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Abstract
The Shapley value (Shapley in Ann Math Stud 2:28, 1953) is one of the most prominent one-point solution concepts in 
cooperative game theory that divides revenues (or cost, power) that can be obtained by cooperation of players in the game. 
The Shapley value is mathematically characterized by properties that have appealing real-world interpretations and hence 
its use in practical settings is easily justified. The down part is that its computational complexity increases exponentially 
with the number of players in the game. Therefore, in practical problems that consist of more than 25 players the calculation 
of the Shapley value is usually too time expensive. Among others the Shapley value is applied in the analysis of terrorist 
networks (cf. Lindelauf et al. in Eur J Oper Res 229(1):230–238, 2013) which generally extend beyond the size of 25 play-
ers. In this paper we therefore present a new method to approximate the Shapley value by refining the random sampling 
method introduced by Castro et al. (Comput Oper Res 36(5):1726–1730, 2009). We show that our method outperforms the 
random sampling method, reducing the average error in the Shapley value approximation by almost 30% . Moreover, our new 
method enables us to analyze the extended WTC 9/11 network of Krebs (Connections 24(3):43–52, 2002) that consists of 
69 members. This in contrast to the restricted WTC 9/11 network considered in Lindelauf et al. (2013), that only considered 
the operational cells consisting of the 19 hijackers that conducted the attack.

Keywords  Approximation method · Shapley value · Cooperative game theory

JEL Classification  C71

1  Introduction

Cooperative game theory with transferable utilities studies 
situations in which players can work together and create 
additional revenues (or costs reductions) instead of the situ-
ation in which each player acts on its own. When all players 
involved in the game work together, the so-called grand coa-
lition forms. The objective is to find an allocation of the total 

revenue (or cost) of the grand coalition among the players 
that is considered ‘fair’ by all (sets of) players.

There are many solution concepts in cooperative game 
theory, each satisfying its own set of properties. We mention 
as one-point solutions the nucleolus (Schmeidler 1969) and 
the compromise value (Tijs 1981). However, the drawback of 
these solutions is that there do not exist general characteriza-
tions consisting of intuitive appealing properties. The most 
prominent one-point solution concept satisfying intuitive 
properties that are also considered as fair in many situations 
in practice is the Shapley value (Shapley 1953). The proper-
ties symmetry (i.e., two players that are symmetric in a game 
should receive an equal share), dummy (i.e., a player that 
does not contribute in a game only receives its individual 
contribution) and monotonicity (i.e., if a game changes such 
that a set of players is rewarded more in each coalition they 
participate, then these players should receive at least the 
same as allocated in the original game) are examples of such 
properties (cf. Shapley 1953; Young 1985) that are satisfied 
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by the Shapley value. The Shapley value is defined as the 
average of all n! marginal vectors in a cooperative game con-
sisting of n players. Each marginal vector is determined by 
a specific order of the players, say � , in which the player in 
the i-th position in � , say player k, is allocated the difference 
between the value of the coalition consisting of k and its 
predecessors and the value of the coalition consisting only 
of the predecessors of k. Although the concept of marginal 
contributions is intuitive clear, computing the Shapley value 
as the average marginal contribution of each player is con-
siderably harder. The Shapley value has both theoretical and 
practical merits. From a theoretical perspective, for instance, 
the Shapley value can be characterized using properties that 
are in general considered as appealing and fair (cf. Shapley 
1953; Young 1985) or it can be regarded as a special case of 
the theory of power indexes (Shapley and Shubik 1954). An 
overview and further generalizations of the Shapley value 
are provided in the book edited by Roth (1988).

The Shapley value has been applied to many real-world 
cases. Consider the airport landing fee problem described in 
Littlechild and Owen (1973). Littlechild and Owen proposed 
a division of the landing fees using the Shapley value. More 
recent, Deidda et al. (2009) use the Shapley value to allocate 
the cost of transporting water from reservoirs to the users 
in the Turia river basin. In genetics Moretti et al. (2007) use 
the Shapley value of the microarray game to determine the 
most important genes for specific body functions. Linde-
lauf et al. (2013) model terrorist networks by connectivity 
games and use the Shapley value to identify key players in 
such networks. More applications of the Shapley value in 
different fields can be found in the survey of Moretti and 
Patrone (2008).

The biggest challenge in applying the Shapley value to 
real-world applications is its computational time which gen-
erally increases exponentially with the number of players. 
More precisely, it can be shown that computing the Shapley 
value is an NP-complete problem (cf. Deng and Papadimi-
triou 1994; Faigle and Kern 1992).

A notable exception is the class of games that are math-
ematically defined in such a way that it becomes possible to 
compute the Shapley value in polynomial time [e.g., airport 
games (Littlechild and Owen 1973) and sequencing games 
(Curiel et al. 1989)]. In the context of terrorist networks 
Michalak et al. (2013) developed an algorithm to compute 
the Shapley value for connectivity games on networks that is 
polynomial in the number of connected subgraphs when the 
underlying network structure is known. Another exception is 
when properties of the Shapley value can be used to deter-
mine it in polynomial time [e.g., unanimity games (Shapley 
1953)]. Unfortunately most games lack both a convenient 
mathematical structure and the option to use properties of 
the Shapley value such that it can be determined in polyno-
mial time. Then even in a game consisting of 25 players the 

computation of the Shapley value is too time expensive. In 
general real-world applications deal with a large number of 
players, hence underlining the importance of heuristics in 
determining the Shapley value.

