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Abstract Inflammatory cells and mediators form a major part
of the tumor microenvironment and play important roles in the
regulation of cancer initiation, tumor cell proliferation, and
metastasis. MicroRNAs (miRNAs) play important roles in
several physiological and pathological processes, including
the regulation of the inflammatory microenvironment in
cancer. Transforming growth factor-β (TGF-β) is an
inflammation-related cytokine that functions in both tumor
suppression and promotion; however, its underlying molecu-
lar mechanisms remain unclear. Recent evidence indicates an
association between miRNAs and TGF-β signaling, provid-
ing new insight into the nature of the inflammatory microen-
vironment in cancer. The present review is an overview of the
interaction between miRNAs and inflammatory cytokines,
with emphasis on the cross talk between TGF-β signaling
and miRNAs and their influence on cancer cell behavior.
The emerging roles of miRNAs in cancer-related

inflammation and the potential to target miRNA signaling
pathways for cancer therapy are also discussed.
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Introduction of miRNA and the tumor inflammatory
microenvironment

MicroRNAs (miRNAs) are endogenous single-stranded non-
coding RNAs of 18–25 nucleotides [1] that function in the
post-transcriptional regulation of gene expression through
translational repression or cleavage of messenger RNA
(mRNA) targets in a specific base pairing manner [2]. One
miRNA has the potential to affect the expression of several
proteins, and one protein can be regulated by several
miRNAs. The modulation of oncogenic and anti-oncogenic
miRNAs could, in principle, affect the progression of cancer
[3–5]. miRNA expression profiling of human tumors has
identified signatures associated with diagnosis, staging, pro-
gression, prognosis, and response to treatment [6]. Emerging
evidence suggests a direct link between miRNAs and cancer
[7], inflammation [8, 9], and autoimmune diseases [10–12].
miRNAs regulate immune responses by modulating the ex-
pression of immune-related genes.

The connection between cancer and inflammation was first
identified in the nineteenth century and is currently recognized
as one of the six hallmark features of cancer development and
progression [13, 14]. The field of cancer-related inflammation
is driven by the hypothesis that extrinsic pathways associated
with conditions that cause or promote cancer and intrinsic
inflammatory pathways activated by genetic events lead to
the production of inflammatory cytokines [13, 15].
Inflammatory cells and inflammatory mediators form a major
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part of the tumor microenvironment, which has been
highlighted as an important factor in cancer progression
(Fig. 1). For example, CD4(+)CD25(high)Foxp3(+) regulato-
ry T cells (Tregs) enriched in the tumor-associated microenvi-
ronment play an important role in cancer immune evasion [16]
and are considered potential therapeutic targets in human dis-
eases [17]. However, the complex nature of the inflammatory
microenvironment remained unclear until recently, when sev-
eral miRNAs, such as miR-126, miR-132, miR-146, miR-
155, and miR-221, emerged as important transcriptional reg-
ulators of inflammatory mediators [8]. Research in the
miRNA field opened new horizons in our understanding of
the role of the inflammatory microenvironment in cancer. In
the present review, we focus on the interaction between
miRNAs and inflammatory cytokines in the tumor microen-
vironment, with particular emphasis on the transforming
growth factor-β (TGF-β) signaling pathway. In addition, we
present a novel viewpoint based on the modulation of the
tumor microenvironment as miRNA-based cancer therapy.

Control of miRNA biogenesis by inflammatory
cytokines

Originally, research aimed at investigating miRNA expression
profiles revealed differences in the expression of specific
miRNAs in cancers. Recently, research has started to focus on
the regulation and function of miRNAs. Several studies have
investigated the specific influence of key inflammatory cyto-
kines on miRNA expression. Overexpression of inflammatory
cytokines such as tumor necrosis factor (TNF)-α, interleukin
(IL)-6, IL-1, IL-8, IL-10, IL-12, and TGF-β can either promote
or inhibit cancer development [18, 19]. Several miRNAs such
as miR-155 and miR-21 have been implicated in cancer devel-
opment and inflammation [20], and they are controlled by in-
flammatory mediators, the most prominent being Toll-like re-
ceptors (TLRs), TNF, TGF-β, and other cytokines that link the
functions of miRNAs with inflammatory events [11, 20–24].
Table 1 describes the miRNAs implicated in both cancer and
inflammation and their functions.

