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Abstract It is well known that non-vaccinated individu-

als may be protected from contacting a disease by vacci-

nated individuals in a social network through community

protection (herd immunity). Such protection greatly

depends on the underlying topology of the social network,

the strategy used in selecting individuals for vaccination,

and the interplay between these. In this paper, we analyse

how the interplay between topology and immunization

strategies influences the herd immunity of social networks.

First, we introduce an area under curve measure which can

quantify the levels of herd immunity in a social network.

Then, using this measure, we analyse the above mentioned

interplay in three ways: (1) by comparing vaccination

strategies across topologies, (2) by analysing the influence

of selected topological metrics, and (3) by considering the

influence of network growth on herd immunity. For qual-

itative comparison, we consider three classical topologies

(scale-free, random, and small-world) and three vaccina-

tion strategies (natural, random, and betweenness-based

immunization). We show that betweenness-based vacci-

nation is the best strategy of immunization in static net-

works, regardless of topology, but its prominence over

other strategies diminishes in dynamically growing

topologies. We find that the network features that lead to

‘small-worldness’ in networks (low diameter and high

clustering) discourage herd immunity, regardless of the

vaccination strategy, while preferential mixing (high as-

sortativity) encourages it. In terms of growth, we demon-

strate that herd immunity of random networks actually

increases with growth, if the proportion of survivors to a

secondary infection is considered, while the community

protection in scale-free and small-world networks decrea-

ses with growth. Our work highlights the complex balance

between social network structure and vaccination strategies

in influencing community protection, and contributes a

numerical measure to quantify this.

Keywords Complex systems � Structures and

organization in complex systems � Systems obeying scaling

laws � Graph theory � Networks and genealogical trees

1 Introduction

The speed and penetration of epidemic spread depends on a

number of factors—the transmissibility of the contagion,

the mode of transmission, and the structure of the social

networks. Therefore, these factors have to be taken into

account in designing effective vaccination strategies for a

population. It is rarely possible to vaccinate an entire

population against a potential epidemic. The vaccinating

entity may not have the resources to do so, and the indi-

viduals may be indifferent, negligent, or even resistant

towards the vaccination process. An important concept,

therefore, in epidemiology is that a population may be

entirely immunized by strategically vaccinating a portion

of it (Anderson and May 1990), and this concept is called

the ‘herd immunity’. It is obvious that the feasibility of
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herd immunity, and the resources needed to achieve it on a

given population, depend on the topology of the underlying

social network.

In many cases [such as chickenpox and measles (Ferrari

et al. 2006), which are commonly found in temperate

countries yet endemic to all countries worldwide] the

spread of an epidemic may immunize a community against

subsequent epidemics of the same disease. This is called

natural immunization. Natural immunization is different

from typical vaccination programmes because it preferen-

tially targets individuals (nodes) who are highly connected.

Clinical vaccination, if resources are limited, on the other

hand, would give preference to the health considerations of

individuals and not to their social connectivity patterns. In

terms of connectivity, it can be considered ‘random’, for it

selects individuals regardless of their topological place-

ment. Therefore, the effect on network herd immunity by

both strategies is different. If the underlying topology of

the social network is known, clinical vaccination strategies

guided by this topology can also be introduced. This is

particularly relevant if we consider ‘social networks’ from

a higher level of abstraction (e.g., a network of townships

rather than a network of individuals, where it is easier to

establish the network structure).

A further complexity arises because of the fact that

social networks are constantly under growth. Often the

time difference between natural or clinical vaccination and

the spread of the next epidemic is very considerable—

several years or decades. Within this time children are

born, migrants who are not vaccinated enter the community

and new ways of interactions between the existing mem-

bers begin to take place. All of this can effectively change

the levels of herd immunity present in a community to a

particular disease.

The goal of this paper is to compare the effect of vac-

cination strategies on social networks with differing

topologies, qualitatively and quantitatively. We model

social networks via three well-studied classes of synthe-

sized networks and compare the effect of topology and

growth on herd immunity on each of these classes. We are

interested in finding whether a particular strategy of vac-

cination is better suited to a particular class of networks,

whether a particular structural metric (such as clustering)

encourages or discourages herd immunity, and whether a

particular class of networks is more (or less) responsive to

growth in terms of herd immunity. In terms of the first

question, we build on existing work (Ferrari et al. 2006) yet

introduce a new vaccination strategy (vaccination by

betweenness order) and compare it to the strategies already

studied. Then we further expand on this by studying the

influence of structural metrics relevant to each topology,

such as clustering coefficient, network diameter, and as-

sortativity. In terms of network growth, we compare the

vaccination strategies on each class of networks to see the

amount of reduction in herd immunity in each scenario.

To achieve the above mentioned goals, it is necessary to

be able to numerically quantify the amount of herd

immunity present in a network. Therefore, we also develop

an ‘area under curve (AUC)’ measure, which is able to

quantify herd immunity as a value between 0.0 and 1.0.

This measure is central to all the analysis we present in this

paper, and an independent contribution in itself.

The rest of this paper is organised as follows: In Sect. 2,

we present the background of this study by describing

existing work in the area of epidemic spread on social

networks in general, and comparison of vaccination strat-

egies in particular. In Sect. 3, we describe our simulation

set-up. In Sect. 4, we introduce the AUC measure which we

will use to quantify the herd immunity of a network. In

Sect. 5, we present our results, addressing the above

mentioned research questions we set out to answer. In Sect.

6 we discuss our results, present our conclusions and dis-

cuss limitations and future work.

2 Background

In the epidemiological domain, a few studies have suc-

cessfully modelled epidemic spread as a specific example

of percolation in networks (Newman and Watts 1999;

Newman 2002b; Meyers et al. 2003, 2005, 2006; Sander

and Warren 2002). The percolation theory is attractive

because it provides connections to several well-known

results from statistical physics, in terms of percolation

thresholds, phase transitions, long-range connectivity, and

critical phenomena in general. For instance, Newman and

Watts (1999) suggested using a site percolation model for

disease spreading in which some fraction of the population

is considered susceptible to the disease, and an initial

outbreak can spread only as far as the limits of the con-

nected cluster of susceptible individuals in which it first

strikes. An epidemic can occur if the system is at or above

its percolation (epidemic) threshold where the size of the

largest (giant) cluster becomes comparable with the size of

the entire population. Similarly, Moore and Newman

(2000) used a general model with two simple epidemio-

logical parameters: (1) susceptibility, the probability that

an individual exposed to a disease will contact it and (2)

transmissibility, the probability that contact between an

infected individual and a healthy but susceptible one will

result in the latter contacting the disease. They pointed out

that if the distribution of occupied sites or bonds is random,

then the problem of when an epidemic takes place becomes

equivalent to a standard percolation problem on the graph:

what fraction of sites or bonds must be occupied before a

‘‘giant component’’ of connected sites forms whose size
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scales extensively with the total number of sites (Moore

and Newman 2000). It has been noted (Meyers 2006) that

the percolation of disease through a network depends on

both the level of contagion and the structure of the contact

network.

