with respect to the accuracy of the baseline 
model.

In fact, in our previous work, Müller et al. (2020), we 
had a third model which involved the logarithms of several 
features; thus, it outperformed the network model. We also 
considered other two outcomes besides the performance, 
namely the log performance, and the square root of the 
performance. The accuracy of predicting those outcomes 
was slightly higher than predicting the ‘pure’ performance. 
However, in this paper, we skip the log model and these two 
outcomes for several reasons, including: 1) to focus on the 
original (raw) values of the features and the performance, 
2) to be consistent with the rest of this paper, and 3) for sake 
of brevity.

Now in order to have insight into the data and the predic-
tion model, let us have a look on the importance of features 
in predicting the performance. Feature importance scores 

are assigned to input features based on how useful they are 
at predicting a target variable. Many techniques can be used 
to assign feature importance scores. In this work, we opt to 
use two techniques:

–	 Coefficients as Feature Importance: Linear machine 
learning algorithms, such as linear regression, fit a model 
where the prediction is the weighted sum of the input 
values. These algorithms find a set of coefficients to use 
in the weighted sum in order to make a prediction. These 
coefficients can be used directly as a crude type of feature 
importance score. In our case, this is possible since the 
features are already scaled (using min–max transforma-
tion). We can also ignore the sign values because nega-
tive sign states an inversely proportional correlation.

–	 Exclusion-based Feature Importance: Basically, we 
repeatedly: 1) exclude each feature, 2) run the linear 
regression algorithm using the rest of features, and 3) 
assess the drop in accuracy in comparison to the original 
model (using all features). The higher the difference is, 
the more important the excluded feature is.

In our case, we used both of these techniques to assess the 
importance of all the 15 features, in comparison with the 
network model (which uses all of them as predictors). The 
results are shown in Fig. 9.

We can see that both techniques provide similar results 
of the importance of features. For instance, we can observe 
that the most important features are: the number of nodes 
N, the number of edges E, the average in-degree, and kmax 
of the k-core. In particular, if we use only these four fea-
tures as predictors, the prediction accuracy, in terms of R2 , 
will be 0.581 which corresponds to 98% of the accuracy 
of the network model. On the other hands, we can see that 
the least important features are: k-core size, betweenness 
centralization, and out-degree centralization. In particular, 

Fig. 8   Prediction results

based on Coefficients based on Exclusion(a) (b)

Fig. 9   Feature importance
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if we exclude these three features from the network model, 
the prediction accuracy will not change.6

7 � Classification of top‑performing alliances

In this section, we address the problem of classifying the top 
alliances based on their performance. First, we need to specify 
what the top-performing alliances are. To do so, we choose 
a threshold � (e.g., 10%), and then for each week, find the 
� = (1 − �)% quantile of the performance during that week 
(e.g., 90% quantile). We constructed a binary variable (target) 
that indicates whether an alliance is among top-performing 
alliances. Each alliance having a performance greater than or 
equal to � during that week is considered as top-performing 
alliance, i.e., target = 1; otherwise, target = 0. Thus, the clas-
sification turns out into a binary classification task.

To address this binary classification task, we used four 
different classification approaches:

–	 kNN: k-nearest neighbors ( k = 45).
–	 RF: Random forest classifier (nr. estimators=100).

–	 LR: Logistic regression.
–	 SVM: Support vector machine (linear kernel).

The features used for the classification are all 15 features in 
our final dataset (including N, E, and age). Thus, this cor-
responds to the network model as mentioned earlier in the 
prediction section. (No logarithm features are used.) Moreo-
ver, all the features are transformed using min–max scaling, 
such that each feature falls within the [0,1] range.

The evaluation of the classification is tackled using the 
accuracy metric, which is the fraction of correctly classified 
instances to all instances (in the test set). In all the classifi-
cation experiments, we used cross-validation over fivefold, 
where the reported accuracy is the average over the fivefold 
classifications. The results of the classification, in terms of 
accuracy, for the five different thresholds (from top 5% to 
top 25%), and for the four classification approaches (kNN, 
RF, LR, and SVM), are shown in Fig. 10.

First, we observe that for any classification approach, the 
classification accuracy decreases as we increase the thresh-
old of the top alliances. For instance, when we classify the 
top 5% alliances, the accuracy is about 95%, whereas when 
we classify the top 20% alliances, the accuracy is about 
90%. Second, when we compare the different classification 
approaches, we observe that in general, the best classifier is 
SVM, followed by logistic regression, followed by random 
forest, where kNN is the least accurate classifier.

