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Abstract
Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, 
showing significant extension–twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic 
performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order 
model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent 
three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include 
solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows 
that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting 
moment solely based on the initial twist suffers from errors exceeding 5% in some cases. The nonlinear parts of the torsional 
rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension–twist 
coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional 
torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General 
and Commercial Aviation propellers, its contribution to the lift propeller’s stiffness is limited. The paper closes with the 
presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine 
each effect for inhomogeneous cross-sections made of anisotropic material.
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List of symbols
CA	� Commercial aviation
CFRP	� Carbon fiber-reinforced polymer
GA	� General aviation
AAM	� Advanced air mobility
a	� Acceleration
A	� Cross-sectional area
C1…6	� Constants, see Eq. (27)
D	� Diameter
D, F, K, S	� Cross-sectional constants, see Eq. (6), (7), 

(10), and (11)
E, G	� Young’s & shear modulus
Ip	� Polar moment of inertia
JS	� Saint–Venant linear torsional stiffness
K	� Initial twist
Mt	� Torsional moment

Mt,Aero	� Aerodynamic torsional moment
Mt,CF	� Centrifugal twisting moment
P	� Thrust per blade/beam
r	� Radial position
R	� Beam length (radius)
ROM	� Reduced order method
s	� Skin thickness
t = to, ti	� Thickness (outer/inner) of the section
T	� Tension force
u, v, w	� Displacement components
u1	� Average cross-sectional deformation
w = wo, wi	� Width (outer/inner) of the cross-section
x, y, z	� Global coordinate system
�	� Angle of initial twist
�	� Angle between major principal axis and 

global y-axis under load, see Eq. (18)
�, �	� Principal axes of each cross-section
�	� Elastic twist
�	� Material density
�	� Angle of elastic torsional rotation
�	� Warping function
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�	� Vector of rotational velocity
Ω	� Rotational velocity around the z-axis

1  Introduction

Novel aircraft configurations and propulsion architectures 
frequently rely on propellers due to their high propulsive 
efficiency. Propellers are long, slender, flexible beams 
subjected to aerodynamic and inertia loads. Particularly 
aircraft with VTOL capability require large diameters to 
reduce power demand in hover. Elastic deformations during 
operation impact the aerodynamic characteristics and thus 
the overall aircraft performance, most dominantly due to 
torsional rotations, i.e., a change in the angle of attack [1]. 
Besides General Aviation (GA) and Commercial Aviation 
(CA), Advanced Air Mobility (AAM) concepts popped up 
in recent years to a large extent. Depending on the aircraft 
and the intended flight mission, many of these concepts 
rely on propellers supporting enough thrust to lift the 
aircraft vertically. These propellers are referred to as lifting 
propellers in the following.

Multiple small-scale companies manufacture propellers 
for uncertified applications in light aircraft and new 
AAM concepts, including unmanned aerial vehicles. 
Some well-funded start-ups in this market try to design 
and manufacture their propellers without experience in 
this field. Unfortunately, especially lifting propellers for 
AAM offer some geometric and operational peculiarities. 
Those peculiarities require special attention regarding their 
aeroelastic coupling effects, which may differ from those of 
GA and CA propellers [2].

Determining the impact of elastic deformations on 
aerodynamic performance requires coupled simulations. 
Both high- and low-fidelity methods are available to 
investigate propeller loads and deformations. Gur and 
Rosen present propeller design and optimization strategies 
for conventional and unconventional propeller applications 
with reduced-order methods (ROM) [3, 4]. Within the last 
2 decades, significant progress has also been made in the 
simulation and optimization of large propellers and propfans 
with high-fidelity methods [5–7]. Due to the computational 
cost of multiphysics simulations, reduced-order methods are 
still attractive for design and optimization purposes, since 
they provide fair accuracy at minimal cost [8, 9]. Especially 
smaller propeller manufacturers prefer to rely on ROM, 
experimental investigations, and engineering judgment 
instead of high-fidelity approaches. Numerous methods 
have been developed to determine the aerodynamic loads 
of propellers and rotors [10]. Most ROM rely on blade 
element theory, e.g., QPROP [11] or JBLADE [12]. Some 
reduced-order approaches also include the determination of 

deformations, commonly with the help of beam formulations 
[13, 14].

Unfortunately, only a little literature is available 
explaining the reasons for torsional deformations during 
the operation of propellers. Up to the 1960s, propellers 
powered most aircraft. Propeller manufacturers of that 
day, e.g., Hamilton Standard, had established design 
guidelines for aerodynamic and structural mechanical 
design [15]. Aeroelastic coupling effects were known 
and captured by analytical or semi-empirical approaches. 
With the rise of computational power, these guidelines 
have been transferred to computer programs [16]. In the 
1980s, unducted fans (or advanced turboprops) were of 
specific interest due to increasing fuel prices [17]. Besides 
aerodynamics, some investigations were conducted 
regarding the structural simulation of the large propeller 
blades, e.g., by Friedmann and Kosmatka [18].

Structural mechanics and dynamics have been a 
significant research focus in the helicopter rotor industry 
for decades [19]. Multiple coupled aeroelastic design 
and simulation environments have been developed; some 
are commercially available [20]. Even though helicopter 
rotors differ from lifting propellers in various regards, 
both are rotating beams with similar material-related and 
geometric coupling effects. Thus, the modeling approaches 
of helicopter rotors regarding nonlinear beam formulations 
also apply to lift propellers.