Aberrant miRNA expression leads to developmental ab-
normalities and diseases; however, the processes regulating
miRNA biogenesis are largely unknown. miRNAs are tran-
scribed as long and capped polyadenylated pri-miRNAs. The
pri-miRNA is cropped into a hairpin-shaped pre-miRNA by
the Drosha complex. Next, the pre-miRNA is translocated to
the nucleus by exportin-5 and further processed by the Dicer
complex. The resulting miRNA is dissociated and incorporat-
ed into the RNA-induced silencing complex (RISC), where it
functions in gene silencing by promoting the degradation of
target mRNAs or by translational inhibition. The identifica-
tion of mechanisms of miRNA biogenesis regulation revealed

that various factors or growth factor signaling pathways con-
trol every step of the miRNA biogenesis pathway [52].

miR-155, which was the first miRNA shown to play an
oncogenic role [53], is overexpressed in a variety of tumors
such as leukemia/lymphoma, breast, colon, lung, pancreatic,
and gastric tumors [25, 26]. Enhanced expression of miR-155
is often associated with increased cytokine expression, a
prominent feature of inflammatory processes [27, 54, 55].
For example, lipopolysaccharide (LPS)/TNF-α stimulation
results in the upregulation of miR-155 and downregulation
of miR-125b [27]. miR-21 is upregulated in almost all carci-
nomas and hematological malignancies [6] and is induced in
macrophages and blood mononuclear cells upon lipopolysac-
charide (LPS) challenge [34] and in mammary epithelial cells
by inflammatory signals [35]. miR-210 links inflammatory
signals with the hypoxic microenvironment, as it is induced
in response to low oxygen and inhibited by the cytokines IL-6
and TNF [42]. On the other hand, inflammatory cytokines can
be modulated by miRNAs. Several miRNAs, such as miR-
126, miR-132, miR-146, miR-155, and miR-221, are impor-
tant transcriptional regulators of certain inflammation-related
mediators [8].

Upregulated miRNAs by the TGF-β/Smad signaling
pathway

TGF-β function is dependent on tissue type and the epigenetic
background of cells [56]. One prominent feature of TGF-β
biology is its dual role: It functions as a tumor suppressor in
the early stages of tumorigenesis, whereas it promotes tumor
cell metastasis in advanced stages [56, 57]. The interaction
between TGF-β signaling and miRNAs has been investigated
extensively, and studies suggest that the TGF-β pathway can
either inhibit or enhance miRNAmaturation [58–61]. Figure 2
shows a brief outline of the miRNAs associated with the
TGF-β/Smad signaling pathway in cancer.

Davis et al. [62] was the first to describe mechanisms of
miRNA expression modulation and showed that TGF-β treat-
ment resulted in the upregulation of pre-miRNAs and mature
miRNAs, but not that of pri-miRNAs. Smad proteins have
been shown to control the transcription of miRNA-coding
genes by binding to miRNA promoter genes [59]. Smads con-
trol miRNA biogenesis by two different mechanisms that in-
volve complex Smad2–3 binding to Smad4 or not. The
Smad2–3 complex is translocated to the nucleus, where it is
recruited by the Drosha/DGCR8microprocessor complex and
promotes miRNA maturation [23, 58, 59, 63, 64]. However,
the mechanism underlying the translocation of the Smad2–3
complex to the nucleus remains undetermined. The most
prominent miRNAs upregulated by TGF-β signaling are
miR-21, miR-181, miR-494, and miR-10.
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miR-21

