Skip to main content
Log in

Manganese induces neuroinflammation via NF-κB/ROS NLRP3 pathway in rat brain striatum and HAPI cells

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

Chronic exposure to excessive Mn can result in neurodegenerative symptoms, whose precise molecular mechanism remains largely unclear. Here, we measured the role and mechanism of NLRP3 in Mninduced neuroinflammation in vivo and vitro.

Methods

The effects of Mn on NLRP3 activation were investigated by Westernblot, IHC, immunofluorescence analysis, as well as ELISA. We assessed NF-κB activation through measurement of phosphorylation and nuclear translocation. The mechanisms bywhich Mn induced NLRP3 activation were assessed by specific inhibitors.

Results

We found that Mn exposure facilitated the activation of NLRP3 inflammasome to promote the production of IL-1β and IL-18 in dose- and time-dependent manners in HAPI cells. In addition, the NLRP3 inflammasome was also dramatically activated in microglia of rat brain striatum after Mn exposure. We also found increased ROS and NF-κB activation. Notably, the activation of NLRP3 was significantly attenuated by pretreatment with NF-κB and ROS inhibitors.

Conclusion

These findings suggest that NLRP3 activation plays an important role in Mn-induced neuroinflammation, and it is associated with NF-κB and ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjorklund, G., Chartrand, M. S. & Aaseth, J. Manganese exposure and neurotoxic effects in children. Environ Res 155, 380–384 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Gawlik, M., Gawlik, M. B., Smaga, I. & Filip, M. Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol Rep 69, 322–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Bouabid, S., Tinakoua, A., Lakhdar-Ghazal, N. & Benazzouz, A. Manganese Neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem 136, 677–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Liccione, J. J. & Maines, M. D. Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J Pharmacol Exp Ther 247, 156–161 (1988).

    CAS  PubMed  Google Scholar 

  5. Wan, C. et al. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis. Toxicol Appl Pharmacol 281, 294–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, F. et al. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107, 156–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Gustin, A. et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10, e0130624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Lucia, C. et al. Microglia regulate hippocampal neurogenesis during chronic neurodegeneration. Brain Behav Immun 55, 179–190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alam, Q. et al. Inflammatory process in Alzheimer’s and Parkinson’s diseases: central role of cytokines. Curr Pharm Des 22, 541–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Hines, D. J., Hines, R. M., Mulligan, S. J. & Macvicar, B. A. Microglia processes block the spread of damage in the brain and require functional chloride channels. Glia 57, 1610–1618 (2009).

    Article  PubMed  Google Scholar 

  11. Shan, H. et al. Fluoxetine protects against IL-1beta-induced neuronal apoptosis via downregulation of p53. Neuropharmacology 107, 68–78 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Yin, L. et al. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1beta to promote neuronal death. Neurotoxicology 64, 195–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Z. et al. Differential pathways for interleukin-1beta production activated by chromogranin A and amyloid beta in microglia. Neurobiol Aging 34, 2715–2725 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Alfonso-Loeches, S., Urena-Peralta, J. R., Morillo-Bargues, M. J., Oliver-De La Cruz, J. & Guerri, C. Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 8, 216, doi:10.3389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan, M. S., Yu, J. T., Jiang, T., Zhu, X. C. & Tan, L. The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol 48, 875–882 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Hornung, V. & Latz, E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol 40, 620–623 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10, 210–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Arlehamn, C. S., Petrilli, V., Gross, O., Tschopp, J. & Evans, T. J. The role of potassium in inflammasome activation by bacteria. J Biol Chem 285, 10508–10518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi, S. et al. KHSRP participates in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Mol Neurosci 55, 454–465 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Peres, T. V. et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics 8, 597–604 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, J. K. et al. Upregulation of mitochondrial protease HtrA2/Omi contributes to manganese-induced neuronal apoptosis in rat brain striatum. Neuroscience 268, 169–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Cai, Q., Li, Y. & Pei, G. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J Neuroinflammation 14, 63, doi: https://doi.org/10.1186/s12974-017-0839-0 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, D. et al. The role of NLRP3-CASP1 in inflammasome- mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy 13, 914–927 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz, M. & Baruch, K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33, 7–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Peres, T. V. et al. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17, 57 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang, J. et al. Downregulation of the Wnt/beta-catenin signaling pathway is involved in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Neurosci Res 92, 783–794 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Piccini, A. et al. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105, 8067–8072 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tanaka, S. et al. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL- 1 knockout mice. J Neuroinflammation 10, 143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mizushima, H. et al. Reduced postischemic apoptosis in the hippocampus of mice deficient in interleukin-1. J Comp Neurol 448, 203–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka, S. et al. Involvement of interleukin-1 in lipopolysaccaride- induced microglial activation and learning and memory deficits. J Neurosci Res 89, 506–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Murphy, N., Grehan, B. & Lynch, M. A. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Med 16, 205–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41, 1012–1021 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, E. H., Park, M. J., Park, S. & Lee, E. S. Increased expression of the NLRP3 inflammasome components in patients with Behcet’s disease. J Inflamm (Lond) 12, 41 (2015).

    Article  CAS  Google Scholar 

  36. Ozaki, E., Campbell, M. & Doyle, S. L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res 8, 15–27 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shao, B. Z., Xu, Z. Q., Han, B. Z., Su, D. F. & Liu, C. NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6, 262 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junkang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yin, L., Wu, Y. et al. Manganese induces neuroinflammation via NF-κB/ROS NLRP3 pathway in rat brain striatum and HAPI cells. Mol. Cell. Toxicol. 15, 173–183 (2019). https://doi.org/10.1007/s13273-019-0021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-019-0021-0

Keywords

Navigation