Aerodynamic and centrifugal loads, geometric and 
material-related bending-torsion or extension–twist 
coupling, restraint warping, or initial twist can cause 
torsional deformations [21, 22]. Investigating these effects 
requires sophisticated ROM, high-fidelity simulations 
(2D shell or 3D solid elements), or experiments [23, 
24]. Although Hodges or Kosmatka have explained their 
implementation in ROM [25, 26], available reduced-order 
approaches in common simulation environments may 
not capture all relevant phenomena. The cited methods 
of Hodges and Kosmatka can model and investigate all 
relevant phenomena, e.g., within finite-element formulation. 
Still, the final FE models do not assess the relevance of the 
specific effects they are capturing.

All propellers, rotors, or wind turbines are rotating 
beams with an initial twist due to the radial variation in 
circumferential velocity. The coupling of extension and 
torsion of initially twisted beams can be a major reason 
for torsional deformation besides aerodynamic and 
centrifugal torsional loads [27]. Established guidelines are 
available for GA and CA to capture these effects, e.g., by 
Amatt et al. [28]. It has not yet been investigated if these 
modeling approaches apply to the characteristics of lifting 
propellers and capture all relevant effects. This paper aims 
to assess the reasons for different propeller types' torsional 
deformations and validate the established guidelines' 
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applicability to novel lift propellers. Tilting propellers or 
tilting rotors differ from lifting propellers regarding their 
flight mission and geometric characteristics, i.e., disk 
loading, inflow conditions, and activity factor. Therefore, 
both are outside the scope of this paper.

An analytical investigation is conducted to investigate 
the applicability of the existing design guidelines to lifting 
propellers. First, the authors explain the reasons for the 
extension–twist coupling of initially twisted beams and the 
centrifugal twisting moment. Second, the authors present 
a generic beam model based on a nonlinear analytical 
formulation published by previous authors. The model 
can rapidly illustrate the impact of different coefficients 
on torsional deformation. Third, the impact of the various 
coefficients is evaluated for different propeller types: GA, 
CA, and AAM (lifting) propellers. The investigation results 
shall enable engineers to judge whether the specific effect 
has to be considered within the design and simulation of 
lifting propellers. The relevant effects can directly be 
integrated into reduced-order methods.

Chapter 2 explains the extension–twist coupling and the 
centrifugal twisting moment, including the presentation 
of a theoretical model. Chapter 3 introduces a numerical 
model to simulate both effects. Five test cases validate the 
approach. The results of an extensive numerical assessment 
of reasons for torsional deformations are in chapter 4. The 
authors also present approximations for typical airfoil-
shaped cross-sections. The results are concluded in 
chapter 5. The appendix includes further information and 
formula of the theoretical model.

2 � Theoretical model

Propellers are long and slender structures. Depending on 
chord length and thickness, the cross-sections of propellers 
are most commonly solid or hollow with a single cell. 
Reinforcement of hollow layouts with a spar might become 
necessary for large chord lengths in CA but is not considered 
in the following. Solid cross-sections are still applied when 
dealing with low chord length and thin profiles (in an 
absolute manner) due to manufacturing benefits. The next 
chapter derives cross-sectional equilibrium equations valid 
for arbitrary cross-sections. A solid and a hollow rectangular 
cross-section are assumed to derive simple algebraic 
equations for a quantitative investigation.

2.1 � Extension–twist coupling

We consider a straight beam with constant cross-sections and 
initial twist; see Fig. 1. x, y, and z represent the global, rotat-
ing coordinate system, x, � , and � the local, cross-sectional 

coordinate system, defined by the local major and minor 
principal axes.

Each cross-section has a specific initial twist angle � 
between its major principal axis and the global y-axis. The 
initial twist k before deformation is

The extension–twist coupling of initially twisted beams 
is sometimes also called the trapeze effect [29]. The trapeze 
effect itself results in two separate effects. First, a tension 
load applied to initially twisted beams results in internal 
torsional loads tending to untwist the blade, even if no 
external torsional load acts on the structure. Second, the 
trapeze effect results in an additional torsional stiffness. Both 
effects are briefly explained in the two following subsections. 
Available approximations for GA and CA propellers are 
referenced within the corresponding paragraph.

2.1.1 � Internal torsional moment due to the trapeze effect

Figure 2 illustrates a beam with a rectangular cross-sec-
tion. The tension load T acts on the beam tip. The exter-
nal torsional load is zero ( Mt = 0 ). The initial twist angle � 
decreases in radial direction, i.e., k is negative. We consider 
two adjacent radial stations separated by a distance Δr. We 
further assume constant normal stress at the cross-section

The force dF acts between two infinitesimal small 
areas, dA1 and dA2, sharing the same cross-sectional 
coordinates � and � , see Fig. 2a and c). The x-component 
of the force is dFx = �x dA1. dA1 and dA2 have differing 

(1)k =
d�

dx
.

(2)�x =
T

A
= const.

y

z

x

y

z

Mt
T

Fig. 1   Rotating prismatical beam with initial twist
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z-coordinates due to the initial twist. Accordingly, 
the force dF has a component dFz. Multiplying the 
incremental force component dFz at dA1 with its 
y-coordinate results in an incremental torsional moment. 
Integrating over the cross-section yields a cross-sectional 
torsional moment, tending to straighten or untwist the 
blade under (tension) load. Amatt et  al. derived an 
approximation for this internal torsional moment in 
[28] (Eq.  94), which neglects the impact of elastic 
deformations on actual twist under loads.