A meta-analysis revealed that high miR-21 levels are related to
poor overall survival, suggesting that miR-21 is a prognostic
factor for poor survival in cancer patients [65]. TGF-β-
mediated induction of miR-21 was firstly found to be

independent of Smad4, although it is dependent on the R-
Smads [62]. TGF-β-induced miR-21 levels are markedly higher
in transformed cells, and miR-21 contributes to chemoresistance
in breast cancer cells by targeting the MutS homolog 2 [66]. In
bladder tumors, in accordance to the observed similarity between
TGF-β variants and miR-21 gene expression alterations,

Invading and 
metastasis 

Metastatic tumor  cell

Tumor  Cell

Macrophage

Epithelial cell 

Basement membrane 

Blood vassal 

Cancer development 

Lymph cell 

Local immune response 

Systemic  inflammation 

Inflammatory tumor microenvironment  

NF- κB regulation

Angiogenesis, 

Proliferation,

Adaptive immunity  

Hypoxia, HIF- α

M1    M2

TGF- β

TGF- β

IL-6

IL-12

TNF

Networks of inflammatory cytokines/chemokines 

Fig. 1 Overview of the
interaction of cytokines in the
inflammatory tumor
microenvironment. Tumor-
associated inflammation develops
simultaneously with tumor
development. The tumor
microenvironment is a complex
scaffold of various cells and
extracellular matrix. Different
cells contribute by producing
cytokines and respond to stimuli
secreted by other cells. This
creates a favorable
microenvironment for tumor
growth and progression. The
inflammatory response plays a
central role in angiogenesis,
tumor proliferation, local
immunosuppression, and
metastasis

Table 1 Representative microRNAs implicated in both cancer and inflammation

miRNA Cancer/inflammation Function Related cytokines and
ranscriptional factors

Ref.

miR-155 Leukemias/lymphomas, breast, colon,
lung, pancreatic, and gastric tumors

Promote the progression of inflammatory
pathologies; targeting of key oncogenic
suppressors or anti-inflammatory signal
transduction pathways

TNF-a; IFN-γ/IL-12/IL-18 [25–29]

miR-125b Colorectal cancer (CRC), muscle-invasive
bladder cancer (MIBC), ovarian cancer

A promising diagnostic biomarker for
CRC and a promising prognostic
parameter for MIBC; targeting
proto-oncogene BCL3

Peroxisome proliferator-activated
receptor (PPAR)γ; interferon
regulatory factor 4 (IRF4)

[30–32],[33]

miR-21 Almost all carcinomas and hematolgogical
malignancies

Plays important roles in the oncogenic
process by targeting PTEN, PDCD4,
and BTG2

TGF-β; STAT3; IFN [6, 34–37]

miR-196 Pancreatic adenocarcinoma, breast cancer,
ovarian cancer, oral cancer, Crohn’s disease

Promoting cell migration and invasion;
promoting proliferation of and
suppressing apoptosis

IFN-β; IκBα [38] [39–41]

miR-210 Breast cancer, squamous cell carcinoma,
renal cancer, sarcoma, bladder cancer,
glioblastoma

Plays important roles in the regulation
of cell growth, angiogenesis,
and apoptosis

Hypoxia inducing factors
(HIFs); IL-6; TNF

[42–44]

miR-126 Inflammatory bowel disease (IBD); its
expression is suppressed in cancers
of the gastrointestinal tract, genital tract,
breast, thyroid, and lung

Plays a key role in autoimmune and
inflammatory diseases; can inhibit
the progression of some cancers
via negative control of proliferation,
migration, invasion, and cell survival

NF-κB; vascular endothelial
growth factor A (VEGF-A)

[45–47]

miR-132 Upregulated during the inflammatory
phase of wound repair; glioma

Critical regulator of skin wound healing;
inhibits Smad7 expression

TGF-β1; TGF-β2 [48, 49]

miR-146 Pancreatic carcinoma, papillary thyroid
carcinoma, gastric cancer, breast cancer,
non-small cell lung cancer

