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Abstract
This study aims to identify an optimal, as well as practical, parametric structure for a delta-wing UAV aerodynamic model 
for the purpose of model-based navigation. We present a comprehensive procedure for characterizing the aerodynamics of 
this platform, utilizing a hybrid approach that combines open-air wind-tunnel experiments with the processing of real flight 
data using filter error method. The experimental design employs Latin Hypercube Sampling to maximize the observability 
of aerodynamic coefficients while adhering to time constraints. Candidate aerodynamic models are selected through step-
wise regression. Numerical values for model coefficients are determined experimentally and subsequently calibrated through 
a two-phase procedure using real flight data. We then compare these models by assessing their effectiveness in improving 
navigation in the absence of GNSS signal in four different test flights, with respect to conventional inertial coasting using the 
autopilot IMU. The experimental evidence demonstrates that the model-based navigation, utilizing the proposed aerodynamic 
model structures, significantly reduces positioning errors compared to traditional navigation methods during GNSS outages.

Keywords UAV · Aerodynamic characterization · Model-based navigation · Dead-reckoning · Filter error method

List of symbols
�  Angle of attack
�L  Left elevon deflection
c̄  Mean aerodynamic chord
�R  Right elevon deflection
�  Angle of side-slip
�a  Aileron effect
�e  Elevator effect
�  Air viscosity
�p  Propeller rotation speed
�x  UAV platform angular velocity along the x-axis in 

the body frame
�y  UAV platform angular velocity along the y-axis in 

the body frame
�z  UAV platform angular velocity along the z-axis in 

the body frame
�  Air density
b  Wing-span

CDi  Drag-related coefficients
CLi  Lift-related coefficients
CMxi  Roll moment-related coefficients
CMyi  Pitch moment-related coefficients
CMzi  Yaw moment-related coefficients
CTi  Propulsion system thrust-related coefficients
CQi  Propulsion system torque-related coefficients
CYi  Side force-related coefficients
cg  Center of gravity
D  Drag
Dp  Propeller diameter
f b  Specific force in the body frame
Fm  Force in the measurement frame
J  Advance ratio
L  Lift
Lc  Characteristics length
m  UAV mass
Mb  Moment in the body frame
Mm  Moment in the measurement frame
Mx  Roll moment
My  Pitch moment
Mz  Yaw moment
N  Number of experimental datapoints
np  Number of model predictors
q  Dynamic pressure
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Qb  Propulsion system torque expressed in the body 
frame

R2  Coefficient of determination
R2

adj
  Adjusted coefficient of determination

rm
cg

  Lever arm between load cell origin and UAV center 
of gravity

Rw
b
  Rotation matrix from the body frame to the wind 

frame
Re  Reynolds number
Rec  Chord-based Reynolds number
S  Reference area
T   Air temperature
Tb  Propulsion system thrust expressed in the body 

frame
U  Control input
V   Airspeed vector magnitude
Xe  IMU error states
Xn  Navigation states
Xp  Model parameter states
Xw  Wind states
Y   Side force

1 Introduction

1.1  Motivation

Successful drone missions depend on accurate pose and 
velocity determination, typically achieved by fusing IMU1 
and GNSS2 measurements. However, positioning drift 
caused by intermittent GNSS signal, poses a significant chal-
lenge for small UAVs, especially those equipped with less 
accurate IMUs due to weight, size and cost constraints. To 
address this issue, Vehicle Dynamic Model (VDM)-based 
navigation has gained traction as a promising method to 
enhance dead-reckoning without the need for additional nav-
igation-aiding sensors. VDM leverages information about 
the adopted vehicle by incorporating knowledge of its aero-
dynamic model, materialized as a structure and the numeri-
cal values of its parameters, into the navigation filter. It has 
thus become an attractive solution for small UAVs experi-
encing GNSS outages when operating close to the ground 
or in constrained environments, as it significantly limits the 
growth of error in the navigation solution as compared to 
inertial coasting. Nonetheless, these benefits also come with 
the challenge of correctly identifying a reliable model repre-
sentative of the platform aerodynamics. Many recent works 
[1–7] rely on the aerodynamic model proposed by Ducard 
[8] for conventional aircraft configurations. Simulations [9] 

and empirical testing [1, 4] on a small drone of a conven-
tional aircraft with 4 (3-independent) control surfaces have 
demonstrated significant improvements in localization (an 
order of magnitude or more) compared to inertial coasting. 
However, the use of this type of platform is mostly lim-
ited to recreational flying or research applications. In the 
commercial drone market, tailless fixed-wing UAVs have 
emerged as the preferred platform for multiple purposes. 
These are found in literature referred as delta-wing UAVs 
[10–13] or flying wing UAVs [14–16]. Due to the blended 
wing-body (BWB) design of these platforms, the fuselage 
actively participates in lift generation. As a result, the lift-
to-drag ratio of such platforms is improved with respect to 
traditional aircraft configurations, giving delta-wing UAVs 
the edge in missions requiring increased flight autonomy. 
A greater proportion of wing area in relation to the overall 
surface area enables flying wing UAVs to achieve slower 
flight speeds in the range of 10-13 m/s. This characteristic is 
particularly important to avoid blurring of captured imagery 
when flying within the EU/US rules which limit flight above 
ground level (AGL) to 120 m.3 Furthermore, the wing sweep 
of such vehicles enables a lower aspect ratio, which, in turn, 
enhances structural rigidity and reduces sensitivity to Rey-
nold number [17]. However, the lack of a horizontal and 
vertical tail makes delta wing UAVs much less stable and 
more difficult to maneuver. These platforms are controlled 
via two control surfaces known as elevons. The elevons can 
act as elevators or ailerons respectively with symmetrical 
or asymmetrical deflections, making them underactuated 
vehicles. The absence of a rudder directly controlling yaw-
ing maneuvers of delta-wing UAVs causes an increased 
coupling of longitudinal and lateral dynamics during flight 
maneuvers. Consequently, aerodynamic characterization, 
especially from real flight data, becomes particularly chal-
lenging. Compared to UAVs with conventional aircraft con-
figuration, there is a lack of relevant literature addressing 
the aerodynamic analysis of flying wing UAVs. Here are 
discussed some of the studies  which treat the determination 
of the aerodynamic model parameters for such platforms and 
the methodologies employed.