2.1.2 � Increase in torsional rigidity due to the trapeze effect

We again consider the beam illustrated in Fig. 2, but with 
zero tension load and a nonzero external torsional moment 
( T = 0;Mt ≠ 0 ). Due to the external torsional load, the 
beam will twist (positive in the case of positive torsional 
load). It is readily apparent by the view onto the trailing 
edge (Fig. 2) that this twist compresses an incremental 
fiber connecting dA1 and dA2. The compression of the 
fiber results in an internal load. Due to the orientation of 

the fiber, the incremental force at dA1 has a component 
in the z-direction. Since the force component has a lever 
arm in the y-direction, an incremental torsional load 
results. This internal torsional load counteracts parts of 
the external load and is proportional to the elastic twist. 
It is, therefore, commonly considered as an additional 
stiffness. Amatt et  al. also derived an approximation 
for this effect in their design guidelines [28] (Eq. 125). 
However, they only consider the stiffening effect of the 
initial twist in combination with the elastic twist. Large 
elastic deformations without initial twist result in a similar 
nonlinear stiffening effect, which they do not account for. 
As shown in the results section, the neglection of this 
nonlinear stiffening is valid for most propeller types but 
does not generally hold for all rotating beams.

2.1.3 � Nonlinear formulation of the extension–twist 
coupling of initially twisted beams

The approximations described by Amatt et  al. [28] are 
simple and straightforward. Still, they neglect the coupling 
between tension load and elastic twist and the nonlinear 
coefficients of the extension–twist coupling. Therefore, the 
nonlinear analytical formulation by Rosen [22] is applied 
in the present investigation. Only a summary of the theory 
is presented here. A more comprehensive derivation is 
available in the original paper.

The deformation is assumed to be a superposition of 
Saint–Venant torsion and axial elongation u1

where � is the Saint–Venant warping function, � is the 
elastic twist angle of a cross-section, and � is the elastic twist

The bar is assumed to be free to warp at the ends. No 
small angle assumptions are made. Differentiation of Eqs. 
(3a–c) yield the nonlinear strain components. Restricting 
them to small strains and finite rotations, they are inserted 
into the potential of internal and external forces of the bar. 
The equilibrium equation becomes

(3a)u = u1 + ��

(3b)v = y(cos� − 1) − zsin�

(3c)w = ysin� + z(cos� − 1),

(4)� =
d�

dx
.

(5)
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(
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Fig. 2   Blade straightening and stiffening due to the trapeze effect
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Mt is the sectional torsional moment, E is the Young’s 
modulus, and G is the shear modulus. The resulting geometric 
cross-sectional integrals are

Formula (5) is valid for arbitrary homogenous cross-
sections. The first and second terms on the right side 
represent internal torsional moments due to the initial (1st) 
or elastic twist (2nd) combined with a tension load T. Js is 
the Saint–Venant torsional stiffness. Terms 4–6 represent the 
linear (4th) and the nonlinear (5th and 6th) change of torsional 
rigidity due to elastic twist. Terms 4 and 5 are coupled with 
the initial twist. Cross-sections not offering two-fold symmetry 
further suffer from extension-bending and torsion-bending 
coupling, which is outside the scope of this paper.

To investigate the impact of the different coefficients stated 
in Eq. (5), a thin rectangular cross-section of width w and 
thickness t with t ≪ w is assumed. The warping function for 
hollow and solid cross-sections is approximately � ≈ −yz . In 
this case, the initial twist contributes to the radial change of 
the warping function [30]

Inserting (12) in (6–11) simplifies Eq. (5) for solid cross-
sections to

(6)D = ∫
A

(

��

�x

)

(

y2 + z2
)

dA

(7)F = ∫
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M

t
=
Tw

2k

12

+
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2�
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+
Gwt

3�

3

+
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5tk2�
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+
Ew5tk�2
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+
Ew5t�3
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.

Equation (13) is the governing equation for the cross-sec-
tional elastic twist � . Integration over the beam length yields 
the global twist angles. The equation has also been derived 
by Danielson and Hodges [31]. They present a formulation 
for beams oriented arbitrarily in space, undergoing large 
deformation and small strains. Rosen [32] or Danielson and 
Hodges [31] have not explicitly derived the governing equa-
tion for hollow cross-sections. The authors, therefore, pre-
sent the integrals (6–11) for hollow layouts in the appendix.

2.2 � Centrifugal twisting moment

Centrifugal accelerations are the primary reason for 
tension loads in rotating propellers or rotors. External 
torsional loads may arise from aerodynamic loads due to 
a lever arm from the center of pressure to the shear center. 
The centrifugal twisting moment is an additional reason 
for torsional loads. Depending on the geometry, material, 
and operational conditions, the centrifugal twisting 
moment can be significantly greater than aerodynamic 
torsional loads. Due to the relevance of this load, a short 
derivation is presented.