A well-studied concept in epidemiological literature is

that of herd immunity, first introduced by Anderson and

May (1990). This concept explains that due to the topo-

logical structure of a social network, the entire network can

be guaranteed immunity from an infection by vaccinating a

portion of it—as long as the nodes selected for the vacci-

nation are positioned such that they block infection trans-

mission to non-vaccinated nodes. While perfect herd

immunity is rarely achievable, the level of herd immunity

present in a network can be quantified by the ratio between

the proportion of surviving nodes (after an epidemic

spread) and the proportion of vaccinated nodes before the

epidemic. In retrospect, if a relatively low proportion of

vaccinated nodes cause a relatively high proportion of

nodes to avoid infection, we may argue that the herd

immunity of that network must have been high.

It was shown by Ferrari et al. (2006) (and implied in

other works, such as Newman 2002b, before them) that the

success of a particular vaccination strategy depends on the

particular topology of the network. They compared random

vaccination with natural immunization and utilized three

classes of topologies: (1) scale-free, (2) random (which

they called ‘Poisson’, after the nature of the resultant

degree distribution), and (3) small-world. They found that

in scale-free networks, natural immunization is a better

defence to infection spread compared to random vaccina-

tion, whereas in small-world networks, random vaccination

performs better than natural immunisation in containing

infection spread. There was no considerable difference

between strategies in the case of random networks with

Poisson degree distribution. Building on this work, we also

ask the following questions: How the growth of the net-

work affects the fraction of survival in each of these classes

of networks, and which vaccination strategy is best suited

to contain the spread of infection in each case, given that

the network is undergoing growth? What are the topolog-

ical metrics which are relevant in each of the above men-

tioned classes, and how do they affect immunity? In

addition to the above mentioned vaccination strategies, we

consider betweenness centrality-based (Freeman 1977,

1979) vaccination. While this later strategy needs complete

contact information to be effective, unlike random vacci-

nation, we will show that it warrants consideration by

virtue of much better performance. In any case, social

networks can be studied at different levels of abstraction

(networks of individuals, townships, countries, schools,

organizations, etc.), and contact information may be easily

obtainable in some cases than others.

3 Simulation design

Following Ferrari et al. (2006), we studied three classes of

networks, which have been widely used to simulate spread

of epidemics on social networks (Ferrari et al. 2006; Me-

yers et al. 2003; Moore and Newman 2000; Meyers 2006)

and have been shown to represent the topologies of a range

of animal and human social networks (Ferrari et al. 2006;

Sjoberg et al. 2000). These classes are (1) scale-free net-

works, which have power law degree distributions (2) Er-

dos–Renyi random networks, which have poisson degree

distributions, and (3) small-world networks, characterised

by high clustering coefficient and low average path length.

We used a version of the Barabasi–Albert preferential

attachment algorithm (Albert and Barabási 1999, 2002;

Barabási et al. 2000; Barabási and Bonabeau 2003; Park

and Newman 2004) to generate the scale-free networks. To

generate the small-world networks, we used the algorithm

described by Watts and Strogatz (1998), with rewiring

probability p ¼ 0:5.1 The ER random networks were gen-

erated simply by randomly choosing pairs of nodes and

connecting them until the specified number of links have

been created. In all classes, we disallowed self links and

double links. All network generation and simulation was

undertaken using in-house developed software written in

Java language.

The epidemics were simulated using the well-known

susceptible–infected–recovered model (Ferrari et al. 2006;

Newman 2002b; Meyers 2006; Bailey 1957). We used a

discrete time synchronous model, in which at each time

step nodes can be in ‘susceptible-S’, ‘infected-I’ or

‘recovered-R’ state. We do not distinguish between ‘vac-

cinated’ and ‘recovered’ states, since we assume that the

epidemics studied confer immunity upon recovery. Fol-

lowing Ferrari et al. (2006), we make susceptible nodes

become infected across an edge with the binomial proba-

bility p ¼ 1� eð�bmÞ; where m is the number of infected

nodes to which the considered node is connected, and b is

the likelihood of transmission across an edge. The nodes

are then assumed to recover and enter the immunized state

with the probability c ¼ 0:1. Thus, the average period of

infection for an infected node is ten timesteps. Once the

1 We also generated small-world networks with rewiring probabil-

ities of p ¼ 0:02 to compare with the results of Ferrari et al. (2006),

since this was the value used by them. However, this value, as

explained by Watts and Strogatz, is too close to the regular graph

extreme, and the networks generated, therefore, show relatively high

characteristic path length. The value p ¼ 0:5 is in the middle of the

rewiring probability range, between the regular extreme and the

random extreme, and we found, therefore, that the small-world

networks generated with this value better represent the small-world

characteristics of high clustering coefficient and low characteristic

path length. The results in terms of herd immunity were qualitatively

similar for both values of p, in any case.
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immunity is conveyed, it lasts for the rest of the simulation.

At the beginning of the simulations, all nodes are

susceptible.

The growth of networks was simulated by simply re-

invoking the relevant growth algorithms on existing net-

works, with a specified number of extra nodes and extra

links, while maintaining the vaccination states of existing

nodes. All new nodes added were assumed to be in ‘sus-

ceptible (S)’ state. The growth percentage was converted

into number of additional nodes by multiplying it with the

current network size, and the number of additional links

were calculated by maintaining the average degree (link-to-

node ratio) of the existing network.

We simulated three vaccination strategies: (1) natural

immunization, (2) random immunization, and (3)

betweenness-based immunization. Natural immunization is

the scenario where a previous epidemic leaves parts of the

network immunized to further epidemics. To simulate this,

we infected a randomly selected node (we averaged over

100 random starting points) and let the epidemic spread for

Tp timesteps. Tp was sufficiently large compared to the size

of the network to allow the epidemic to spread to all parts

of the network. Random immunization was done by ran-

domly selecting a certain number of nodes and ‘vaccinat-

ing’ them by setting their immunization state to ‘R’.