Two kinds of heuristics have been developed up to now. 
The first one focusses on the special class of simple games, 
i.e., games that only attain a value of 0 or 1. Within this 
class voting games receive most attention. See for instance 
Fatima et al. (2008) who present an algorithm that has time 
complexity linear in the number of players. They show that 
their algorithm outperforms the following approximation 
methods: Monte Carlo simulation (Mann and Shapley 1960), 
multi-linear extension (MLE) (Owen 1972), modified MLE 
(Leech 2003) and random permutation (Zlotkin and Rosen-
schein 1994). Moreover, they provide some error bound 
analysis and show that their algorithm is also applicable to 
k-majority games.

The second type of heuristic uses the average of a ran-
dom subset of marginal vectors, see Castro et al. (2009). 
In contrary to Fatima et al. (2008) that is restricted to the 
class of voting games which are 0, 1 valued, the heuristic of 
Castro et al. (2009) is applicable to all types of games. This 
approximation method for the Shapley value has been used 
more often lately in the literature. The majority of these 
papers focus on specific classes of games. In Bachrach et al. 
(2010), for example, the focus is again on simple games. 
Liben-Nowell et al. (2012) consider convex games. Fur-
thermore, Narayanam and Narahari (2008, 2011) use this 
method in social networks.

One area where better approximation methods for the 
Shapley value are needed is in the ranking procedure of 
individuals in networks of a terrorist, insurgent or criminal 
nature. For instance in Lindelauf et al. (2013) the opera-
tional WTC 9/11 network is analyzed, consisting of the 19 
hijackers of the four planes involved in the attack. Using a 
cooperative game that takes both compositional and struc-
tural variables into account a ranking is obtained using the 
Shapley value. However, the extended WTC 9/11 network 
consists of 69 members (see Krebs 2002) which is too large 
to analyze with the Shapley value in order to obtain a rank-
ing of the players in a reasonable amount of time. The algo-
rithm of Michalak et al. (2013) that considers connected 
subgraphs is also too time expensive as the number of such 
subgraphs becomes too large. Furthermore, there is a need 
for a general approximation method to the Shapley value 
that is also applicable to games without network structure.

In this paper we therefore introduce a refinement of the ran-
dom sampling method introduced by Castro et al. (2009) and 
establish rankings for all the 69 members in the extended WTC 
9/11 network. Hence, the heuristic we introduce is also appli-
cable to all types of games. Our sampling method first selects a 
random set of permutations of all players in the game. Second 
we modify these permutations in such a way that each player 
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attains each position in the permutation the same number of 
times. This slight modification results in a better performance 
than the heuristic of Castro et al. (2009). On average the error 
in the Shapley value approximation is reduced by almost 30%.

This paper is organized as follows. In Sect. 2 some well-
known aspects of the Shapley value are recalled. Section 3 
discusses the heuristic of Castro et al. (2009) and our new heu-
ristic which we will refer to as structured random sampling. 
Section 4 provides the performance analysis of the structured 
random sampling method. Section 5 applies our heuristic to 
the network of hijackers and accomplices involved in the 9/11 
attack. Section 6 ends with conclusions.

2 � The Shapley value

A cooperative game is a pair (N, v), where N = {1, 2,… , n} 
denotes the set of players. These players can cooperate and 
form different coalitions. A map v assigns a value v(S) to each 
possible coalition S ⊆ N , which reflects the potential benefit or 
power of coalition S. By definition v(�) = 0 . The Shapley value 
allocates the value of the grand coalition, i.e., v(N), over all 
individual players. The most commonly used definition of the 
Shapley value is based on marginal vectors. Let Π contain all 
possible orderings of the players in the grand coalition N and 
let � = (�1, �2,… , �N) ∈ Π be one such ordering. If player i 
is at position k, i.e., �k = i , then its marginal contribution m�

v
(i) 

is defined as m�
v
(i) = v

(
{�1,… , �k}

)
− v

(
{�1,… , �k−1}

)
 . 

Hence, the marginal contribution of player i is the extra value 
(or benefit) that player i contributes to the already established 
coalition {�1,… , �k−1} . Clearly, the marginal contribution of 
a player depends on the chosen ordering � . Considering all n! 
possible orderings in Π , we define the Shapley value �i(v) of 
player i as its average marginal contribution:

The following example illustrates how to compute the Shap-
ley value via the marginal contributions of players.

Example 2.1  (Computing the Shapley value via marginal 
contributions) Consider the 3-person game (N, v) with v as 
in Table 1.

There are 3! = 6 orderings possible in this 3-person game. 
The corresponding marginal contributions are depicted in 
Table 2. In the first row of this table, for example, it can be 
seen that the marginal contribution of player 2 in the order-
ing (1, 2, 3) equals m�

v
(2) = v({1, 2}) − v({1}) = 5 − 1 = 4.