Fig. 10   Classification results

6  Recall that the k-core k
max

 is the maximum of the core number and 
indicates the strength of the connections within the k-core, while the 
k-core size is the number of nodes in the k-core, i.e., nodes whose 
core number is k

max
 . Here, k

max
 seems to be an important feature, 

while the k-core size is not!
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8 � Performance prediction with temporal 
data

In this section, we add a dynamic perspective to our study, 
by incorporating a temporal dimension and considering the 
past events. We examine the ability to improve performance 
prediction by bringing in historic data. That is, we aim at 
predicting team performance either using the past perfor-
mance, or the features of the communication network (past 
and present), or both.

8.1 � Prediction models

Since in our case, the time is indexed by weeks, let N[w] 
denote the network features7 at a time point w, i.e., current 
week, and let N[w−�] denote the network features at a past 
time point w − � which occurred � weeks before w, where � 
is a non-negative integer representing a timespan, in weeks, 
between the past and the present. In our study, we opt to 
use � ∈ {1, 2,⋯ , 8} . Moreover, let p[w] and p[w−�] denote 
the team performance at the present week w and past week 
w − � , respectively.

With these notations, what we have done in previous sec-
tions is actually predicting p[w] , as a target variable, using 
N[w] as features (or equivalently, predicting p[w−�] using 
N[w−�] ), i.e., predicting the team performance at a given 
week using the features of communication network at that 
same week. Henceforth, we will refer to this model as the 
basic network model, as it does not involve any time delay 
( � is irrelevant).

In the following, we will symbolically express a predic-
tive model as:

which means that a dependent variable Y (on left-hand side) 
is expressed as a linear function in terms of a set of inde-
pendent variables X  (on the right-hand side).

With this notation, we can symbolically express the basic 
network model as:

which means that we seek to express the performance p[w] 
(dependent variable) as a linear function in terms of the 
network features N[w] (independent variables). Besides this 
basic network model, we examine several other models: 

A.	 Past Performance model (PP): This model predicts the 
current performance p[w] using only the past perfor-
mance p[w−�] : 

Y ∼ f (X)

p[w] ∼ f (N[w])

B.	 Past Network model (PN): This model predicts the cur-
rent performance p[w] using the past network features 
N[w−�] : 

C.	 Past Performance, and Past Network model (PP-PN): 
This model predicts the current performance p[w] using 
the past performance p[w−�] and the past network fea-
tures N[w−�] : 

D.	 Past Performance, and Current Network model (PP-
CN): This model predicts the current performance p[w] 
using the past performance p[w−�] and the current net-
work features N[w] : 

E.	 Past- and Current Network model (PN-CN): This model 
uses the network features, at present N[w] and in the past 
N[w−�] to predict the current performance: 

F.	 Past Performance, and Past- and Current- network 
model (PP-PN-CN): This model uses the past perfor-
mance p[w−�] as well as the network features, at present 
N[w] and in the past N[w−�] to predict the future perfor-
mance: 

Figure 11 shows a graphical representation of these models. 
We can see that in all these models, the target (dependent) 
variable is always the current performance p[w] (highlighted 
in blue), while the independent variables (highlighted in 
green) vary according to the model and can be either the past 
performance p[w−�] , the past network features N[w−�] , the 
current network features N[w] , or any combination of them. 
In each model in Fig. 11, we used arrows to link independent 
variables (predictors) to the target variable.

8.2 � Data preparation

We have shown in Sect. 4 that our dataset combines the 
features of the communication network of each alliance with 
the performance of that team, on a weekly basis. That is, for 
each alliance-week pair, we have the network features along 
with the performance of the alliance during that week.

Now, in order to examine the predictive models of his-
toric data, we need to prepare the dataset such that it con-
tains, besides the network features and the performance 

p[w] ∼ f (p[w−�])

p[w] ∼ f (N[w−�])

p[w] ∼ f (p[w−�],N[w−�])

p[w] ∼ f (p[w−�],N[w])

p[w] ∼ f (N[w−�],N[w])

p[w] ∼ f (p[w−�],N[w−�],N[w])

7  This includes all the 15 features mentioned in Fig. 6.
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at a present week w, the network features and the perfor-
mance at a past week w − � . Let us denote the dataset as 
D(a,w,N, p) , where a is the alliance ID, w is the week, N  
is the set of features of communication network (such as N, 
E, age), and p is the performance of alliance a at week w.