Similarly, betweenness-based vaccination was done by

calculating the betweenness centrality of all nodes, sorting

them in the order of betweenness, and vaccinating a given

proportion of nodes by setting their immunization state to

‘R’.

Betweenness centrality (Freeman 1977, 1979; Doro-

govtsev and Mendes 2003; Kepes 2007) is a well-known

centrality measure. Let us note for completeness here that

the betweenness centrality measures the fraction of shortest

paths that pass through a given node, averaged over all

pairs of nodes in a network. It is formally defined, for a

directed graph, as

BCðvÞ ¼ 1

ðN� 1ÞðN� 2Þ
X

s6¼v 6¼t

rs;tðvÞ
rs;t

ð1Þ

where rs;t is the number of shortest paths between source

node s and target node t, while rs;tðvÞ is the number of

shortest paths between source node s and target node t that

pass through node v.

Once a certain portion of the network has been vacci-

nated by any of the above strategies, we simulated a sec-

ondary epidemic, and let it run its course, by iterating for Ts

timesteps, where Ts was sufficiently large compared to the

network size. Since we used varying network sizes on the

order of 103, the values of Tp and Ts also varied, as

explained below. We used a range of b values to immunize

various proportions of network in the case of natural

immunization (from 0.01 to 0.5). For the secondary

infection simulation, it was set at b ¼ 0:4.

4 AUC measure for quantifying herd immunity

To understand the levels of herd immunity present within a

network, we vaccinate a proportion of the network, and

simulate the secondary infection, and then measure the

proportion of nodes never affected (infected) by the sec-

ondary infection. In measuring the proportion of surviving

nodes, we only consider the non-vaccinated nodes (the

residual network). By varying the proportion of nodes

vaccinated, several datapoints can be obtained and plotted.

Such a plot gives us a visual idea of the levels of herd

immunity in a network (see Fig. 1). If herd immunity is

high, lower vaccination proportions will result in higher

surviving proportions: if herd immunity is low, this will not

happen.

In addition to using plots of proportion of surviving

nodes against proportion vaccinated, we introduce an AUC

measure to quantify herd immunity in networks. The

intention of this measure is to use the area under the pro-

portion surviving–proportion vaccinated curve as a mea-

sure of herd immunity in networks. This makes intuitive

sense, since if the herd immunity is high, then a lower

proportion of vaccination will result in a higher proportion

of nodes surviving, and this effect needs to be considered

across the range of possible vaccination proportions. Sim-

ilar AUC measures are used in a number of disciplines. For

example, in signal detection theory, the area under a

receiver operating characteristic (ROC) curve (Hanley and

Mcneil 1982) denotes the probability that a classifier will

rank a randomly chosen positive instance higher than a

randomly chosen negative one. The curve is generated by

plotting the fraction of true positives out of the positives

against the fraction of false positives out of the negatives;

therefore, both quantities are fractions. Similarly, the

robustness of a complex network against sustained targeted

attacks is measured by a ‘robustness coefficient’ (Pir-

aveenan et al. 2013) which is an ‘AUC’ measure.

However, in this case, due to finite size effects in a real-

world network, and the nature of some vaccination strate-

gies (such as natural immunization), it is not always pos-

sible to consider fixed equidistant points in the ‘percentage

infected’ axis. Therefore, we estimate the AUC as follows:

We sort our data points in increasing order of x-values

(‘percentage vaccinated’) and consider the trapeziums

formed by pairs of points. For example, the trapezium we

consider between points ðx1; y1Þ; ðx2; y2Þ will have edges of

½ðx1; y1Þ; ðx2; y2Þ�, ½ðx2; y2Þ; ðx2; 0Þ�, ½ðx2; 0Þ; ðx1; 0Þ� and

½ðx1; 0Þ; ðx1; y1Þ�, where a pair of points denote the straight

line that connects them. Such trapeziums are shown in Fig.
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1, with areas of each trapezium marked as ai or bi. We sum

the areas of such trapeziums and divide the sum by 1002 to

normalize (if the fractions are in percentage), so that the

result is a fraction between 0.0 and 1.0. Of course, there is

no guarantee that the corresponding y-values (‘percentage

surviving’) will be in increasing order, and, therefore, it

could be argued this estimate will have an ‘error’. How-

ever, given that there will be sufficiently large amount of

points, this error will be minimal. The alternative is to fit a

curve to the data points and calculating the area under it.

While in this way we can accurately measure the area

under the curve, the fitting process itself will have an error.

Essentially, since we are computing the ‘area’ under a

cloud of points which do not all fall on a curve with a

corresponding mathematical function, there is no exact

answer. Thus, we consider our approach reasonable. The

measure is computed as

AUC ¼ 0:5
Pn�1

i¼1 ðxiþ1 � xiÞðyiþ1 þ yiÞ
1002

; ð2Þ

where xi is the vaccinated percentage and yi is the surviving

percentage from data point i, and there are n data points.

Note that we do not need to normalize by n to make the

estimate since the more data points we have, the smaller

the ‘widths’ of the trapeziums will be.

An example of the utility of the measure is shown in Fig.

1. Let us consider two hypothetical networks, A and B,

which need not have the same size. Let us say we vaccinate

a certain proportion of nodes in each network, using the

same vaccination strategy X, and simulate the epidemic on

the networks after the vaccination as described in the

previous section. After Ts timesteps, we measure the pro-

portion of nodes that never contacted the infection,

excluding the nodes that were vaccinated from the calcu-

lation (i.e, the proportion of survivors in the residual net-

work is measured). We do this multiple times, with varying

proportions of vaccination, and plot the results, as shown in

the figure. From the figure, it can be seen that, in case of

network B, higher rates of vaccination still result in lower

rates of survivors, until the vaccination proportion

approaches 100 %. Meanwhile, in network A, even a rel-

atively small proportion of vaccination results in near

complete survival. Therefore, the ‘area’ under the imagi-

nary plot connecting data points belonging to A is much

higher than that of B. This is reflected by our AUC mea-

sure, which returns 0:906 for network A and 0:218 for

network B. Thus, the measure is able to quantify what we

can visually observe. The advantages of this particular

measure are that it does not depend on the number of data

points available, does not insist that they be equidistant

does not require same size or topology between networks

to compare them. It can equally be used to compare two

vaccination strategies on the same network. However, it

should be clearly understood that we are using the term

‘AUC’ not in the strictest sense but to estimate the ‘area’

under a cloud of points.