Control of the inflammatory response
of cells of the innate immune system;
plays a role in the development and
maintenance of neoplastic processes

TNF; IL-1 [50, 51]
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treatment of the bladder cancer cell line 5637 with recombinant
TGF-β induced a significant upregulation of miR-21 [67] and
confirmed the correlation between TGF-β and miR-21 expres-
sion in cancer. Furthermore, miR-21 is regarded as a potential
therapeutic target [68]. Wang et al. [69] investigated the effect of
ursolic acid (UA) on human gliomas and found that UA inhibits
cell growth by inducing apoptosis in U251 cells via a UA-
triggered TGF-β1/miR-21/PDCD4 pathway.

miR-181

Wang et al. [70] demonstrated that TGF-β-mediated upregula-
tion of hepatic miR-181b promotes hepatocarcinogenesis by
targeting the tissue inhibitor of metalloprotease 3 (TIMP3) [70].
In this article, the authors showed that the upregulation of hepatic
TGF-β and its downstream Smad mediators in liver nuclear
extracts correlated with elevated miR-181b/d in mice fed a
choline-deficient and amino acid-defined (CDAA) diet. The
levels of miR-181b increased upon exposure of hepatic cells to
TGF-β and were inhibited by siRNA-mediated depletion of
Smad4, demonstrating the role of TGF-β signaling in miR-
181b biogenesis. Moreover, miR-181a had a direct effect on
inducing hepatocyte epithelial-mesenchymal transition (EMT)
and was able to replace TGF-β-induced effects in vitro [71]. In
the field of breast cancer research, Wang et al. [72] observed that
exposure to TGF-β increased the population of breast cancer
cells that can form mammospheres in suspension, and this was
mediated by miR-181, which was upregulated by TGF-β at the
post-transcriptional level. Neel et al. [73] identified miR-181 as a

potent regulator of TGF-β signaling in human breast cancer and
found that miR-181 is the Smad2/3-dependent downstream tar-
get of TGF-β signaling. Furthermore, their data demonstrates
that miR-181 is required for TGF-β-mediated cell migration
and invasion, as silencing miR-181 expression significantly an-
tagonizes the pro-invasive effects of this growth factor.

miR-494

Myeloid-derived suppressor cells (MDSCs) potently suppress
the anti-tumor immune responses that favor tumor angiogenesis
and metastasis; however, the molecular networks regulating the
accumulation of tumor-expanded MDSCs are largely un-
known. Liu et al. [74] revealed that TGF-β-upregulated miR-
494 is required for the accumulation and activity ofMDSCs via
targeting of phosphatase and tensin homolog (PTEN). In pan-
creatic ductal adenocarcinomas (PDACs), dysregulation of β-
catenin and the transcriptional activator FOXM1 mediates on-
cogenesis, although the underlying mechanism remained un-
clear until Li et al.[75] showed that loss of Smad4 in PDAC
cells leads to reduced levels of miR-494, increased levels of
FOXM1, and nuclear localization of β-catenin. Therefore,
miR-494 might be developed as a prognostic marker for pa-
tients with PDAC or as a therapeutic target.

miR-10b

Ma et al. [76] firstly reported miR-10b upregulated in breast
cancer and showed that the level of miR-10b expression in
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primary breast carcinomas correlates with clinical progres-
sion. Then, the results of follow-up studies supported these
results [77, 78]. Recently, miR-10b is identified as a target
gene of TGF-β1, which upregulated miR-10b, promotes
EMT, and increases the metastatic potential of breast cancer
cells [79]. Ouyang et al. [80] demonstrated that overexpres-
sion of miR-10b accelerated pancreatic cancer cell (PCC) pro-
liferation and tumor growth in an orthotopic model. In this
article, the authors showed that miR-10b and TGF-β function
together to markedly increase cell invasion, and this effect is
blocked by the combination of erlotinib and SB505124, a type
I TGF-β receptor inhibitor. miR-10b also enhances the stim-
ulatory effects of TGF-β on cell migration and EMT.
Therefore, therapeutic targeting of miR-10b in malignancy
may block growth-promoting and antagonize the metastatic
process at various levels.