For � = 1 , we create a new dataset D1 by performing the 
following steps (demonstrated in Table 2):

–	 We make a copy of the dataset D, and we name it D′ , it 
will represent the past.

–	 We rename the columns of D′ as follows: w becomes 
w1, p becomes p1, and each x in N  becomes x1.

–	 We add to D′ a new column w_1, whose values equal 
the values of the column w1 plus 1: 

–	 Then, we join the two datasets, D and D′ , using 
D[�] = D�[�] and D[�] = D�[�_�].

D�[�_�] ∶= D�[��] + 1

Fig. 11   Graphical representa-
tion of the different predictive 
models. The arrows point from 
independent variables (predic-
tors) to the target variable. PP: 
past performance, PN: past 
network features, CN: current 
network features
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Notice that D and D′ contain the same data, but D′ has an 
additional column w_1, which indicates the next week (i.e., 
each entry in D′ with week w, the value of w_1 is w + 1 ). 
Therefore, when we join the two datasets, such that the next 
week of D′ equals the current week of D, the content of D′ 
(w1, N� , p1) will be the past with respect to the present 
content of D (w, N  , p).

This process is demonstrated by an example in Table 2, 
where we can see that D′ (top right) has the same content 
as D (top left), but with renamed columns and an additional 
column w_1. The result of the join is a combination of the 
present attributes: w, N  , and p, and the past attributes: w1, 
N� , and p1.8 In this example, we see that the second row in 
D is joined with the first row in D′ . Similarly, the third row 
in D is joined with the second row in D′.

We can also see that the size of the joined dataset is 
smaller than the original one, since there are some rows that 
are not included in the join. For instance, for any alliance, 
the row, which corresponds to the very first week of that alli-
ance, will not be in the joined dataset, because it  has no past.

The data preparation process is also repeated for 
� = 2,⋯ 8 . Thus, we obtain eight datasets D� for 
� = 1, 2,⋯ , 8 , each of which combines the present attributes 
(week w, network features N  , and performance p) with the 
past ones (after � weeks).

Before proceeding to the predictive analysis, it is inter-
esting to examine how the past network features are related 
to the current performance. Figure 12 shows, for each of 
the 15 features, the correlation of the past of that feature, 
over the different values of the timespan � , with the current 
performance (correlation of x[w−�] with p[w] for x ∈ N  ) ; in 

comparison to that correlation in the present (correlation of 
x[w] with p[w] ), as per the original dataset (see Fig. 6).

We can see that for many of the features, the correlation 
of their past with performance is lower than the correla-
tion of their present with performance and decreases as � 
increases. Examples of such features include: N, E, avg in-
degree, k-core k, and k-core size. This behavior indicates a 
degradation of the correlation with performance.

On the other hands, some features, such as density, do 
not change significantly. Other features, such as team age, 
exhibit an increase in correlation with the performance. This 
means that the past age has more impact on the performance 
than the present age, in other words, the age of the team has 
more impact on its performance in the future rather than in 
the present.

It is also interesting to examine the auto-correlation of the 
features; that is, the correlation of each feature in the present 
with itself in the past. Figure 13 shows the auto-correlation 
of each feature over the different timespans � = 1,⋯ , 8.

We can see that the features have a positive, but slowly 
decreasing auto-correlation, as the timespan increases. How-
ever, the strength of the auto-correlation varies significantly 
according to the feature. For instance, the strongest feature, 
w.r.t auto-correlation, is the performance followed by N and 
E, whereas the weakest features are betweenness centraliza-
tion and reciprocity.

Notice here that the strength or the weakness of the 
auto-correlation of a feature provides an indication of the 
robustness or volatility of that feature. For instance, hav-
ing a very strong auto-correlation, the performance, N and 
E are robust features that do not change much over several 
weeks. In contrast, betweenness centralization and reciproc-
ity, having weak auto-correlation, are volatile features that 
significantly change their values over time.

Table 2   Demonstrative example 
of preparing a dataset with 
current and past attributes

8  After the joining, the column w_1 is not needed anymore and can 
be deleted.



	 Social Network Analysis and Mining (2021) 11:65

1 3

65  Page 14 of 18

8.3 � Prediction results

Using the eight datasets D� for � = 1, 2,⋯ , 8 , we examine 
the different prediction models mentioned in Sect. 8.1.