5 Simulation results

5.1 Comparing vaccination strategies

We first set out to verify the results of Ferrari et al. (2006)

regarding the relative performance of natural immunization

and random vaccination and compare them with between-

ness-based vaccination. Therefore, we synthesized scale-

free, ER random, and small-world networks, each of size

5,000 nodes and 10,000 links. In the case of scale-free

networks, the power law exponent was c ¼ 2:0 approxi-

mately. We simulated each vaccination strategy and sec-

ondary infection spread as described above. We varied the

proportion vaccinated and measured the fraction of nodes

surviving (i.e nodes that never contacted the infection in

the secondary epidemic) in each case.

Our results are shown in Fig. 2. Each data point in the

figure consists of averaging over 100 initialisations of

secondary infection over the same vaccinated network.

Varying the proportion of vaccination, we undertook 100

different vaccinations for betweenness-based strategy, and

500 different vaccinations for random strategy. The pri-

mary infection-based vaccination was also simulated 500

times. The latter two were done more times, since

Fig. 1 An example demonstrating how the AUC measure is

calculated. The proportion of surviving nodes is plotted against the

proportion of nodes vaccinated originally, both in percentages. The

vaccinated nodes were excluded in calculating the proportion of

surviving nodes. It can be seen from the figure that network B

responds poorly and network A responds well to vaccination. The

AUC is calculated by considering the trapeziums formed by adjacent

points and summing the area of these trapeziums. Thus AUCA ¼P10
i¼1 ai and AUCB ¼

P10
i¼1 bi. The AUC measure returns 0.218 for

network B and 0.906 for network A, which reflects this
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betweenness-based vaccination is ordered and a node

vaccinated during a lower-proportion run will not be left

out on a higher proportion run. This is not the case for other

vaccination strategies, and we, therefore, needed more data

points to get a clearer picture.

Figure 2 confirms the results reported by Ferrari et al.

(2006): that in scale-free networks, natural immunization

confers higher herd immunity than random vaccination, for

the same proportions vaccinated—while the opposite is

true for small-world networks. In the case of ER random

networks, the herd immunity conferred is similar for ran-

dom vaccination and natural immunization. However, in

addition, our results demonstrate that betweenness-based

vaccination is the better strategy in all three classes of

networks. In fact, it is a far superior strategy if the network

is randomly connected, and still a much better strategy if

the network is scale-free or small-world. This is a very

important result, since it demonstrates that regardless of the

topology of the network, a betweenness-based immuniza-

tion strategy is the best among the studied vaccination

strategies to confer herd immunity on a social network.

However, it should be noted that for this vaccination

strategy to be implemented, a good contact network model

needs to be available. This may yet be possible in small and

well-monitored communities, such as schools (Salathe

et al. 2010), or in social networks with a higher level of

abstraction, such as a network of townships.

To better quantify the results we observed above, we

apply the AUC measure that we developed. The results are

shown in Table 1. From Table 1, we could see that the

betweenness strategy is most useful in the randomly con-

nected network, where the difference between it and the

next best strategy is almost 35 %.2 Whereas in scale-free

networks, the betweenness-based strategy is 15 % better

than the next best strategy, which is natural immunization,

and in small-world networks, betweenness-based strategy

is 12 % better than the next best strategy, which is random

vaccination. Moreover, we can see that in scale-free net-

works, natural immunization is 31 % better than random

vaccination, while in small-world networks, random vac-

cination is 37 % better than natural immunization.
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Fig. 2 The fraction of surviving nodes against the proportion

of vaccinated (or immunized) nodes in three classes of networks.

a Scale-free networks, b Erdos–Renyi random networks and c small-

world networks. We used networks of size N ¼ 5� 103 nodes. Each

data point is the average of 100 different initialisations on a particular

network with a particular proportion of vaccination. The red stars

indicate betweenness-based vaccination, the blue plusses indicate

natural immunization while the dark blue crosses indicate random

vaccination (colour figure online)

Table 1 The AUC corresponding to Fig. 2 for the three classes of

networks and the immunization strategies

Scale-free Random Small-world

Natural immunization 0.807 0.570 0.569

Random vaccination 0.614 0.584 0.780

BC-based vaccination 0.928 0.789 0.875

2 calculated by considering the difference as a percentage of the

smaller value.
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Interestingly, the last two numbers are similar. Thus we are

able to better quantify the qualitative result reported in

Ferrari et al. (2006) about the relative merits of these two

vaccination strategies.

5.2 Analysing the influence of topological parameters

In the subsection above, we saw that different classes of

topologies respond differently to various vaccination

strategies. However network topologies can be quantified

better than by just differentiating them into classes. Indeed,

a whole plethora of metrics are available to do this, and

some of them are clustering coefficient, network diameter,

assortativity, modularity, average path length, rich-club

coefficient, etc. (Albert and Barabási 2002; Park and

Newman 2004; Dorogovtsev and Mendes 2003; Zhou and

Mondragón 2004; Solé and Valverde 2004). Not all of

these metrics are relevant in each class of networks:

however, we were interested in more deeply understanding

the influence of topology using some of the relevant met-

rics in each class.

Let us start with small-world networks. Small-world

networks typically do not display a big range of assort-

ativity values, since high assortativity leads towards lattice

like structures with high clustering but also high path

lengths, while high disassortativity leads towards star like

structures with short path lengths yet low clustering.

Therefore to maintain smallworldness the network should

be non-assortative. For similar reasons, it could be argued

that there will be not much variation in modularity or rich-

club coefficient in small-world networks. Thus, the metrics

we are interested in are clustering coefficient and network

diameter. Since small-world networks are characterised by

relatively small characteristic path lengths and high clus-

tering, the ‘small-worldness’ of these networks is typically

measured by their diameter and clustering coefficient. Is

there a connection between these parameters and herd

immunity of networks?

To answer this, we generated an ensemble of families of

small-world networks. Each family had a fixed clustering

coefficient and diameter. We compared the herd immunity

of these networks by plotting the percentages of vaccina-

tion and survival, as well as utilising our AUC measure.

For example, Fig. 3 shows four such networks drawn from

different families, with differing characteristics. From the

figure, it is clear that the higher the clustering coefficient,

and the lower the diameter, the lower the herd immunity.

This is confirmed by Table 2, where the AUC measure is

averaged over one hundred networks of the same family in

each case. These figures and table give rise to an important

finding: the small-worldness hinders the presence of herd

immunity. The more ‘small-world’ a community is, the less

ability it has to protect its members from infection by

utilising herd immunity. This is a very important finding,

since, as mentioned before, most social networks in real-

world display small-world feature to various degrees.