Other microRNAs:
miR-27a/miR-183/miR-182/miR-155/miR-451

TGF-β-associated miR-27a inhibits dendritic cell-mediated
differentiation of Th1 and Th17 cells by modulating TAB3,
p38 mitogen-activated protein kinase (MAPK), MAP2K4,
and MAP2K7 [81]. TGF-β-inducible miR-183 silences
tumor-associated natural killer cells [82]. TGF-β-induced
miR-182 induces an aggressive phenotype by targeting
CYLD in glioma subsets [83]. TGF-β upregulates miR-155
through Smad4 and contributes to epithelial cell plasticity by
targeting RhoA in breast cancer [84]. Moreover, Smad
upregulates miR-451 and drives glioblastoma stem cell to
no-stem cell transformation, leading to reduced glioblastoma
tumorigenicity [85].

Downregulated miRNAs by the TGF-β/Smad
signaling pathway

With respect to cancer, miRNAs are often located in fragile
genomic sites and are therefore typically downregulated in
tumors [6]; inhibition of miRNA biogenesis tends to enhance
tumorigenesis [86], raising the possibility that miRNA re-
expression potentially represents an effective therapy for can-
cer [87]. The examples below are representative miRNAs
downregulated by TGF-β signaling.

miR-200

Gregory et al. [88] firstly reported that all five members of the
miR-200 family (miR-200a, miR-200b, miR-200c, miR-141,
and miR-429) are markedly downregulated in cells that un-
dergo EMT in response to TGF-β. These authors showed that
these miRNAs cooperatively regulate the expression of the E-
cadherin transcriptional repressors zinc finger E-box binding

homeobox 1 (ZEB1; also known as deltaEF1) and SIP1 (also
known as ZEB2), factors previously implicated in EMT and
tumor metastasis. Truong et al. [89] later found that TGF-β-
downregulatedmiR-200 elicits migratory behavior by increas-
ing ZEB2 in triple-negative breast cancer. Recently, a TGF-β-
miR200-Mig6 pathway was shown to induce resistance to
EGFR inhibitors in lung and pancreatic cancers [90].

miR-34a

Altered miR-34 expression has been determined to be in-
volved in the pathogenesis of many cancers [91]. The miR-
34a is onemember of miR-34 family, which of miR-34a, miR-
34b, and miR-34c. miR-34a is encoded by its own transcript,
whereas miR-34b and miR-34c share a common primary tran-
script. Ectopic re-expression of miR-34a in both primary and
tumor-derived cell lines is correlated with cycle arrest, apo-
ptosis, and cell growth inhibition [92]. Yang et al. [93] dem-
onstrated that elevated TGF-β activity associated with the
persistent presence of hepatitis B virus in liver tissues sup-
presses the expression of miR-34a, leading to enhanced pro-
duction of the chemokine CCL22, which recruits regulatory T
cells to facilitate immune escape. This indicates that restoring
the tumor suppressor miR-34, as well as blocking TGF-β
signaling, may provide a novel molecular therapy for the treat-
ment of cancer.

miR-203

miR-203 has been identified as a skin-specific keratinocyte-
derived miRNA that is located at chromosome 14q32-33 [94].
miR-203 expression is significantly downregulated in laryn-
geal squamous cell carcinoma and is correlated with poor
differentiation, advanced clinical stage, and lymph node me-
tastasis [95]. Xu et al. [96] revealed that miR-203 is downreg-
ulated in renal cancer and confirmed that FGF2 is a direct
target of miR-203. Ding et al. [97] demonstrated that TGF-β
represses the expression of miR-203 to promote EMT and
tumor metastasis. In this paper, miR-203 was significantly
downregulated in highly metastatic breast cancer cells, and
restoration of miR-203 in highly metastatic breast cancer cells
inhibited tumor cell invasion in vitro and lung metastatic col-
onization in vivo by repressing SNAI2.