(1)�i(v) =
1

n!

∑
�∈Π

m�
v
(i).

Averaging the marginal contributions of each player 
results in the Shapley value: �(v) = (3

5

6
, 3

1

3
, 2

5

6
).

Computing the Shapley value via marginal contribu-
tions is time expensive since all n! possible orderings of 
the players need to be considered. In several special cases, 
however, a time-efficient closed formula to compute the 
Shapley value exists. This is the case, for example, when 
the game (N, v) is represented as a linear combination of 
unanimity games. Given N = {1, 2,… , n} and a non-empty 
subset T ⊆ N of players, a unanimity game uT is defined as

for each possible coalition S ⊆ N . Interpretation: a benefit 
of 1 can only be attained when all players in T are involved 
in the coalition. Consider a game (N, v) that is represented 
as a linear combination of several unanimity games, i.e., 
v(S) =

∑
T⊆N,T≠� cT ⋅ uT (S) , where cT is the coefficient of the 

corresponding unanimity game. For this sum-of-unanimity-
games game (or, shorter, SOUG game) the Shapley value of 
player i can readily be computed (cf. Shapley 1953):

Any cooperative game can be represented as a SOUG game 
(c.f. Shapley 1953) and this representation provides an effi-
cient way to compute the Shapley value by means of (3). 
Unfortunately, to reformulate a random cooperative game 
as a SOUG game all 2n − 1 coalition values v(S) of the game 
(N, v) need to be considered. Hence, this procedure is only 
useful when the SOUG game is already provided.

The following example illustrates how to efficiently 
compute the Shapley value when the underlying SOUG 
game is provided.

(2)uT (S) =

{
1 if T ⊆ S,

0 otherwise,

(3)�i(v) =
∑
T∶T∋i

cT

|T| .

Table 1   An example of a 
3-person game

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

v(S) 0 1 3 0 5 7 4 10

Table 2   The marginal 
contributions of the 3-person 
game in Table 1

� m
�
v
(1) m

�
v
(2) m

�
v
(3)

(1, 2, 3) 1 4 5
(1, 3, 2) 1 3 6
(2, 1, 3) 2 3 5
(2, 3, 1) 6 3 1
(3, 1, 2) 7 3 0
(3, 2, 1) 6 4 0
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Example 2.2  (Computing the Shapley value for a SOUG 
game) Consider the following 3-person unanimity games 
u{1} , u{1,2} and u{2,3} . Table 3 presents the coalition values 
for each unanimity game.

Let c{1} = 2 ,  c{1,2} = − 3 ,  c{2,3} = 5 and let all 
other coefficients equal 0. Then, for the correspond-
ing 3-person SOUG game (N,  v) it follows that 
v(S) = 2 ⋅ u{1}(S) − 3 ⋅ u{1,2}(S) + 5 ⋅ u{2,3}(S) , see Table 4.

Applying the procedure of Example 2.1 we could com-
pute the average marginal contribution of each player, and, 
hence, the Shapley value. Note, however, that (3) provides a 
straightforward way to compute the Shapley value by con-
sidering the explicit formulation of the SOUG game. For 
example ,  the  Shapley value  of  p layer  2  is 
�2(v) =

c{2}

|{2}| +
c{1,2}

|{1,2}| +
c{2,3}

|{2,3}| +
c{1,2,3}

|{1,2,3}| =
0

1
+

− 3

2
+

5

2
+

0

3
= 1 . 

In a similar way the Shapley values of the other two players 
follow and �(v) = (

1

2
, 1, 2

1

2
).

3 � Approximation methods

In cases where the Shapley value of a cooperative game is 
too time expensive to compute we resort to approximation 
methods. Such methods are either based on the class of the 
underlying game or, for more general classes of games, are 
based on sampling methods. In this section we first review 
the nowadays popular random sampling method. Then we 
introduce a new approximation method, the so-called struc-
tured random sampling method. We illustrate each approxi-
mation method by an example.

3.1 � Random sampling

In the last decade there has been a focus on approximat-
ing the Shapley value of arbitrary games with many players 
using a random sample of the marginal vectors. This random 
sampling method was first introduced by Castro et al. (2009). 
They applied the following three-step procedure.

Procedure random sampling
Input: n-person cooperative game (N, v).

1.	 Select a subset Πr of r orderings from all n! possible 
orderings, i.e., Πr ⊂ Π.

2.	 Compute the marginal contributions m�
v
(i) for all players 

i ∈ N and for all orderings � ∈ Πr.
3.	 Approximate the Shapley value for each player i by aver-

aging the marginal contributions obtained at step 2, i.e., 
𝜑̂i(v) =

1

r

∑
𝜎∈Πr

m𝜎
v
(i).

Notice that in step 1 the modeler can choose how many 
orderings he wants to use, i.e., he selects the value of r. We 
will use the random sampling method as a benchmark for 
our new structured random sampling method. In the follow-
ing example we apply the random sampling method to the 
3-person game introduced in Sect. 2 (Table 1) with r = 3 . In 
Table 5 one possible choice of orderings is given.