For each dataset, we split it into 80% training and 20% 
test subsets. As a prediction algorithm, we use the classic 
linear regression approach (ordinary least squares, OLS). 
For the evaluation of the prediction accuracy, we use the 
coefficient of determination ( R2 ). We use the 80% training 
set to train the linear regression model, and the 20% test 
set is then used to evaluate the trained model in terms of 
R2 as an evaluation measure.

The results are shown in Table 3 which depicts the 
accuracy, in terms of R2 , of the six prediction models over 
the eight datasets D� for � = 1, 2,⋯ , 8.

We can see that the dataset size decreases over time, i.e., 
as the timespan � increases. In particular, when the delay is 
eight weeks ( � = 8 ), the dataset size is less than the half of 
the size of the original dataset.

First, let us compare the models that use the network 
features only. Recall that the basic network model predicts 
the team performance in a week based on the network fea-
tures of that same week. We have shown in Sect. 6 that this 
model has an accuracy of R2 = 0.595 . Two other models 
use the network features only, namely: PN model (past- net-
work model), and PN-CN model (past and current network 
model).

Figure 14 shows the accuracy of those models, in terms 
of R2 , in comparison to the accuracy of the basic network 
model. We can observe that the accuracy of PN model is 

Fig. 12   Correlation of the 
past network features with 
the current performance for 
� = 1,⋯ , 8
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Fig. 13   Auto-correlation 
of each feature: correlation 
between the past and the present 
of each feature, for � = 1,⋯ , 8

Table 3   Accuracy of prediction 
models, in terms of R2 , for 
� = 1, 2,⋯ , 8

� size PP PN PP-PN PP-FN PN-FN PP-PN-FN

1 11,415 0.961 0.545 0.961 0.964 0.594 0.972
2 10,315 0.910 0.528 0.911 0.922 0.608 0.937
3 9,453 0.872 0.492 0.874 0.893 0.608 0.913
4 8,644 0.833 0.504 0.840 0.870 0.625 0.893
5 7,907 0.804 0.475 0.816 0.854 0.637 0.878
6 7,254 0.784 0.486 0.793 0.847 0.648 0.868
7 6,689 0.758 0.452 0.767 0.833 0.622 0.856
8 6,155 0.785 0.449 0.792 0.842 0.644 0.859

Fig. 14   Accuracy of the (Past) 
network model, the (Past and 
Current) network model, and 
the past performance model
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lower than the accuracy of the basic network model, and it 
decreases as the timespan � increases. In contrast, we can 
observe that the accuracy of the PN-CN model is higher than 
the accuracy of the basic network model, and it increases 
as the timespan � increases. The best accuracy is achieved 
when the delay is six weeks ( � = 6 ), with R2 = 0.65 . This 
means that in order to predict the performance of a team 
using the features of its communication network, it is better 
to know those features during the same week, than knowing 
them during any previous week; the longer that period is, the 
worse the accuracy gets. However, it is even better to know 
these features at both: the same week and a previous week; 
the longer that period is, the better the accuracy gets, up to 
a certain limit, namely a period of six weeks.

Now let us examine the predictive models that involve 
the (past) performance as a predictor. The first one of those 
models is PP model that uses the past performance only, to 
predict the current performance. As shown in Fig. 14, the 
accuracy of this model is generally very high. For instance, 
this accuracy is R2 = 0.96 when the delay is one week, 
which means that we can 96% accurately predict the per-
formance of a team at a current week by knowing only its 
performance last week. We can also see that the accuracy of 
this model decreases as the delay � increases; the longer the 
delay is, the lower the accuracy gets.

Clearly, the performance model, PP, is more accurate 
than the models that use network features only (basic net-
work model, PN, and PN-CN). However, as the timespan � 
increases, the accuracy of PP model decreases, whereas the 
accuracy of PN-CN model increases, which suggests that 

with a long enough timespan, the PN-CN model would beat 
the PP model in accuracy9.

Besides PP model, there are three models that are based 
on the past performance as a predictor: PP-PN, PP-CN and 
PP-PN-CN. All these models use the past performance and 
involve additional network features, namely PP-PN model 
involves past network features, and PP-CN model involves 
current network features, while PP-PN-CN model involves 
both past and current network features. Figure 15 shows how 
the accuracy of those models changes as � changes.