miR-584

miR-584 was shown to decrease cell motility through the in-
hibition of Rho-associated coiled-coil-containing protein ki-
nase 1 (ROCK-1) in renal cell carcinoma (RCC) cell lines, and
the expression of miR-584 was inversely correlated with that
of ROCK-1 in RCC tissues [98]. These results suggest that
miR-584 functions as a new tumor suppressor miRNA in
RCC by downregulating ROCK-1. Fils-Aime et al. [99]
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identified miR-584, a potential tumor suppressor, as a novel
target of TGF-β and found that miR-584 expression is nega-
tively regulated by this growth factor in a number of breast
cancer cells. These authors found that inhibition of miR-584
expression by TGF-β is required for cell migration, as over-
expression of ectopic miR-584 reversed TGF-β-induced cell
migration. They further identified protein phosphatase and
actin regulator 1 (PHACTR1) as a downstream target of
miR-584 and found that TGF-β-mediated inhibition of miR-
584 leads to increased expression of PHACTR1.

miR-450b-5p

TGF-β1 was shown to exert its function by suppressing miR-
450b-5p, which significantly inhibited the growth of rhabdo-
myosarcoma (RMS) and promoted the expression of MyoD.
Using a bioinformatics approach, we identified ecto-NOX di-
sulfide-thiol exchanger 2 (ENOX2) and paired box 9 (PAX9)
as targets of miR-450b-5p. These results suggest that
disrupting the TGF-β1 suppression ofmiR-450b-5p or knock-
down of ENOX2 and PAX9 are effective approaches in in-
ducing RMS MyoD. Furthermore, we found that the Smad3
and Smad4 pathways, but not Smad2, are the principal medi-
ators of TGF-β1 suppression of miR-450b-5p [100].

miRNAs regulate the TGF-β signaling pathway

Most members of the TGF-β pathway are known to be
targeted by one or more miRNAs [23]. After the identification
of TGF-β1, TGF-βR (I and II) and Smads were found to be
dysregulated in most cancers, whereas miRNAs potentially
targeting these molecules are downregulated. The impact of
miRNA on canonical Smad signaling has been investigated
extensively.

TGF-β1

Interactions between miRNAs and TGF-β1 signaling have
been validated experimentally with suggesting that miRNAs
influence the TGF-β1 signaling at multiple levels. A few such
interactions have been demonstrated. For example, Martin
et al. [101] identified multiple binding sites for miR-744 lo-
cated in the proximal TGF-β1 3′-UTR. miR-744 transfection
inhibited endogenous TGF-β1, which given the pleiotropic
nature of cellular responses to TGF-β1 is potentially signifi-
cant. Dogar et al. [102] showed that reduced levels of the
oncomirs miR-18a and miR-24 accounted for the observed
derepression of two TGF-β1 processing factors,
thrombospondin-1 (THBS1) and furin, respectively, which
suggested a novel mechanism by which latent TGF-β1,
thrombospondin 1, and furin form a miRNA-mediated regu-
latory feedback loop. Ectopic expression of latent TGF-β1

reduces THBS1 protein expression and is associated with in-
creased expression of let-7 and miR-18a in cells [103]. These
data suggest an inverse correlation between THBS1 and latent
TGF-β1 expression levels possibly involving miRNAs.