However, it should be remembered that network density

(links to node ratio) is fixed in the above experiments. If
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Fig. 3 The influence of ‘small-worldness’ in the herd immunity of

small-world networks. The small-world effect is measured by

network diameter and clustering coefficient. The plot shows percent-

age of survivors against percentage vaccinated for a betweenness-

based vaccination, b natural immunization, and c random vaccination
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the ‘small-worldness’ is achieved by simply throwing in

more links, which can both increase clustering and

decrease path lengths at the same time, it is intuitively clear

that it could only help the infection spread rather than

prevent it. More contacts naturally result in faster infection

spread. The key finding here though is that even if the

number of contacts is fixed, the signature ‘small-world’

features hinder community protection.

Now let us turn our attention to scale-free networks.

Scale-free networks have fairly heterogeneous degree dis-

tributions (Albert and Barabási 2002; Dorogovtsev and

Mendes 2003): thus, mixing patterns of nodes in terms of

number of links become relevant. Therefore, we study the

influence of assortativity on herd immunity in scale-free

networks. Assortativity is typically used to quantify the

average similarity between nodes connected by links in a

network. The more similar connected nodes are, the more

assortative the network becomes. Even though this simi-

larity can be measured in terms of any node attribute,

typically it is measured in terms of node degrees, so that

the assortativity of a network is influenced by its topology

alone and thus becomes a metric similar in that sense to

network diameter, clustering coefficient etc.

Formally, assortativity has been defined as a correlation

function of the excess degree distribution and link distri-

bution of a network (Solé and Valverde 2004; Newman

2003). The concepts of degree distribution pk and excess

degree distribution qk for undirected networks are well

known (Solé and Valverde 2004). Given qk, one can

introduce the quantity ej;k as the joint probability distri-

bution of the remaining degrees of the two nodes at either

end of a randomly chosen link. Given these distributions,

the assortativity of an undirected network is defined as

(Solé and Valverde 2004; Newman 2003, 2002a):

r ¼ 1

r2
q

X

jk

jk ej;k � qjqk

� �
" #

ð3Þ

where rq is the standard deviation of qk.

We studied the influence of assortativity on herd

immunity by considering scale-free networks, since small-

world networks (generated using the Watts–Strogatz

model) and random networks tend to have not much

variation in terms of assortativity. In the case of scale-free

networks though, the ‘scale-free’ nature can be preserved

by preserving the degree distributions, and there are well-

Table 2 The AUC for small-world networks of differing parameters

under differing vaccination strategies

Clustering coefficient 0.082 0.128 0.154 0.172

Network diameter 17 10 7 5

Natural immunization 0.673 0.587 0.540 0.514

Random vaccination 0.765 0.641 0.558 0.520

Betweenness-based vaccination 0.860 0.732 0.614 0.541

Bold values define the network
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Fig. 4 The influence of assortativity in the herd immunity of scale-

free networks. The figure shows AUC of the percentage survived–

percentage vaccinated curve for a betweenness-based vaccination,

b natural immunization, and c random vaccination

213 Page 8 of 16 Soc. Netw. Anal. Min. (2014) 4:213

123



known algorithms to change the assortativity of a network

while preserving the degree sequence, particularly when

extreme assortativity values are not required. We used the

algorithms described by Newman (2002a, 2003) to gener-

ate networks with varying assortativity values, starting

from scale-free networks with power-law degree distribu-

tions and a scale-free exponent of c ¼ 2:0. We kept the

assortativity range from �0:3 to þ0:3, partly because

extreme values are rarely observed in real-world social

systems and partly to prevent decomposition of the net-

work into components.3 Then we simulated contagion

spread on the resulting networks as described before and

considered the proportion survived vs proportion vacci-

nated curves.

We avoid showing the plots themselves in this paper,

since there is not much difference between the plots for

each assortativity value and it is difficult to tease out the

results. However, this is exactly when the quantifiable

AUC measure can be most useful. Therefore, we computed

the AUC for each of the experiments, and in Fig. 4, we plot

these AUC against assortativity values for several networks

for each of the vaccination strategies. The results are rather

more clear and interesting. It appears that, in all forms of

vaccination, herd immunity increases with assortativity.

The disassortative networks, therefore, are harder to

immunize, while the assortative networks are easier. This

result is also-counter intuitive, since disassortative net-

works tend to have many ‘star’ motifs, and it could be

expected that by vaccinating the hubs in these stars, the rest

of the motif could easily be immunized. We should also

note that while there is a clear trend for all vaccination

strategies, the difference in AUC is rather small between

various levels of assortativity for betweenness-based vac-

cination, whereas for random immunization or natural

immunization, the difference is considerable. It may be that

the influence of mixing patterns, a topological aspect, is

minimised by a strategy which actively considers topology.

As a complementary approach of quantifying the influ-

ence of mixing patterns on herd immunity, we now con-

sider the ‘rich-club coefficient’ of networks and how they

correlate to the levels of herd immunity present within the

networks. The rich-club coefficient gets its name from the

fact that it measures the so-called ‘rich-club phenomena’

within the network—to what extent highly connected

nodes preferentially connect to other highly connected

nodes, compared to what could be expected in random

mixing (Zhou and Mondragón 2004; Sabidussi 1966; Zhou

and Mondragón 2003). Formally, a rich-club coefficient is

defined in terms of degree-based rank r of nodes, and the

rich-club connectivity uðrÞ. The degree-based rank denotes

the rank of a given node when all nodes are ordered in

terms of their degrees, highest first. This is then normalised

by the total number of nodes (and can be given in per-

centages: for, e.g., r ¼ 10 % means the ‘best’ 10 % nodes

in terms of degree are considered). The rich-club connec-

tivity or coefficient is defined as the ratio of actual number

of links over the maximum possible number of links

between nodes with rank ‘higher’ than r. Thus, it is pos-

sible to calculate the rich-club connectivity distribution of a

network, uðrÞ over r. Equation 4 shows the formal defi-

nition of the rich-club coefficient.

uðrÞ ¼ 2EðrÞ
rðr � 1Þ : ð4Þ

Here, EðrÞ is the number of links between the r nodes and

rðr � 1Þ=2 is the maximum number of links that these

nodes have share. The interpretation of the rich-club

coefficient is that the higher this coefficient, the higher the

tendency for ‘rich’ nodes to preferentially connect to each

other. Therefore, it measures an aspect of assortativity. Of

course, assortativity could also be increased by ‘poor’

nodes preferentially connecting to each other. However, if

‘richer’ nodes prefentially connect to each other, then for a

given network density, ‘poorer’ nodes also would be forced

to mix more among themselves. Therefore, the assortativity

coefficient and rich-club coefficients tend to be correlated.