We consider a straight beam with rectangular, initially 
twisted cross-sections of length R with solid or hollow cross-
sections; see Fig. 3. The beam rotates with angular velocity Ω

The cross-sectional centrifugal load increment can be 
summarized as acting at the cross-sectional center of grav-
ity. However, every infinitesimal mass point within a cross-
section having a nonzero y-coordinate results in a centrifugal 

(14)��⃗𝜔 =

⎛

⎜

⎜

⎝

0

0
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⎞

⎟
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⎠
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a)  Top view

b)  View of the beam tip
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Fig. 3   Incremental centrifugal twisting moment
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force component in the y-direction. We consider a point P(x, 
y, z ≠ 0). The infinitesimal centrifugal loads at point P are 
due to the centrifugal acceleration a

In the case of twisted sections (initially or elastically 
twisted), i.e., for all propellers, rotors, and wind turbines, 
the centrifugal force dFCF,y results in a torsional load due 
to the lever arm in z-direction

Integration over the cross-section yields the radial 
increment of the centrifugal twisting moment

The local principal axes of the cross-section are � and 
� , see Fig. 4.

The actual pitch angle � during operation is the sum of 
the initial twist angle �(x) and the elastic twist angle �(x)

The transformation between global and local (cross-
sectional) coordinate system is

Inserting Eq. (19) into (17) and integrating over the 
cross-section yield the radial increment of the centrifugal 
twisting moments

(15)

��������⃗dFCF = a⃗dm = −
�

𝜔⃗ ×
�

𝜔⃗ × ��⃗rP
��

dm.

𝜌 Ω
2

⎛

⎜

⎜

⎝

x

y

0

⎞

⎟

⎟

⎠

dA dx

(16)dMt,CF = −dFCF,y ⋅ z = −�Ω2yzdAdx.

(17)
dMt,CF

dx
= M

�

t,CF
= −∫

A

�Ω2yzdA.

(18)� = � + �

y = �cos� − �sin�

(19)z = �cos� + �sin� .

Equation (20) is valid for any homogenous cross-section 
with its tension center coinciding with the pitch axis of the 
rotating beam. If the section deforms in the y- and z-direction 
by Δy and Δz , Eq. (20) becomes (derivation see Amatt et al. 
[28] Eq. 83)

3 � Numerical model

The considerations above are based on cross-sectional 
equilibrium. The authors prepare a model and assumptions 
to calculate the cross-sectional tension load T, aerodynamic 
twisting moment Mt,Aero, the centrifugal twisting moment 
Mt,CF, and the global twist angle �.

3.1 � Model derivation

We still focus on solid or hollow rectangular cross-sections 
with constant initial twist rate, chord length, and thickness. 
The tension load T(r) is solely due to centrifugal forces

The centrifugal twisting moment is determined by 
integrating Eq. (20) from the actual radial position r to the 
tip radius R

The initial twist angle is known a priori, but the elastic 
twist angle is not. Amatt et  al. [28] neglect them in 
determining the centrifugal twisting moment for GA and CA 
propellers. Including the elastic twist requires an iterative 
solution, but the computational costs are vanishingly small. 
The authors, therefore, have chosen an iterative solution 
procedure.

Additional external torsional loads are due to aerodynamic 
forces. The offset between the cross-sectional pressure point 
and the shear center (origin) depends on both the airfoil and 
the structural layout. Typical values range from 0 to 20% chord 
length. Within this study, the distance is assumed to be 10% 
of the chord length, i.e., the beam width w. A hypothetical 
aerodynamic thrust per blade P is applied to the beam. The 
value of the thrust P will be discussed in Sect. 4.1. The thrust 

(20)Mt,CF� ≈ −
�

2
Ω

2

(

I�� − I
��

)

sin2� .

(21)M�

t,CF
≈ −
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2
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2
[(

I�� − I��
)

sin2� + ΔyΔzA
]

.

(22)T(r) = ∫
V

�axdV =

R

∫
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�AΩ
2xdx =
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2
�AΩ2

(

R2
− r2

)

.

(23)Mt,CF(r) =

R

∫
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Mt,CF�dx.

= +
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z

Fig. 4   Cross-sectional definitions
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is assumed to be distributed in a triangular form, roughly 
approximating a realistic load distribution of a propeller

The resulting aerodynamic torsional moment at a radial 
station x is

The initial twist is too large for small angle assumptions 
to be valid. Still, the aerodynamic lift of each cross-section is 
approximately aligned with the minor principal axis. Hence, 
the assumption of the constant lever arm of 10% of the chord 
length is a valid approximation. Shear loads or bending 
moments are not considered in the model. The cross-sectional 
equilibrium of a solid rectangular cross-section becomes

It is worth mentioning that k is negative for propellers, and 
the third term on the left side is a positive, i.e., a pitch-up tor-
sional load. In the case of a positive elastic twist, the terms on 
the right side are all positive (stiffening) except the third one. 
For a handier visualization in the results section, Eq. (26) is 
abbreviated to

The left side of Eq. (27) represents the external and the 
induced torsional loads, while the right side represents the 
twist-related internal torsional loads.

3.2 � Validation of the numerical model

Rosen presents an experimental validation of Eq. (13) in his 
publication [32]. In the first step, the authors repeat the valida-
tion using three-dimensional finite elements instead of experi-
ments and extend the validation to hollow cross-sections. In 
the next step, the derivation of centrifugal torsional and ten-
sion loads is validated by a simulation of a rotating beam with 
geometric properties similar to a propeller.

3.2.1 � Validation test case 1 (Rosen’s test case 1 [32])

The first experiment investigates the torsional behavior of 
an initially twisted thin steel strip with a rectangular cross-
section and the following data:

(24)
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2
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(25)Mt,Aero(x) =
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w
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.

(26)
M

t,Aero
+M

t,CF
−

Tw
2k

12

−
Tw

2�

12

= +
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+
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Ew5t�3

360

.