TGF-βR I and II

Downregulation of miR-30 or miR-200 upregulates TGF-βR
I and Smad2 to direct the EMT and invasive potential of an-
aplastic thyroid carcinomas [104]. In breast cancer cells, miR-
128a promotes letrozole resistance by targeting TGF-βR I
[105]. To date, manymiRNAs targeting TGF-βR II have been
identified in different malignancies and shown to contribute to
tumor progression. miR-590-5p promotes the proliferation
and invasion of human hepatocellular carcinoma cells [106],
and miR-106b induces the migration and invasion of colorec-
tal cancer cells [107]. High expression of miR-370 in gastric
carcinoma tissues is associated with increased nodal metasta-
sis and advanced clinical stage compared with controls [108],
and miR-211 promotes the tumorigenesis of head and neck
carcinomas [109]. Moreover, miR-21 induces stemness by
targeting TGF-βR II in colon cancer cells [110] and promotes
tumor development by targeting of TGF-βR II and Smad2/3
in prostate cancer [111]. The miR-520/373 family functions as
a tumor suppressor in estrogen receptor negative breast cancer
by targeting NF-κB and TGF-βR II [112]. Downregulation of
miR-655 increases ZEB1 and TGF-βR II levels to accelerate
cancer progression [113]. Recently, the miR-17 family was
shown to reverse cisplatin resistance and suppress metastasis
by targeting TGF-βR II in NSCLC [114].

Smads

miR-148a attenuates the cancer stem cell-like properties of
hepatocellular carcinoma cells by targeting Smad2 [115].
miR-99a and miR-99b enhance cell migration and adhesion
of normal murine mammary gland cells by targeting Smad3
[116]. miR-92b functions as a potential oncogene by targeting
Smad3 and promotes glioblastoma cell proliferation [117].

miR-146b-5p increases cell proliferation and cell cycle ar-
rest by repressing Smad4 in thyroid cancer [118]. miR-199a
acts as a negative regulator of TGF-β signaling by targeting
Smad4 and plays an oncogenic role in gastric cancer [119].
miR-130a-mediated downregulation of Smad4 reduces the
sensitivity to TGF-β1 stimulation in granulocytic precursors
[120]. Moreover, miR-130a/301a/454 functions as oncogenes
by targeting Smad4 to enhance cell proliferation and migra-
tion in human colorectal cancer [121]. As a tumor suppressor
miRNA, miR-34a acts as a tumor suppressor by targeting
Smad4 in proneural subtype glioblastoma [122].
Downregulated miR-146a increases Smad4 and affects cell
proliferation in response to retinoid acid induction in an acute
promyelocytic leukemia cell line [123].
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miR-155 renders diffuse large B cell lymphoma (DLBCL)
cells resistant to the growth inhibitory effects of TGF-β1 and
BMP by targeting Smad5 [124]. Moreover, miR-155 controls
RB phosphorylation in normal and malignant B lymphocytes
via the non-canonical TGF-β1/Smad5 signaling module
[125]. Kaposi’s sarcoma-associated herpesvirus-encoded
miR-K12-11 facilitates cell proliferation through the suppres-
sion of Smad5 [126]. The miR-106b-25 cluster targets the
inhibitory Smad7 protein, resulting in the overexpression of
TGF-βR I, and activates TGF-β signaling to induce EMTand
the tumor-promoting effect of Six1 treatment in human breast
cancer cells [127]. Moreover, miR-216a/217 induces EMT by
targeting PTEN and Smad7 to promote drug resistance and
recurrence of liver cancer [128].

Other mechanisms

The miR-106b-25/miR-17-92 cluster interferes with cell cycle
arrest and apoptosis to resist TGF-β tumor suppression [129].
Moreover, the miR-106b-25 cluster inhibits the TGF-β tumor
suppressor pathway, interfering with the expression of
CDKN1A and BCL2L11 (Bim) in gastric cancer [130]. The
miR-17-92 miRNA cluster was shown to act both upstream
and downstream of psmad2, resulting in the downregulation
of multiple key effectors of the TGF-β signaling pathway and
in the inhibition of TGF-β-responsive genes in neuroblastoma
cells [131]. miR-183 inhibits TGF-β1-induced apoptosis by
downregulating PDCD4 in human hepatocellular carcinoma
cells [132]. Moreover, miR-204 and miR-379 target IL-11 and
downregulate the expression of several genes involved in
TGF-β signaling, including PTGS2 in bone metastatic breast
cancer cells [133]. miR-127-3p inhibits cancer cell prolifera-
tion and activates TGF-β signaling by targeting SKI in glio-
blastoma [134].