Example 3.1  (Approximating the Shapley value via random 
sampling) Consider the 3-person game (N, v) of Exam-
ple 2.1. Say we sample half of the possible orderings, i.e., 
r = 3 . Then compute the marginal contributions for each of 
the three players in the sampled orderings. Table 5 depicts 
a possible scenario. Finally, average the marginal contri-
butions to obtain an approximated Shapley value for each 
player. Hence, 𝜑̂(v) = (3, 3

1

3
, 3

2

3
).

In Example 3.1 the approximated Shapley values for 
players 1 and 3 differ substantially from the real Shapley 
values �1(v) = 3

5

6
 and �3(v) = 2

5

6
 . In this example the dif-

ference is mainly due to the lack of orderings in the sample 
in which player 1 is the last player since these orderings 
largely influence the Shapley value of both players 1 and 3. 

Table 3   An example of three 
unanimity games

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

u{1} 0 1 0 0 1 1 0 1
u{1,2} 0 0 0 0 1 0 0 1
u{2,3} 0 0 0 0 0 0 1 1

Table 4   The 3-person SOUG 
game corresponding to Table 3

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

v(S) 0 2 0 0 − 1 2 5 4

Table 5   The marginal 
contributions of randomly 
selected orderings of the 
3-person game in Table 1

� m
�
v
(1) m

�
v
(2) m

�
v
(3)

(1, 2, 3) 1 4 5
(1, 3, 2) 1 3 6
(3, 1, 2) 7 3 0



Social Network Analysis and Mining (2018) 8:3	

1 3

Page 5 of 12  3

Hence, influential orderings like these can easily be missed 
when sampling at random. This observation led to the idea 
to ensure that each player attains each position in the order-
ing the same number of times. This is why we propose to 
use a new approximation method that adds structure to the 
orderings that are sampled.

3.2 � Structured random sampling

Structured random sampling method is inspired by the ran-
dom sampling method. The idea of this new heuristic is to 
ensure that each player attains each position in the ordering 
the same number of times. As a consequence the marginal 
contribution of a player to a coalition of the same size is 
calculated the same number of times. The intuition is that 
this leads to a better estimate because the calculation of 
the marginals with respect to coalitions of a certain size is 
equally distributed. To realize this the randomly selected 
orderings are tweaked by swapping players to their preferred 
positions in the orderings. The marginal contributions of the 
players in these new orderings are then used to approximate 
the Shapley value.

The swapping method is illustrated for a 4-person game 
in Table 6. To ensure that each player attains each position 
in the ordering the same number of times the sample size 
r must be a multiple of the number of players of the game. 
In this case r = 8 orderings are randomly selected and 
divided into n = 4 groups of size t = 2 . Observe that the 
number of groups is always equal to the number of players 
in the game. The size of a group indicates the number of 
times a player attains the same position in the ordering. 
In the two orderings in the first group player 1 is swapped 
with the player at the first position. In the two orderings in 
the second group player 1 is swapped with the player at the 
second position et cetera. These new orderings are used to 
compute the marginal contributions of player 1 and they 
in turn are averaged to approximate the Shapley value of 
player 1. This procedure is then repeated for players 2 to n, 
each time using the original randomly selected r orderings 
as a starting point for the swapping method. In Table 6 
player 1 attains each position in the ordering exactly t = 2 
times. The remaining positions in the orderings, however, 

remain random. The same holds for players 2 to n when 
the swapping method is applied to construct the orderings 
for these players.

The procedure to approximate the Shapley value of 
an arbitrary game using the structured random sampling 
method is as follows.
Procedure structured random sampling
Input: n-person cooperative game (N, v). (Hence, n is fixed 
and determines the number of groups.)

1.	 Select a subset Πr of r orderings from all n! possible 
orderings, i.e., Πr ⊂ Π , with r = t ⋅ n and t ∈ ℕ . (Hence, 
the subset must be a multiple of n)

2.	 Divide the subset Πr in n groups of size t. (This ensures 
that each player can attain each position in the ordering 
the same number of times.)

3.	 For each player i:

(a)	 Swap player i with the player at position j for each 
of the t orderings in group j, where j ∈ {1,… , n} , 
resulting in a set Π�

r
 of r new orderings. (This 

ensures that each player will attain each position 
in the ordering the same number of times.)

(b)	 Compute the marginal contributions m�
v
(i) of 

player i for all new orderings � ∈ Π�
r
.

(c)	 Approximate the Shapley value of player i by aver-
aging the marginal contributions obtained at step 
3b, i.e., 𝜑̂i(v) =

1

r

∑
𝜎∈Π�

r
m𝜎

v
(i).

The following example illustrates how the structured ran-
dom sampling procedure could be applied to the coopera-
tive game of Example 2.1.