(27)Mt,Aero +Mt,CF + C1 + C2 = C3 + C4 + C5 + C6.

•	 Length: 600 mm
•	 Width: 10 mm
•	 Thickness: 0.5 mm
•	 Initial twist: 1283°/m
•	 Young’s modulus: 192,000 MPa
•	 Shear modulus: 74,500 MPa.

The geometry is loaded by a constant end tension load 
of 28.6 N and increasing torsional loads. Due to the length 
of the specimen, boundary conditions can be neglected.

Figure 5 plots the nondimensional torsional load versus 
the nondimensional twist rate, relative to the case of no 
torsional load and constant end tension load. The FEM 
results are in excellent agreement with the experimental 
results of Rosen but with less noise. The nonlinear theory 
is in good agreement with the validation data, showing 
errors below 3% compared to the FEM results. The dashed 
line represents the linear theory, neglecting the coeffi-
cients C5 and C6. Rosen concluded that these nonlinear 
terms are neglectable up to a nondimensional twist rate 
of �w = 0.05 , but this value depends on both material and 
geometric data. Both coefficients are, therefore, considered 
in all further simulations.

3.2.2 � Validation test case 2

Since Rosen derived Eq. (13) for solid rectangular cross-
sections [32], the validation is repeated for a hollow 
rectangular cross-section with geometric properties similar 
to a propeller:

•	 Length: 1000 mm
•	 Width: 100 mm
•	 Cross-sectional thickness: 12 mm
•	 Skin thickness: 3 mm
•	 Initial twist: − 50°/m.

The material stiffness is the same as in the first experi-
ment and will be kept constant for the complete validation 
section of this paper. The authors derive the equilibrium 
equation of the present model in the appendix. Figure 6 
plots the torsional load versus the twist rate of a hollow 
cross-section. Errors range from − 8% to + 2%. The maxi-
mum torsional load equals 3000 Nm. The quadratic term 
(C5) contributes less than 3% to the stiffness at maximum 
torsional load, and the cubic term (C6) has a neglectable 
impact, resulting in an almost linear torsional stiffness. 
Further increasing the torsional load to investigate the 
nonlinear behavior results in skin buckling and is omit-
ted, since such load magnitudes are outside the range of 
practical interest of typical propellers, as seen in the next 
chapter.
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3.2.3 � Validation test case 3 (Rosen’s test case 2 [32])

Rosen further investigated the twist rate at increasing end 
tension load within a second test case. The geometrical 
data of the second specimen are as follows:

•	 Length: 710 mm
•	 Width: 4.45 mm
•	 Thickness: 0.2 mm
•	 Initial twist: 1856°/m.

As stated by Rosen, applying high tension loads leads 
to compressive stresses at the edges of the strip while 
untwisting. Therefore, a constant end torsional load of 
Mt = 57.5Nmm was required to avoid buckling.

Figure 7 illustrates the nondimensional elastic twist rate 
at increasing tension loads. Errors between the nonlinear 
theory and FEM results are below 6%. Even though look-
ing linear, the behavior is, in fact, nonlinear, but the effects 
C2 and C5 cancel each other approximately out, resulting 
in a linear-looking behavior. As in validation case 1, the 
FE results are in excellent agreement with the experimen-
tal data. The nonlinear theory is in good agreement with 
the validation results.

3.2.4 � Validation test case 4

The validation is repeated for a hollow cross-section. The 
geometry of test case 2 is loaded by an end tension force. 
Figure 8 plots the dimensionless twist rate at increasing 
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load. The tension stresses are equal to those of test case 3, 
but since the section is hollow, the absolute tension load 
decreases significantly. At the same time, the Saint–Venant 
torsional stiffness is reduced only to a small extent. There-
fore, substantially lower twist rates occur. Further increasing 
the tension load is of no practical interest, since it would 
exceed the yield strength. The deviations seem to increase 
slightly compared to test case 3. The somewhat higher devia-
tions are due to the relative thickness of the cross-section. 
All derivations of the present theory are processed with the 
assumption of small relative thicknesses. The cross-sectional 
integrals, as well as the warping function, lose accuracy with 
increasing thickness, therefore resulting in increasing devia-
tions. Still, the model matches the FE results with errors 
below 10%.

3.2.5 � Validation test case 5

An initially twisted, solid rotating beam is considered to 
validate the calculation of the centrifugal torsion and tension 
load. The geometric data are

•	 Length: 1000 mm
•	 Width: 100 mm
•	 Thickness: 12 mm (solid)
•	 �(r = 0) = 65◦

•	 Initial twist: − 50°/m
•	 Density: 7850 kg/m.3.

The blade tip Mach number quantifies the rotational 
speed. The torsional deformation at the tip is measured. Fig-
ure 9 shows the comparison of FE-simulation results and the 
present theory. With errors of approximately 10%, a good 
agreement between both approaches confirms the model's 
applicability to phenomenological investigations.

4 � Results

4.1 � Parameter space

This section investigates three generic beam types similar 
to specific propeller categories to assess the impact of 
the different effects. In this context, GA is represented by 
a typical four-seated single-engine aircraft, whereas CA 
is represented by a commercial transport aircraft with 
multiple engines. This classification is simplified and not 
exhaustive. A review of existing propeller designs yields 
typical geometric and operational properties to represent the 
three types, as summarized in Table 1.