miRNAs and non-Smad pathways in malignancy

In addition to the canonical Smad pathway, the effects of
TGF-β are largely dependent on the interactions between nu-
merous non-canonical signaling factors such as ERK, p38,
RhoA, and phosphoinositide 3 kinase (PI3K) [135, 136].
The effect of the canonical signaling pathway on miRNA
expression regulation has been investigated and was reviewed
by Blahna et al. [58]. However, miRNA alterations of non-
canonical signaling in malignancies have been characterized
to a lesser extent. Since differences in miRNA expression
levels will impact non-canonical signaling, these different
miRNAs could exert anti-tumor effects by altering the
TGF-β signaling pathway, highlighting miRNAs targeting
non-canonical signaling as potential therapeutic targets. For
example, miR-27a, as an inhibitor of MAPK as well as JNK
during dendritic cell-mediated accumulation of Tregs in vivo,

accelerated tumor growth by inducing the accumulation of
immune cells, indicating that miR-27a is a potential target
for cancer therapy [81].

Exosomic miRNAs in the tumor microenvironment

Alongside with well-known pathways by which cells can
communicate, considerable attention is now being given to
the role of extracellular vesicles (EVs) which have been
shown to contain nucleic acids in form of miRNAs [137,
138]. More importantly, the discovery that EVs can deliver
miRNAs to target cells, raising the possibility that such
exosomes could work as a novel category of intercellular com-
municators [137, 139, 140]. Some researchers demonstrated
that exosome-associated miRNAs are involved in the metasta-
tic potential of malignancy. For example, EVs derived from
metastatic breast cancer cells were shown to be able to deliver
miR-200 to non-metastatic cells [141]. As outlined in a recent
review [142], the tumor cells can Beducate^ the surrounding
environment from normal to pro-inflammatory and pro-
tumorigenic through exosome-dependent signals other than
well-known cross talk.

Future directions and concluding remarks

Inflammatory circuits can differ considerably between differ-
ent tumors in terms of cellular networks and cytokines.
Understanding the diversity of the inflammatory microenvi-
ronment is instrumental to the design of therapeutic ap-
proaches targeting this microenvironment. Many anti-
inflammatory drugs inhibit the activity of cytokines and tumor
development in preclinical and clinical settings associated
with cancer [143–145]. These conventional therapies mainly
depend on genetic alterations of cancer cells and target cancer-
associated inflammatory cell receptors or cytokines and their
receptors [146].

Inflammatory cytokines, including TGF-β, play important
roles in the regulation of tumor progression. Owing to the
pleiotropic effects of TGF-β on the tumor microenvironment,
targeting TGF-β signaling to directly treat cancer progression
remains controversial. As described in this review, the TGF-β
signaling pathway plays a critical role in the regulation of
miRNA biogenesis. Given that a single miRNA can modulate
the expression of hundreds of target genes, the regulation of
miRNAs by the TGF-β signaling pathway could be critical for
the modulation of the tumor microenvironment.

Several studies have investigated the role of TGF-β-related
miRNAs in cancer and revealed the different mechanisms
underlying the interaction between TGF-β and miRNAs in
cancer. In TGF-β overexpressing cancer tissues, upregulated
miRNAsmay play a tumor-promoting role by downregulating
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the expression of tumor-suppressor genes. Therefore, down-
regulating the expression of these miRNAs and/or upregulat-
ing the expression of target genes could be a strategy for the
treatment of cancer. On the other hand, the downregulation or
inhibition of certain miRNAs in cancer may lead to oncogene
overexpression and tumor-promoting effects. In this case, in-
creasing the expression of these miRNAs and/or downregu-
lating the expression of target genes could be applied for the
treatment of cancer. In brief, understanding the molecular and
epigenetic mechanisms underlying the relationship between
inflammatory cytokine signaling and miRNAs in cancer
may facilitate the development of new therapeutic strategies
targeting the tumor microenvironment.
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