Again, we consider a set of scale-free networks which

have the same degree distribution yet differing mixing

patterns. In fact, the set of networks we consider is the

same set that we considered in understanding the influence

of assortativity; however, we now measure the rich-club

coefficient instead of assortativity. Since the rich-club

coefficient is not a single measure and depends on the

relative size of the rich-club considered, we consider the

5 % rich-club and the 10 % rich-club in this study, without

loss of generality.4 Again, we simulate infection spread

according to the three strategies, plot the proportion sur-

viving against the proportion vaccinated for each network,

and compute the AUC. Thereafter, we plot the AUC

against the rich-club coefficients uðrÞ as shown in Fig. 5.

From the figures, we again find that the AUC values are

correlated with the rich-club coefficients. This is clearly

observable for all strategies, and for both 5 and 10 %

coefficients. Therefore, we can conclude that the more

‘rich-club tendencies’ a network displays, in terms of node

degree, the higher its herd immunity going to be, all other

things being equal.

3 Since high degree assortativity means all nodes must connect to

other nodes with similar degrees to themselves, disconnected lattices

tend to form when assortativity must be increased while degree

distribution is preserved.

4 This means that in a network of size N = 5,000, we considered

r ¼ 250 and r ¼ 500 as the cut-off ranks.
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From the results we obtained considering both assort-

ativity and rich-club coefficient in scale-free networks, we

can come to the important conclusion that preferential

mixing plays an important part in increasing the herd

immunity of networks. While this is true for all strategies,

it is particularly evident when strategies which are not

directly guided by topology are used. The actual difference

preferential mixing can make, all other things being equal,

is small however, and it is our use of the AUC measure

which made it possible to come to this conclusion. This

result means that, the herd immunity of a social system can

be increased, not only by people reducing their links or

contacts (which, it is trivial to see, would discourage

contagion spread and thereby increase herd immunity), but

also by people changing their contact patterns while

maintaining the number/frequency of contacts (maintaining

the degree distribution, in network parlance). If most

people maintain links with others who maintain similar

number of links, this increases the community protection

inherent in the system.

Finally, in the case of random networks, we did not

undertake any in-depth analysis in terms of topology.

Random networks, by definition, are not supposed to have

that much variation in terms of network metrics such as

clustering, assortativity, etc. If a growth process introduces

variation, then the network is no longer ‘random’ in terms

of topological connections. Therefore, further analysis of

topology in this class is less warranted.

5.3 Measuring the influence of network growth

Social networks undergo constant growth. New members

are added into the community by birth, immigration,

admission, employment, etc., depending on the type of

social network we consider. Often, these new members

come without the required vaccination against particular

illnesses. This is particularly true if the vaccination con-

sidered is not the one administered to all children after

birth (in which case the concept of herd immunity is

irrelevant anyway), but a one-off vaccination administered

to part of a community against a newly discovered or

b Fig. 5 The influence of rich-club coefficient in the herd immunity of

scale-free networks. The figure shows AUC of the percentage

survived–percentage vaccinated curve for a betweenness-based

vaccination 5 % rich-club coefficient, b natural immunization 5 %

rich-club coefficient, c random vaccination 5 % rich-club coefficient,

d betweenness-based vaccination 10 % rich-club coefficient, e natural

immunization 10 % rich-club coefficient and f random vaccination

10 % rich-club coefficient. Since rich-club coefficient is a measure

that depends on the relative size of the ‘rich-club’ considered, here we

are considering the 5 % rich-club and the 10 % rich-club only, which

are indicative of the overall rich-club tendency
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Fig. 6 The fraction of surviving nodes against the proportion of

vaccinated (or immunized) nodes in three classes of networks for

betweenness-based vaccination strategy. a Scale-free networks,

b Erdos–Renyi random networks and c small-world networks. Four

levels of network growth are shown. We used networks of size N ¼
1:0� 103 nodes. Each data point is the average of 20 different

initialisations on a particular network with a particular proportion of

vaccination. The red plusses indicate no growth, the green crosses

indicate 20 % growth, the blue stars indicate 50 % growth, while the

pink squares indicate 100 % growth (colour figure online)
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introduced illness. In this case, migrants who come into the

community from other regions or countries are not likely to

have the vaccination. In any case, even if no new members

are added to the community, growth can still occur by new

interactions (links) being created between existing mem-

bers, and these additions are going to have an affect on the

herd immunity of the network. Therefore, in this section we

study the affect of growth on the three classes of topologies

we considered.

To quantify the influence of network growth on herd

immunity levels, we simulated growth in each class of

networks by increasing the number of nodes by (1) 0, (2) 20,

(3) 50, and (4) 100 %. The nodes were added by again using

the original algorithm utilised to synthesise each class of

networks—i.e scale-free networks were ‘grown’ using

preferential attachment, random networks were grown by

adding nodes and randomly making links to existing nodes,

and small-world networks were grown using the algorithm

described by Watts and Strogatz (1998). We added links

such that the average degree of each network was main-

tained. The vaccination status of the original nodes was

maintained, while new nodes were added with state ‘S’

(suscpetible). Each ‘original’ network was of the size

N =11,000 nodes and M = 2,000 links. We simulated

infection spread for Ts ¼ 200 timesteps, which is much

higher than the diameter of each of these networks so that

we may assume infection will have time to reach all parts of

the network, and we used b ¼ 0:4. The same number of

timesteps was used in each growth scenario. We again

simulated the three types of vaccination/immunization

strategy. We assume that after Ts timesteps enough vacci-

nation resources can be put in place to vaccinate the entire

community to prevent further spread—thus, regardless of

the varying network sizes, we are interested in studying the

survival (non-infection) rates within a bounded time.

We may expect two competing factors at work here: (1)

The increase in network size with same number of time-

steps makes it harder for infection to spread to all parts of

network, so the survival percentage might increase. (2) The

increase in size with same number of vaccinated nodes will

make the density of vaccination/immunization less, so the

survival percentage might decrease. In the following ana-

lysis, we demonstrate how the result of the interplay

between these two factors depend on network topology.