D is the propeller diameter. Δ� is the difference in the 
initial twist angles between the blade tip and root. k is the 
constant initial twist rate. w is the constant width of each 
beam and corresponds to typical chord lengths. t/w is the 
relative thickness. The thrust P is the force acting on each 
propeller blade in the triangular form described above.

Each propeller type is analyzed for different chord lengths 
and relative thicknesses. The relative thicknesses range from 
2 to 18%. The thickness range's lower and upper boundaries 
are uncommon except for some applications. Still, they are 
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included in the study to illustrate some trends. The blade 
tip Mach number is 0.7 = constant. Typical tip Mach num-
bers are below 0.7, so this value is considered conservative, 
since it leads to the highest centrifugal loads. The propel-
lers are numerically analyzed at 11 radial stations, i.e., the 
beam is discretized into ten segments. A convergence study 
proved that further increasing the number of segments leads 
to neglectable variations of the results due to the constant 
cross-sectional layout.

The investigation includes three different materials. 
Table 2 lists the corresponding parameters. The aluminum 
alloy is the baseline material considered in most of the 
simulations. The properties of the steel alloy are the same as 
those from Rosen’s experimental tests [32]. A third isotropic 
material shall represent the stiffness and density of a carbon 
fiber-reinforced polymer (CFRP).

4.2 � Results’ visualization

Several bar plots in the appendix illustrate the different 
impact of each effect defined in chapter 3.1. The results for 
a specific combination of propeller type, chord length, rela-
tive thickness, and radial station are separately visualized 
in the following manner. Each bar diagram consists of two 
columns representing the left and right sides of Eq. (27). The 
left column represents the left side of the equation, includ-
ing the aerodynamic torsional moment Mt,Aero, centrifugal 
twisting moment Mt,CF, and the internal moments C1 and C2 
due to initial and elastic twist. C1 and Mt,Aero are positive in 
all cases (according to the assumptions). Mt,CF is negative as 
long as the local twist angle � is below 90° (very thin beams 
can reach this state without exceeding material allowables). 
C2 is negative as long as � is positive. Especially, in the root 

region, the sum of all external and induced moments can be 
negative, resulting in a positive value of C2. The sum of all 
external and induced torsional loads is written above each 
diagram. The elastic torsional deformation at the blade tip 
(not at the actual section) is also displayed above the bars. 
It yields information on the impact of torsional deformation 
on aerodynamic performance. As a rule of thumb, torsional 
deformations below 0.1 deg have a low impact on overall 
performance.

The right column represents the internal reaction of each 
cross-section solely related to the elastic twist � and their 
couplings with k (C3–C6). C5 is negative in all cases. C3, C4, 
and C6 are positive as long as the elastic twist is positive.

The sum of external and induced torsional loads equals 
the sum of C3 to C6 according to Eq. (27). Each column is 
normalized with the sum of their positive values Sumpos, so 
the upper bar height is one. Due to the significantly varying 
sectional loads, this normalization was necessary for illustra-
tive purposes. It should be noted that the two columns are 
normalized with different values of Sumpos. Table 3 shows 
the values of each effect of Fig. 10 and the corresponding 
summations.

4.3 � Discussion

Extensive parameter sweeps are conducted to investigate the 
parameter space. The corresponding plots illustrating the 
results of the assessment are in the appendix. Table 4 gives 
an overview of those figures.

The first plot (Fig.  11) shows the load distribution 
versus the relative thickness for three chord lengths at 
70% of the radius. The geometry is of solid aluminum and 
represents an AAM propeller. Regarding the external and 
induced torsional loads (left bar), all effects are found to 
have a significant contribution to the overall cross-sectional 
torsional loads. The aerodynamic torsional loads dominate 
for low chord lengths. The impact decreases with increasing 
thickness and chord length.

Except for narrow geometries, the extension–twist cou-
pling C1 exceeds the aerodynamic and centrifugal twisting 
moments. C2 is important at low thicknesses, but its contri-
bution reduces for high thicknesses. Still, the contribution 
is above 2% in most cases for t/w < 0.18 and above 5% for 
t/w < 0.10. The centrifugal torsional loads Mt,CF significantly 
contribute in all cases.

Table 1   Comparison of blade characteristics

CA propeller GA propeller AAM propeller

D 4.0 m 1.9 m 2.4 m
Δ� − 50° − 45° − 15°
k − 25.0°/m − 47.4°/m − 12.5°/m
w 0.10 ÷ 0.40 m 0.08 ÷ 0.22 m 0.05 ÷ 0.15 m
t/w 0.02 ÷ 0.18 0.02 ÷ 0.18 0.02 ÷ 0.18
P 1500N 600 N 800 N

Table 2   Material properties

Aluminum alloy Steel alloy Carbon fiber epoxy

E 71,000 MPa 192,000 MPa 71,000 MPa
G 26,700 MPa 74,500 MPa 26,700 MPa
� 2770 kg/m3 7850 kg/m3 1800 kg/m3

E/� 25.6 m2/s2 24.5 m2/s2 39.4 m2/s2

Table 3   Loads at an exemplary cross-section / Nm

Mt,Aero Mt,CF C1 C2 Sum Sumpos

2.45 − 1.67 2.30 − 1.42 1.66 4.75
C3 C4 C5 C6 Sum Sumpos

1.47 0.72 − 0.67 0.14 1.66 2.33
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In most cases, the Saint–Venant torsional rigidity (C3) 
dominates the overall torsional rigidity. C4 plays a role in 
very wide or very thin cross-sections. The impact of C5 and 
C6 is noticeable only for high elastic twist rates � and high 
width, since they are proportional to w5 times �2 and �3 , 
respectively. High elastic twist rates solely occur for cross-
sections with less than 4% relative thickness, but the elastic 
tip deformations in excess of 10° are of no practical interest 
regarding propeller applications. Even though the test cases 
with low thicknesses (t/w < 4%) reach high twist angles, the 
material allowables have not been exceeded in any case.