We can observe that these three models have higher 
accuracy than the PP model (which purely uses the per-
formance), which means that the network features have an 
added value over the past performance in predicting the cur-
rent performance.

At any given value of � , the PP-PN model has a slightly 
higher accuracy than the PP model, which means that add-
ing the past network features to the performance improves 
its prediction accuracy.

Moreover, the PP-CN model has even a pretty higher 
accuracy than the PP-PN model. This means that to predict 
the team performance in a current week, given that we know 
its performance in a past week, it is better to also know the 
network features at this current week than knowing them at 
that past week.

Furthermore, for any value of � , the PP-PN-CN model 
has a higher accuracy than the PP-CN model. In fact, it is 
the most accurate model among all the examined models. 

Fig. 15   Accuracy of the differ-
ent models that involve the past 
performance

9  This indeed happens for � ≥ 14 as we found in a subsidiary experi-
ment!
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This means that the best-known way to predict the current 
team performance is to know its past performance, as well 
as its network features in the present and the past.

9 � Conclusion

The goal of this study was to find out whether it is possible 
to predict alliance performance using SNA-features from 
communication networks. Moreover, we wanted to test the 
ability of classification tasks to identify the best-performing 
alliances. Furthermore, we tested the ability to predict the 
current team performance using the past and current net-
work features as well as past performance. In all cases, we 
have been able to show that it is possible to do this. Future 
research will help us to deepen our understanding of the 
underlying dynamics and enable us to apply our findings in 
a less specific context.

One major challenge we faced was the fact that we con-
ducted our research within the environment of an online 
simulation game. We were able to track the interaction of 
18,000 individuals, but we also had to learn that it is not an 
easy task to study these communication effects in isolation.

Despite the fact that the applied machine learning algo-
rithms delivered excellent results in the classification tasks, 
we identified two effects that made it difficult to interpret the 
results outside the specific context: (1) the game’s definition 
of performance and (2) the effect of group size on certain 
network attributes.

Definition of team performance: We opted to define 
success in the same way the game does. By using a slight 
modification to the official alliance ranking, we were able 
to ensure that our definition of performance matched the 
player’s incentives provided by the game design. With this 
clear advantage, we faced a challenging hurdle: the rank-
ing is highly influenced by group size (N). As described 
above, alliance leaders face a trade-off. One option is to add 
as many members as possible to the alliance. Having more 
members automatically leads to more inhabitants, which 
leads to a higher position in ranking. On the other hands, it 
is more difficult to coordinate a bigger group as opposed to a 
small team of highly experienced players. Evidence from the 
game shows that both strategies have been applied success-
fully for top-performing teams. Nevertheless, there is a clear 
restriction. Figure 7 shows that alliances need to exceed a 
certain number of members (about N > 35 ) to be able to 
reach a top position in ranking. However, it is not sufficient 
to have many members in order to become a highly ranked 
team. We were able to show that the additional information 
extracted from the communication networks ia able to make 
the difference. Applying these measures makes it possible to 
successfully forecast team performance.

Effect of group size on network attributes: One criti-
cal effect is that N is included in the formulas used to 
calculate certain network attributes. This leads to an 
unwanted dependency between these network attributes 
and N. Hence, the correlations of density, avg. in-degree, 
centralization, and k-core show two different effects (the 
intended network effect and the indirect effect of N). Nei-
ther effect can be separated from the other.

Given these limitations, our future work will focus on 
eliminating these restrictions, which will make it possi-
ble to generalize our findings, i.e., to better explain team 
dynamics in real-world work teams.

One approach could be to (1) develop alternative meas-
ures for team performance that are either not or are less 
correlated with group size N. Further, it will be helpful 
to split the dataset to be able to (2) take group size into 
account (e.g., separate small and big teams). We also pro-
pose (3) refining the theoretic foundation. In this study, 
we have already implemented insights from team and 
leadership research. Additional theoretical models such 
as outside connectivity, core-periphery structure, or the 
role of strong and weak ties can be expected to improve 
prediction results.

As we have shown in our paper, the opportunities for con-
ducting research into online games are manifold. Research-
ing online gaming is a very promising field, especially in 
view of the vast amount of data, it can offer. We also dem-
onstrated how important it is to oversee the effects coming 
from the special environment of these virtual worlds. The 
opportunities in this field are promising and will be even 
more so once these very special frameworks and their limita-
tions are better understood and mastered.
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