Table 3 The AUC for networks

after growth and betweenness-

based vaccination,

corresponding to Fig. 6

SF ER SW

0 % 0.932 0.785 0.869

20 % 0.879 0.489 0.702

50 % 0.738 0.539 0.531

100 % 0.478 0.662 0.384
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Fig. 7 The fraction of surviving nodes against the proportion of

vaccinated (or immunized) nodes in three classes of networks for

random vaccination strategy. a Scale-free networks, b Erdos–Renyi

random networks and c small-world networks. Four levels of network

growth are shown. We used networks of size N ¼ 1:0� 103 nodes.

Each data point is the average of 20 different initialisations on a

particular network with a particular proportion of vaccination. The

red plusses indicate no growth, the green crosses indicate 20 %

growth, the blue stars indicate 50 % growth, while the pink squares

indicate 100 % growth (colour figure online)
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Our results for the betweenness-based vaccination

strategy are shown in Fig. 6, and corresponding AUC values

are shown in Table 3. In the figure, the survival percentages

are plotted against the original vaccination percentages (so

as to keep the x axis comparable) for 0, 20, 50, and 100 %

growth. We may see that in all classes, the growth initially

results in lower survival rates, presumably due to lower

vaccination density. However, the ER random networks

show a fundamentally different tendency. In scale-free and

small-world network, increased growth results in decreased

survival rates for same (initial) vaccination rates. However,

in ER random networks, after the initial decline, further

growth tends to increase the survival rate. This must be due

to the increased difficulty in reaching further parts of the

network. According to Table 3, for ER random networks,

while no growth results in 78.5 % immunity, a 20 % growth

results in 48.9 % immunity which is less, but a 50 % growth

results in 53.9 and 100 % growth results in 66.2 % immu-

nity which shows an increasing trend. However, the cor-

responding analysis for scale-free and small-world

networks show steadily decreasing numbers (93.2, 87.9,

73.8, and 47.8 % for scale-free and 86.9, 70.2, 53.1, and

38.4 % for small-world). We may surmise that the topology

of random networks, with the lack of dominant hubs and

low clustering, means that despite the lower density of

vaccinated nodes, the infection does not spread easily in

growing networks. In scale-free and small-world networks,

on the other hand, growth makes it easy for infection to

spread. We may also observe small-world networks and

scale-free networks show similar levels of adverse impact to

growth (according to Table 3, a 100 % growth results in

45.4 % AUC reduction in scale-free networks, while the

same growth results in 48.5 % AUC reduction in small-

world networks).

Now let us turn our attention to random vaccination. Our

results for this strategy are shown in Fig. 7, and the cor-

responding AUC values are shown in Table 4. We find a

similar set of results to betweenness-based vaccination.

That is, in both scale-free and small-world networks,

growth results in decreasing proportions of surviving

nodes, since growth decreases vaccination density. How-

ever, in the case of ER random networks, the survival rate

initially decreases with growth, then begins to increase. We

Table 4 The AUC for networks

after growth and random

vaccination, corresponding to

Fig. 7

SF ER SW

0 % 0.621 0.568 0.772

20 % 0.449 0.392 0.726

50 % 0.317 0.462 0.488

100 % 0.126 0.606 0.405
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Fig. 8 The fraction of surviving nodes against the proportion of

vaccinated (or immunized) nodes in three classes of networks for

natural immunization. a Scale-free networks, b Erdos–Renyi random

networks and c small-world networks. Four levels of network growth

are shown. We used networks of size N ¼ 1:0� 103 nodes. Each data

point is the average of 20 different initialisations on a particular

network with a particular proportion of vaccination. The red plusses

indicate no growth, the green crosses indicate 20 % growth, the blue

stars indicate 50 % growth, while the pink squares indicate 100 %

growth (colour figure online)
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see that for a 100 % growth, the survival rate is even better

than that of the original network when the vaccination rate

is small.

Finally, let us consider natural immunization. To sim-

ulate natural immunization, we let the infection run its

course on each network for Tp ¼ 200 timesteps, which is

much higher than the diameter of the networks in each

case, and we used a low beta value (b ¼ 0:01). Then we

simulated network growth and secondary infection spread

as described before. Our results are shown in Fig. 8, and the

corresponding AUC values are in Table 5. We may again

see that in the case of ER random network, a 20 % growth

reduces the fraction surviving for all vaccinated propor-

tions, but further growth actually increases the fraction

surviving. Furthermore, in both scale-free and small-world

networks, the growth results in the surviving fraction

decreasing, as it happened for other vaccination strategies.

However, we can also observe that in the case of small-

world networks, a 20 % growth does not decrease the

survival fraction (61.8 vs 66.5 %, according to Table 5).

The small-world network immunized by prior epidemics

seems to be robust to insignificant growth. However, when

the growth becomes significant, the survival fraction does

decrease for all proportions of immunization.

We have seen that, as demonstrated by Ferrari et al.

(2006), when there is no growth, natural immunization is a

better strategy than random vaccination in scale-free net-

works, and vice-versa in small-world networks. How the

growth of these networks will impact on this observation?

To verify this, we use the results already shown in Figs. 6,

7, and 8 but plot them in different configuration for easy

comparison. As such, we plot the results of all three vac-

cination methods after 100 % growth for each class of

networks in Fig. 9. We chose the 100 % growth to dem-

onstrate the extreme case. The corresponding AUC values

are shown in Table 6, which again draws values from

Tables 3, 4 and 5 but orders them in a different way for

easy comparison. We may see from these figures and table

that the difference between strategies become less pro-

nounced after the networks have undergone growth.

Indeed, in the case of small-world networks, the three

vaccination strategies are indistinguishable after a 100 %

growth (0.365, 0.405, and 0.384 in AUC measure,

respectively). Comparing this result with Fig. 2 and Table

1, we may see that the advantage enjoyed by betweenness-

Table 5 The AUC for networks

after growth and natural

immunization, corresponding to

Fig. 8

SF ER SW

0 % 0.812 0.561 0.618

20 % 0.652 0.391 0.665

50 % 0.492 0.459 0.436

100 % 0.190 0.603 0.365

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120

Fr
ac

tio
n 

of
 s

ur
vi

vo
rs

Proportion of vaccination

natural
random

bc

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120

Fr
ac

tio
n 

of
 s

ur
vi

vo
rs

Proportion of vaccination

natural
random

bc

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120

Fr
ac

tio
n 

of
 s

ur
vi

vo
rs

Proportion of vaccination

natural
random

bc

Fig. 9 The fraction of surviving nodes against the proportion of

vaccinated (or immunized) nodes in three classes of networks, after

networks have gone through 100 % growth. a Scale-free networks,

b Erdos–Renyi random networks and c small-world networks. We

used networks of original size N ¼ 1:0� 103 nodes (therefore, the

results shown are for networks of 2,000 nodes each). Each data point

is the average of 20 different initialisations on a particular network

with a particular proportion of vaccination. The red filled squares

indicate betweenness-based vaccination, the blue crosses indicate

natural immunization while the dark blue squares indicate random

vaccination (colour figure online)
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based immunization and random immunization over natu-

ral immunization has been nearly totally eliminated by the

growth. It is a similar scenario with ER random networks,

as shown in Fig. 7. However, as was earlier shown in Fig.