Figure  12 shows the load distribution vs. the 
dimensionless radial position of the geometries 
investigated in the previous plot for 12% relative thickness. 
The results show a relatively uniform distribution, i.e., 
the impact of each effect does not significantly depend on 
the radial position. Solely the centrifugal torsional loads 
increase toward the root region, since the angle of initial 
twist � is highest at x = 0. Consequently, the elastic twist 
can be negative in the root region.

Figures 13 and 14 repeat the simulations of Fig. 11 with 
a hollow cross-section and a skin thickness of s = 1.5 mm 
and s = 3.0 mm, respectively. The relative cross-sectional 
thickness is limited to t/w ≥ 6%. Due to the hollow layout, 
the cross-sectional area is reduced, resulting in lower cen-
trifugal loads, while the Saint–Venant torsional rigidity is 
less impacted. Accordingly, the impact of the aerodynamic 
torsional loads Mt,Aero increases compared to Mt,CF, C1, 
and C2. The Saint–Venant torsional rigidity dominates the 
overall rigidity. Even though the hollow layout reduces the 
sum of all torsional loads, the tip twist angles increase due 
to decreased torsional rigidity.

Figures. 15 and 16 show the impact of varying materi-
als compared to the baseline in Fig. 11. The steel alloy has 
a specific stiffness comparable to aluminum. In contrast, 
the CFRP has similar absolute stiffness at a reduced den-
sity. Regarding the steel alloy, the increased density results 
in higher centrifugal and overall cross-sectional torsional 
loads. Accordingly, the aerodynamic torsional loads lose 
some importance but still have a significant impact, espe-
cially at low thicknesses. While the overall cross-sectional 
loads increase, the torsional deflections at the tip decrease. 
CFRP shows the opposite behavior: aerodynamic torsional 
loads are increasingly important due to decreased density. 
While the cross-sectional loads decrease, the torsional 
deformations increase only to a limited extent.

Figures. 17 and 18 show the torsional load distribu-
tion of a Commercial Aviation propeller and a General 
Aviation propeller, respectively. Both types have cross-
sectional dimensions exceeding those of the AAM type. 
Accordingly, cross-sectional loads increase. Furthermore, 
the initial twist k is a multiple of the AAM type. Con-
sequently, the k-related coefficients C1, C4, and C5 are 
of increased significance. Especially, the C1 term now 
dominates the torsional loads. Aerodynamic torsional 
loads have almost no impact for moderate thicknesses 
and chord lengths. The nonlinear coefficients C5 and C6 
are still neglectable for relative thickness above 4%, even 
though C5 is more pronounced compared to AAM propel-
lers. Mt,CF has a significant impact on torsional loads in all 
cases due to high angles of initial twist �.

The impact of the elastic twist angle � on the centrifugal 
twisting moment can be significant, especially for long and 
slender propellers as for AAM, since the initial twist angle 
is small and the elastic twist angles are high

The impact of � on Mt,CF reduces for CA and GA propel-
lers as they have initial twist angles significantly greater than 
AAM and smaller elastic twist angles in most cases

(28)Mt,CF ∼ sin(2�) = sin(2� + 2�).

(29)
sin(2�)cos(2�) + cos(2�)sin(2�) ≈ sin(2�) + cos(2�)2� ≈ sin(2�).

Relative thickness t/w 

Mt,Aero 

C2 

C1 

Mt,CF 

C3 

C5 

C4 
C6 

Sum of external and 
induced torsional loads 

Torsional deformation 
at the beam tip 

Fig. 10   Explanation of results diagram

Table 4   Overview of figures in the appendix

Figure 11 Baseline AAM propeller, solid aluminum
Figure 12 Baseline AAM propeller – Radial distribution
Figure 13 AAM propeller–hollow, s = 1.5 mm
Figure 14 AAM propeller–hollow, s = 3.0 mm
Figure 15 AAM propeller–solid steel
Figure 16 AAM propeller–solid carbon fiber epoxy
Figure 17 CA propeller, solid aluminum
Figure 18 GA propeller, solid aluminum
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The authors assume that Amatt et al. therefore neglected 
Mt,CF(�), as they wrote their design guidelines for GA 
and CA propellers. If the magnitude of the elastic twist 
angle is known a priori or can be estimated, Mt,CF(�) can 
be neglected. Since this is not the case in most design 
procedures, the authors advise determining the centrifugal 
torsional loads in the deformed state.

4.4 � Approximations for airfoil‑shaped 
cross‑sections

The effects identified as important can be rapidly estimated 
with the help of approximations derived and published by 
Amatt et al. [28]. Their formulas are valid for solid and 
hollow cross-sections made of isotropic, homogenous 
material. The derivation of C2 is straightforward and does 
not require an approximation

Amatt et al. [28] further present tabular data to estimate 
C3 and C4 for NACA 16 and 65 series profiles on page 35ff.

Using anisotropic mater ials (composites) or 
inhomogeneous materials (trim weight or foam inserts) 
requires numerically solving the cross-sectional integrals 
(6–11), (21), and (22).