Example 3.2  (Approximating the Shapley value via struc-
tured random sampling) Consider again the 3-person 
game (N, v) of Example 2.1. Assume that we sample the 
same subset Πr of r = 3 orderings as in the random sam-
pling example, see the second column of Table 7. Since we 
have a three player game, i.e., n = 3 , we divide this subset 
into 3 groups. Since the size of the subset is chosen to be 
3, i.e., r = 3 , we have that the size of each group equals 
one, i.e., t = 1 . Now consider player 1. Swapping this 
player with the player at the first, second and third posi-
tion results in the new orderings depicted in the third col-
umn of Table 7. The fourth column in this table depicts the 
corresponding marginal contributions m�

v
(1) of player 1 

in the new orderings. More precisely, if � = (1, 2, 3) then 
m�

v
(1) = v({1}) − v(�) = 1 − 0 = 1 , if � = (3, 1, 2) then 

m�
v
(1) = v({1, 3}) − v({3}) = 7 − 0 = 7 , and if � = (3, 2, 1) 

t h e n  m�
v
(1) = v({1, 2, 3}) − v({2, 3}) = 10 − 4 = 6  . 

Averaging these marginal contributions yields an 
approximation of the Shapley value for player 1, i.e., 
𝜑̂1(v) = (1 + 7 + 6)∕3 = 4

2

3
.

Table 6   Swapping player 1 to his preferred positions in the orderings



	 Social Network Analysis and Mining (2018) 8:3

1 3

3  Page 6 of 12

Starting again from the original subset Πr in the second 
column and swapping player 2 with the player at the first, 
second and third position results in a new subset of order-
ings for player 2, see the fifth column of Table 7. The sixth 
column depicts the corresponding marginal contributions, 
resulting in 𝜑̂2(v) = 3

1

3
 . Repeating this swapping method for 

the third player results in the orderings and marginal contri-
butions depicted in the seventh and eight column of Table 7, 
which in turn lead to 𝜑̂3(v) = 3

2

3
 . Hence, 𝜑̂(v) = (4

2

3
, 3

1

3
, 3

2

3
).

Two important observations follow from Examples 3.1 
and 3.2. First, both methods calculate the same number of 
marginal contributions per player in order to approximate 
the Shapley value. The structured random sampling method, 
however, also needs to swap players. This extra operation 
results in a slightly larger computation time, see Sect. 4.3. 
Second, random sampling is efficient, i.e., v(N) is distributed 
over the n players, whereas structured random sampling is 
not efficient. This lack of efficiency is due to the fact that 
structured random sampling only considers marginal con-
tributions of a single player for each sampled ordering. In 
spite of these two drawbacks the structured random sampling 
method outperforms the random sampling method when it 
comes to approximating the Shapley value as will be shown 
in the next section.

4 � Performance analysis

In this section the performance of our proposed structured 
random sampling method is compared to the performance 
of the random sampling method. The idea is to apply both 
sampling methods on arbitrary games with many players 
and compare the results with one another as well as with 
the exact Shapley values of these games. First we describe 
how the errors between the approximated and exact Shapley 
values are measured. Then we run two types of performance 
analyses: one on the number of orderings used in the sam-
pling methods and one on the number of players in the coop-
erative game. Observe that the random sampling method 
is the only method that can also approximate any class of 
games, in contrary to the method of Fatima et al. (2008) that 
is only applicable to a the special class of voting games that 
can only attain the value 0 and 1. Therefore, we only use the 
random sampling method as benchmark for the structured 
random sampling method. Nevertheless, at the end of this 

section we also shortly compare the performance between 
the structured random sampling method and the method of 
Fatima et al. (2008).

We test the performance of both sampling methods for the 
class of SOUG games. In order to generate random SOUG 
games the number of players, the number of unanimity 
games and the corresponding coefficients of these unanimity 
games have to be chosen randomly. Using this class of games 
has two main advantages. First, since each cooperative game 
can be represented as a SOUG game, and the SOUG games 
are generated randomly, the cooperative games used in the 
analysis are also random. Second, since the generated SOUG 
games are known, the exact Shapley values of the players 
in the game can be computed efficiently, see Example 2.2. 
Hence, we will be able to compute error measures for both 
approximation methods by comparing the approximated 
Shapley values with the exact Shapley values.

The error measures are computed as follows. For a ran-
domly generated SOUG game vj the exact Shapley values 
as well as the approximated Shapley values are computed 
for all players in the game. Then both the absolute error and 
the percentage error are computed for each player. Aver-
aging these errors leads to the average absolute error and 
the average percentage error of the sampling method for the 
corresponding game vj . This provides insight in the abso-
lute as well as the relative size of the errors incurred by 
our approximation method. To improve the validity of the 
error measures not just one but 50 random SOUG games vj 
are generated, hence, j = 1,… , 50 . Averaging the average 
absolute error and the average percentage error results in 
the error measures ‘average average absolute error’ (AAAE) 
and ‘average average percentage error’ (AAPE) for these 50 
random SOUG games vj , i.e.,

These average error measures provide for better benchmark-
ing of the approximation methods to the exact method. To 
facilitate averaging over multiple games the value of the 

(4)AAAE =
1

50

50∑
j=1

(
1

n

n∑
i=1

|||𝜑̂i(vj) − 𝜑i(vj)
|||
)