2, even without growth the random and natural vaccination

did not give very different results in the case of ER net-

works. The better performance enjoyed by betweenness-

based vaccination, however, has been nearly eliminated by

growth. In the case of scale-free networks, however, we

may see that the betweenness-based vaccination strategy

still performs better than the natural immunization and

random immunization strategies, in that order. Also, the

differences between these strategies have been not blunted

by the growth. Whereas the betweeness strategy was 15 %

better than the next best strategy before growth (as shown

earlier), it is now 151 % better than the next better strategy

(0.478 over 0.190 represents a 151 % increase).

We can come to an important conclusion from these

observations. Among the three classes of networks studied,

it is the scale-free class where the vaccination strategy

matters the most, despite the growth. If we consider rapidly

growing random or small-world networks, then it is

unnecessary to implement a particular vaccination strategy,

since after the growth all strategies will deliver similar

results. Since a betweenness-based strategy needs topo-

logical information and random vaccination strategy does

not, going through the trouble of constructing a contact

network administering vaccination based on that makes

sense only in scale-free networks, if the network is rapidly

growing. However, for slowly growing or non-growing

networks, computing betweenness makes sense regardless

of the topology, since for all three classes of networks a

betweenness-based strategy is best.

6 Conclusions

In this paper, we analysed the interplay between network

topology and vaccination strategies and their influence in

determining the level of herd immunity present in different

classes of social networks. We also introduced an ‘AUC’

measure which can quantify the level of herd immunity

present in a network after a particular strategy of vacci-

nation was applied. Using synthesized networks of

different classes, we first confirmed the result already

reported in literature that natural immunization confers

higher herd immunity than random vaccination in scale-

free networks and the reverse is true for small-world net-

works. We then showed that, if the topology of the contact

network is known, a betweenness-based vaccination strat-

egy is far superior than both natural immunization and

random vaccination for all classes of networks. We dis-

cussed the implications of this result.

Analysing the influence of topology deeper, we showed

that in small-world networks, the so-called features con-

ferring ‘small-worldness’ (high clustering and low diame-

ter) reduce the amount of herd immunity, all other things

being equal. Thus, social networks which show these

characteristics are harder to defend using community pro-

tection. We also showed that in scale-free networks, the

role of preferential mixing patterns, measured by ‘assort-

ativity’ and rich-club coefficient, is to aid community

protection. The more preferential the degree-based mixing,

the higher the level of herd immunity in a network. This

result is important, because it means that herd immunity of

a community can be increased while the frequency distri-

bution of number of connections (degree distribution of a

network) is preserved. However, the difference made by

preferential mixing is minimal when a betweenness-based

vaccination strategy is used.

Noting that real-world social networks constantly

undergo growth, we then analysed the effect of network

growth on herd immunity. We argued that two opposing

influences can be exerted by network growth on herd

immunity—the lessening density of vaccination may

reduce herd immunity, while the increasing path lengths

may boost it. We found that in the case of random net-

works, moderate growth decreases herd immunity, while

substantial growth actually increases it, since infection is

unable to spread to all parts of network quickly enough in

the absence of hubs.5 In the case of both small-world and

scale-free networks however, we showed that any growth

results in decreasing herd immunity.

We also compared the effect of growth on differentiat-

ing between vaccination strategies. We showed that in both

random networks and small-world networks, substantial

growth renders the original vaccination strategy irrelevant.

We found that only if the network is scale-free, choosing a

better vaccination strategy originally would still yield

benefits after the network has grown substantially.

Even though our analysis was based on synthesized

networks, several of the results we observed here are of

significance: first, the fact that the ‘small-worldness’ in

Table 6 The AUC for networks after growth under differing vacci-

nation strategies

SF Random SW

Natural immunization 0.190 0.603 0.365

Random vaccination 0.126 0.606 0.405

BC based vaccination 0.478 0.662 0.384

5 Note well here that we are discussing this in terms of percentages of

people infected, not actual numbers. Any growth is not likely to result

in reducing the numbers infected, regardless of the network structure.
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social systems hinders community protection, other things

being equal, means that an inherent feature observed in

many societies helps infection spread. While the degree

distribution of a network can be changed considerably by

‘taking out’ (vaccinating/removing/quarantining) a few hub

nodes, it is not very easy to decrease the ‘small-worldness’.

This can be done only by removing several links and

thereby reducing clustering, or strategically removing a

few selected links which connect long, distant nodes (if

these links can be located), thereby increasing path lengths.

The other observation was that in scale-free networks,

preferential mixing helps vaccination strategies to various

extents. This suggests that certain vaccination strategies

can work better if individuals merely change their inter-

action patterns (while keeping their frequency of interac-

tion), to mix more preferentially with ‘similar’ individuals

in terms of degrees. Particularly, in terms of ‘random’

vaccination, which represents the current clinical vaccina-

tion processes in the sense that they are random from a

topological perspective, it is interesting to note that the

more ‘famous’ individuals choose to interact with other

‘famous’ individuals, the better it would work. Finally, we

saw that in both scale-free and small-world networks,

growth hinders community protection as expected. How-

ever, if the society displayed a random topology, then

growth can apparently help ‘dilute’ the infection spread,

and the overall proportion of people affected might be less.

This research is not without its limitations. We have

only considered three levels of growth, moderate to sub-

stantial, whereas it would be more illustrative to consider

levels of growth as a continuum. We have not considered

node deletions, and link deletions, which are also poten-

tially commonplace when a social network is growing. The

classes of networks we synthesized, while commonly used

by researchers in epidemiology, do not represent real-world

networks, and it would be more enlightening to use

topologies from real world social networks. Our future

work will focus on these directions. Despite these limita-

tions, we believe that the results reported here are of

interest to the scientific community.
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