5 � Conclusion

The presented investigation yields the following conclusion:

•	 The centrifugal twisting moment Mt,CF plays a significant 
role in almost all cases. The correction of the initial twist 
angle � by the elastic twist angle � should be included in 
the analysis.

•	 The internal torsional load C1 induced by the initial twist 
k significantly contributes to the net torsional load and 
cannot be neglected in any case.

•	 The internal torsional load C2 induced by the elastic twist 
� might not be neglectable for most common propellers. 
Further, they are more pronounced when low chord 

(30)Mt,CF(r) ≈

R

∫
x=r

−
�

2
Ω

2

[(

I�� − I
��

)

sin2� + ΔyΔzA
]

dx

(31)C1 ≈
1

A

(

I�� + I��
)

Tk

(32)C2 =
1

A

(

I�� + I��
)

T�

(33)C5 ≈ C6 ≈ 0.

lengths and thicknesses are chosen, as for slender AAM 
propellers.

•	 The Saint–Venant torsional rigidity C3 contributes 
significantly to the net stiffness in all cases.

•	 The linear torsional rigidity due to the initial twist C4 
contributes significantly for GA and CA propellers, but 
is neglectable for AAM.

•	 The nonlinear torsional rigidities C5 and C6 are of no 
practical interest for the investigated propeller types. 
They might play a role for very thin and wide propellers, 
e.g., for Prop-Fans.

•	 The approximations of Amatt et al. (neglection of C2, C5, 
and C6) are well suited for preliminary design purposes in 
Commercial and General Aviation. C2 is comparatively 
small except for very thin cross-sections. The authors 
still advise including C2 in the simulation, since its 
contribution can exceed 5% for moderate thicknesses.

•	 The approach of Amatt et al. to determine the centrifugal 
twisting moment solely based on the initial twist should 
be corrected by the elastic twist iteratively, especially 
for AAM propellers. Regarding CA and GA propellers, 
the determination based on the initial twist is still a well-
suited approximation with errors below 5%.

Table 5 summarizes the relevance of the investigated 
effects for the different propeller types. It also states if there 
are approximations available by Amatt et al. [28]. The table 
can be used as a guideline to include specific effects.

Appendix

Cross‑Sectional integrals of hollow cross‑sections

For rectangular hollow cross-sections, the inner and outer 
thicknesses and widths are

wo = w ;  wi = w − 2s;  to = t ;  ti = t − 2s  with s as the 
skin thickness.

Table 5   Summary of the relevance of different effects

CA GA AAM Amatt 
et al. 
[28]

Mt,CF(�) Yes Yes Yes Yes
Mt,CF(�) Yes Yes Yes No
C1 Yes Yes Yes Yes
C2 Yes Yes Yes No
C3 Yes Yes Yes Yes
C4 Yes Yes No Yes
C5 No No No No
C6 No No No No
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With Eq. (12), the cross-sectional integrals defined by 
Rosen [32] are integrated in the local �∕�-coordinate system, 
assuming that the terms �2∕�2 and �4∕�4 are neglectable 
compared to unity

The definition of the Saint–Venant torsional stiffness Js is 
valid for any arbitrary cross-section but requires the warping 
function to be known. Since � = −yz is only an approxima-
tion, the results show errors of 8% at a relative thickness of 
t∕w = 12% . Therefore, the following analytical expression is 
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used to determine Js for all investigations presented in this 
paper [33]:

The Bredt–Batho formula yields better results than the 
one above for thin-walled cross-sections but does not apply 
to medium- to thick-walled hollow cross-sections. Rosen [32] 
used the approximation Js =

1

3
wt3 for solid cross-sections with 

relative thicknesses of 5% and below, resulting in an error of 
less than 4%.

Inserting the cross-sectional integrals presented above in 
Eq. (5) yields
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The coefficients can be directly inserted into Eq. (27). 
Assuming s = t∕2 , i.e., a solid cross-section, results in 
the same expression as Eq. (13) except the Saint–Venant 
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torsional stiffness, which has been modified for both solid 
and hollow sections as described above.

Simulation results comparing the relevance 
of different effects

Advanced air mobility propeller
See Figs. 11, 12, 13, 14, 15 and 16.
Commercial aviation propeller
See Fig. 17.
General aviation propeller
See Fig. 18.
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Fig. 11   AAM Propeller–torsional loads and torsional rigidity for different chord lengths and relative thicknesses; baseline
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Fig. 12   AAM Propeller–torsional loads and torsional rigidity vs. the radius for different chord lengths
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Fig. 13   AAM Propeller–torsional loads and torsional rigidity for different chord lengths and relative thicknesses; hollow cross-section with 
1.5 mm skin thickness
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Fig. 14   AAM Propeller–torsional loads and torsional rigidity for different chord lengths and relative thicknesses; hollow cross-section with 
3.0 mm skin thickness
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Fig. 15   AAM Propeller–torsional loads and torsional rigidity for different chord lengths and relative thicknesses; steel propeller
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Fig. 16   AAM Propeller–torsional loads and torsional rigidity for different chord lengths and relative thicknesses; carbon fiber composite propel-
ler
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Fig. 17   CA Propeller–torsional loads and torsional rigidity for different chord lengths and relative thicknesses
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Fig. 18   GA Propeller–torsional loads and torsional rigidity for different chord lengths and relative thicknesses
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