(5)AAPE =
1

50

50�
j=1

⎛⎜⎜⎝
1

n

n�
i=1

���𝜑̂i(vj) − 𝜑i(vj)
���

���𝜑i(vj)
���

⎞⎟⎟⎠

Table 7   The marginal 
contributions of randomly 
selected orderings of the 
3-person game in Table 1

Group Ordering Swap 1 m
�
v
(1) Swap 2 m

�
v
(2) Swap 3 m

�
v
(3)

1 (1, 2, 3) (1, 2, 3) 1 (2, 1, 3) 3 (3, 2, 1) 0
2 (1, 3, 2) (3, 1, 2) 7 (1, 2, 3) 4 (1, 3, 2) 6
3 (3, 1, 2) (3, 2, 1) 6 (3, 1, 2) 3 (2, 1, 3) 5



Social Network Analysis and Mining (2018) 8:3	

1 3

Page 7 of 12  3

grand coalition, i.e., vj(N) , in each random SOUG game is 
normalized. The general procedure to compute the error 
measures is summarized in the following four-step approach.
Procedure error measures

1.	 Randomly generate 50 SOUG games and normalize the 
value of the grand coalition in each game.

2.	 Compute the exact Shapley values for all players in all 
50 games.

3.	 Use random sampling to approximate the Shapley values 
for all players in all 50 games and compute the error 
measures AAAE en AAPE.

4.	 Use structured random sampling to approximate the 
Shapley values for all players in all 50 games and com-
pute the error measures AAAE en AAPE.

A note on the computation of the error measure AAPE. Con-
sider a player with a Shapley value close to zero. This Shap-
ley value may be approximated very well by (structured) 
random sampling, but may still result in a relatively large 
percentage error. Therefore, in the computation of the error 
measure AAPE only players with a Shapley value larger than 
0.1% of v(N) are taken into account.

4.1 � Number of orderings

The idea behind both sampling methods is to consider only 
a fraction of the total number of orderings of the players. It 
is expected that the approximations will be better, i.e., closer 
to the exact Shapley values, when the number of orderings 
used in the sampling methods increases. A simulation con-
sists of 50 randomly generated SOUG games. Each of these 
SOUG games consists of 100 players and is constructed 
from 100 unanimity games, with a randomly selected sub-
set T ⊂ N . The coefficients, which are multiplied with the 
unanimity games, are random integers taken from the inter-
val [− 10, 10] . In the simulations the number of orderings 

vary from only 500 orderings up to 5000 orderings. Note, 
however, that for a game with 100 players an astoundingly 
100! ≈ 9.33 × 10157 different orderings of the players exist. 
Even when sampling 5000 orderings only a tiny fraction of 
the total number of orderings is used in the approximation, 
i.e., less than 0.01%.

Figure 1 shows the results of the performance analysis 
on the number of orderings. In this figure the ‘average aver-
age absolute error’ (AAAE) and ‘average average percent-
age error’ (AAPE) are provided for both sampling methods 
when the number of orderings is varied from 500 up to 5000 
orderings.

From this figure it can be seen that average absolute 
errors (the AAAEs) for both sampling methods are very 
small. The average percentage errors (the AAPEs), how-
ever, are quite large. For example, using 5000 orderings the 
AAPE is 16% for random sampling and 11% for structured 
random sampling. Hence, more orderings should be sampled 
to obtain more accurate approximations. Still, considering 
the tiny fraction of orderings used in the approximation of 
the Shapley values the results of both sampling methods 
are promising. Furthermore, it can be seen that structured 
random sampling outperforms random sampling. That is, 
the errors in the approximations from structured random 
sampling are significantly smaller than the errors of ran-
dom sampling. This effect is even more profound when the 
number of orderings is small, i.e., close to 500.

4.2 � Number of players

The second analysis tests the performance of both approxi-
mation methods for different numbers of players. Again 
arbitrary games are considered by randomly generating 50 
SOUG games in each simulation. The parameter settings of 
the SOUG games construction are quite similar to the set-
tings in the performance analysis of the number of orderings. 
The only differences with the previous analysis are that the 
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Fig. 1   Performance analysis on the number of orderings
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number of orderings is fixed to 5000 orderings and the num-
ber of players in each game varies from 10 to 100 players. 
Furthermore, the normalized value of the grand coalition in 
each game of n players is factored by 0.01n thereby enabling 
the comparison of the absolute errors in the approximation 
methods for games with different numbers of players.

Figure 2 shows the results of the performance analysis on 
the number of orderings. In this figure the ‘average average 
absolute error’ (AAAE) and ‘average average percentage 
error’ (AAPE) are provided for both samplings methods 
while the number of players is varied from 10 up to 100 
players.

Both sampling methods are seen to have small AAAEs en 
AAPEs, but these errors seem to increase as the number of 
players increases. This is most likely due to the fact that the 
number of orderings used in all the approximations is fixed 
to 5000 orderings. When the number of players increases 
the number of possible orderings increases as well. Hence, 
a smaller fraction of the total number of orderings is sam-
pled and the approximations are expected to be less accu-
rate. Nevertheless, the approximation errors increase only 
slowly when the number of players increases. For example, 
the AAPEs of random sampling and structured random sam-
pling are, respectively, 4 and 3% in a game of 10 players. 
These numbers are, respectively, 13 and 9% in a game of 100 
players. Hence, a factor 10 increase in the number of play-
ers results in only a factor 3 increase in the average errors. 
Again, structured random sampling outperforms random 
sampling. This time the effect is even more profound when 
the number of players in the game increases.

4.3 � A note on computation times

Each performance analysis implies running several simula-
tions. In each simulation 50 random SOUG games are con-
sidered. All simulations and computations were performed 

with MATLAB, release R2014, on a computer with four 
Intel X3430 processors of 2.4 Ghz and with 4.00 Gb RAM.

The computation time of the structured random sampling 
method is slightly larger than the computation time of ran-
dom sampling. This extra time is due to swapping players 
to their preferred positions in the orderings in the structured 
random sampling procedure. Overall, this time difference is, 
however, negligible. Average computation times are about 
500–900 s with the number of orderings ranging from 2500 
to 5000. These times are about 300–850 s with the number 
of players ranging from 50 to 100.

4.4 � Benchmark to weighted majority games

In this section we shortly compare the performance of struc-
tured random sampling to the method of Fatima et al. (2008). 
Recall that the structured random sampling method can be 
applied to any game whereas Fatima’s method can only be 
applied to weighted majority games, a special class of games 
that can only attain the values 0 and 1. Hence, a fair bench-
marking is not really possible because in the structured ran-
dom sampling we do not use any characteristics of a game 
whereas the method of Fatima et al. (2008) strongly depends 
on the special structure of weighted majority games. More 
precisely, their method has to choose weights for each player. 
For their estimation of the Shapley value they use the Cen-
tral Limit Theorem and take the average of only n marginal 
vectors that are created using the normal distribution of the 
sample mean of the weights. Although the small (fixed) 
number of marginal vectors makes this method very fast, 
this is also a limitation since it is not possible to increase 
the number of marginal vectors to reduce the approxima-
tion error. In the structured random sampling method the 
number of marginal vectors can be increased to improve the 
approximation of the Shapley value. In the following exam-
ple we show that, in case the structured random sampling 
method only uses n marginal vectors, it performs often quite 
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Fig. 2   Performance analysis on the number of players
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similarly to the method of Fatima et al. (2008), and in case 
the number of orderings is increased, but still entails only 
a tiny fraction of the total number of orderings, structured 
sampling clearly outperforms Fatima’s method.

Example 4.1  (Structured random sampling and Fatima’s 
method) Fatima et al. 2008 use several data cases to test the 
performance of their method. Nine of these data cases con-
sider voting games with n = 20 players, which we will use 
in our benchmark. The weights of the players in these data 
cases vary from a mean weight of 20 up to a mean weight 
of 100. In each data case different values are considered for 
the quota, resulting in a total of 68 different games. We have 
applied our structured random sampling method to each of 
these 68 voting games. Figure 3 shows the average approxi-
mation errors of Fatima’s method and structured random 
sampling with n = 20 orderings (hence, 20 marginal vec-
tors). In Fig. 3, it can be seen that the very small number of 
marginal vectors results in spikes in the average approxima-
tion error for the structured random sampling method with 
respect to Fatima’s method for three of the data cases. In 
particular for the data case with mean weight 30 the struc-
tured random sampling method performs poorly. The spikes 
at mean weights 70 and 90 are less severe. In the remaining 
six data cases, however, the performance of the structured 
random sampling method equals Fatima’s method. The big 
advantage of structured random sampling (besides its appli-
cation to all games instead of only majority games) is its 
scalability to improve performance. As Fig. 4 illustrates, 
increasing the number of orderings to 10,000, which is still 
a very small subset of the total of 20! ≈ 2.4 × 1018 orderings 
and takes only 14 s (Fatima’s method takes 3 s on the same 

machine), improves the performance of structured random 
sampling significantly.

5 � Application: Al‑Qaeda’s network 
of the WTC 9/11 attack

In this section the structured random sampling method is 
applied to a real-world case, i.e., the WTC 9/11 terrorist 
attack of Al-Qaeda. On September 11th, 2001, Al-Qaeda 
hijacked four planes in the United States of America. Two 
of the planes flew into the Twin Towers of the World Trade 
Center of New York. A third plane flew into the Pentagon 
and a fourth plane crashed in Pennsylvania. The attack 
resulted in the immediate death of 2977 people and left 
many more injured.

Based on publicly available resources Krebs (2002) 
mapped Al-Qaeda’s terrorist network responsible for the 
WTC attack. This includes a network of 19 pilots and 
hijackers, which were directly responsible for the 9/11 
attack, and an extended network of 69 members that 
includes accomplices, see Fig. 5. In this figure the size 
of each node is proportional to the number of connec-
tions of each member. Lindelauf et al. (2013) computed 
the Shapley value of the connectivity game based on the 
network of the 19 pilots and hijackers. In this connectiv-
ity game a coalition receives a value of 1 when all play-
ers in the coalition are able to (indirectly) communicate 
with each other (i.e., the underlying subgraph is con-
nected). Otherwise, the coalition receives a value of 0 (i.e., 
the underlying subgraph is disconnected). Consider, for 
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example, the lower right part of Fig. 5. In the connectiv-
ity game coalition {Jean-Marc Grandvisir, Nizar Trabelsi} 
receives a value of 0,  whereas the coalit ion 
{Jean-Marc Grandvisir, Nizar Trabelsi, Djamal Beghal} 
receives a value of 1. Computing the Shapley value of the 
connectivity game for the extended network of 69 mem-
bers can not be accomplished using the exact method of 
Lindelauf et al. (2013) due to the extremely large num-
ber of 69! ≈ 1.7 × 1098 orderings to be considered in the 
computations.

Fortunately, our structured random sampling method 
is able to approximate the Shapley value for each of the 
69 members in the network. These approximated Shapley 
values can be used to construct a ranking of the members 
in the network. In this ranking the members with the high-
est Shapley values attain the top positions in the ranking. 
Table 8 depicts the first 15 members in the ranking based on 
the approximated Shapley values using structured random 
sampling.

The ranking in Table 8 is obtained using a sample of 
only 20,000 orderings (with a computation time of 11 min). 

Fig. 5   The network of pilots, hijackers and accomplices in the WTC 9/11 attack. The size of each node is proportional to the number of connec-
tions of each member. Source: Krebs (2002). Used with permission

Table 8   First 15 members in WTC network of Fig. 5 according to the 
approximated Shapley value

Ranking Name Appr. 
Shapley 
value

1 Mohamed Atta 0.1145
2 Essid Sami Ben Khemais 0.1134
3 Hani Hanjour 0.1112
4 Djamal Beghal 0.1081
5 Khalid Almihdhar 0.1077
6 Mahmoun Darkazanli 0.1075
7 Zacarias Moussaoui 0.1015
8 Nawaf Alhazmi 0.1008
9 Ramzi Bin al-Shibh 0.0984
10 Raed Hijazi 0.0930
11 Hamza Alghamdi 0.0099
12 Fayez Ahmed 0.0093
13 Marwan Al-Shehhi 0.0045
14 Satam Suqami 0.0038
15 Saeed Alghamdi 0.0034
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Increasing the number of orderings up to 500,000 orderings 
(taking up 4 h of computation time) had no effect on the 
members present in the top-10. Note that even in the case of 
500,000 orderings still only a tiny fraction of the total num-
ber of 69! ≈ 1.7 × 1098 orderings is sampled. Hence, only 
a tiny fraction of all possible orderings is needed to obtain 
consistent results.

The top-10 contains members like Mohamed Atta (pilot 
of flight 11, WTC North), Hani Hanjour (pilot of flight 
77, Pentagon), Khalid Almihdhar and Nawaf Alhazmi 
(both hijackers of flight 77). Zacarias Moussaoui, who was 
arrested before the WTC attacks took place and became 
known as ‘the 20-th hijacker’, is also present in the top-10. 
Besides these pilots and hijackers, members like Essid Sami 
Ben Khemais, a former head of operations for Al-Qaeda 
in Italy, and Djamal Beghal can be found in the top-10 of 
the ranking. Both have been identified by US government 
of plotting attacks on US embassies world wide. Figure 5 
shows their connections to the members involved in the 
WTC 9/11 attack.

In this application we have only considered the struc-
ture of the WTC network. A big advantage of game theo-
retic measures is that they, in contrast to standard centrality 
measures, can also be applied when additional information 
on nodes and relationships is present, see Lindelauf et al. 
(2013) (note that there do exist some non-game theoretic 
measures that consider more than only network structure to 
determine centrality of nodes, e.g., diffusion centrality, c.f. 
Kang et al. 2016). Using a game theoretic measure in our 
application we could for example model Al-Qaeda’s network 
as a weighted connectivity game. Our structured random 
sampling method could then approximate the Shapley value 
of each member resulting in a ranking of the members in 
the WTC network taking into account both compositional 
and structural variables. Comparing this ranking to rankings 
obtained by standard centrality measures (that only consider 
network structure) may lead to valuable insights in disman-
tling such networks.

6 � Conclusions

The Shapley value is one of the most prominent one-point 
solution concepts in cooperative game theory. In general, 
however, its computational complexity is exponential in the 
number of players. There are numerous real-world applica-
tions in which the number of players in the game is too large 
to calculate the Shapley value, warranting methodology to 
approximate the Shapley value. Next to the already existing 
heuristic of random sampling we presented a structured ran-
dom sampling approach to approximate the Shapley value 
and compared it to the random sampling procedure. Our 
simulations showed that the errors in the approximations 

using structured random sampling are substantially smaller 
than the errors using random sampling, becoming more 
prominent when the number of orderings is small or the 
number of players increases. Average computation times of 
the structured random sampling method were only slightly 
larger than the random sampling method, making structured 
random sampling a preferred choice when approximating the 
Shapley value. We applied our structured random sampling 
method on a connectivity game for Al-Qaeda’s extended 
network of the WTC 9/11 attack to identify the key players 
in this network, which previously was impossible due to the 
size of the WTC network.
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