1.2  Common models and approaches

The adaption of a semi-empirical methodology presented in 
[18] to flying wing UAVs is discussed in [14–16]. This meth-
odology is based on the US Data Compendium (DATCOM) 
often used for preliminary aircraft design due to its ability 
to provide reasonable estimates of aerodynamic parameters 
in a timely manner. Given geometric properties and flight 
conditions of the platform as inputs, DATCOM provides 

1 Inertial Measurement Unit.
2 Global Navigation Satellite System.

3 https:// www. easa. europa. eu/ en/ docum ent- libra ry/ easy- access- rules/ 
online- publi catio ns/ easy- access- rules- unman ned- aircr aft- syste ms.

https://www.easa.europa.eu/en/document-library/easy-access-rules/online-publications/easy-access-rules-unmanned-aircraft-systems
https://www.easa.europa.eu/en/document-library/easy-access-rules/online-publications/easy-access-rules-unmanned-aircraft-systems
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aerodynamic coefficients by relying on interpolation from 
a vast array of real aircraft flight data. However, accuracy 
of such estimates is rather low and needs to be corroborated 
with additional experimental or numerical methodologies. 
Furthermore, [14] treats the case of a VTOL platform with 
a propeller in the middle of the body and [15] substitutes the 
control provided by the rudder with two additional control 
surfaces placed on the winglets for yaw control, thus differ-
ing from the standard configuration discussed in this work.

Experimental methodologies, based on a wind-tunnel, 
are a classical approach for aerodynamic characterization 
that are also heavily documented in literature. Wind-tunnel 
analysis relies on the principle of flow similarity. This prin-
ciple ensures that the experimental aerodynamic estimates 
are reliable provided that the wind tunnel testing conditions, 
in terms of Mach and Reynolds number, are the same as for 
the free flight case [19]. Low-speed wind tunnels are gener-
ally categorized in two types: open-circuit and closed-circuit 
wind tunnels. In both cases, the test specimen is attached to 
a fixed sting and surrounded by the tunnel walls. Despite 
being one of the most reliable and adopted approaches for 
aerodynamic characterization, traditional wind tunnel test-
ing only provides static estimates of the aerodynamic coef-
ficients. For highly dynamic flight conditions, such as is the 
case for highly agile tailless UAVs, using coefficients only 
determined in wind tunnel analysis may not provide the best 
model predictive capabilities. Furthermore, the measure-
ments are affected by the interference with wall and sting 
that inevitably bias the estimations.

Numerical approaches based on Computational Fluid 
Dynamics (CFD) are also widely employed to address the 
aerodynamic identification problem. The accuracy of a CFD 
software is dependent on its governing equations. Low fidel-
ity CFD, based on Vortex-Lattice methods, is employed for a 
flying wing UAV in [14] but exclusively used as a validation 
method of the semi-empirically derived results. The use of 
high fidelity CFD using Ansys Fluent, which is based on the 
Reynolds-averaged Navier–Stokes (RANS) equations, for a 
delta-wing UAV is discussed in [13]. However, determin-
ing the longitudinal and lateral dynamics of a UAV with 
these methodologies is very time-consuming and requires 
i) a highly accurate 3D model of the studied platform, ii) 
the turbulence model and iii) correct selection of bound-
ary conditions. These last requirements often come with 
the need of high computational resources and experience. 
Furthermore, numerical computations frequently need to be 
calibrated with experimental data to ensure reliability. For 
these reasons, CFD analysis if often not an effective stan-
dalone solution for the study of aerodynamics.

System identification from real flight data represents an 
attractive alternative to the previously introduced methodol-
ogies. It does not require access to experimental facilities or 
accurate modelling of complex flow conditions and provides 

more realistic mathematical models of the UAV dynamics as 
many maneuvers are difficult to replicate in traditional wind 
tunnel testing or in numerical computation with sufficient 
accuracy [20]. However, optimal observability of aerody-
namic behavior would require flight tests to be performed 
in open loop control and with minimal wind disturbance 
[20, 21]. Delta-wing UAVs are often prone to stability 
issues due to the lack of a horizontal and vertical tail [14]. 
It thus becomes a necessity for this type of platform to fly 
in closed loop control, which leads to data co-linearity [22, 
23]. Furthermore, achieving minimal wind disturbance may 
not always be feasible, and the process of estimating wind 
components in conjunction with aerodynamic coefficients 
can hinder the ability to identify parameters due to poten-
tial correlations. As described in [12], system identification 
methods can be classified as gradient based and non-gradient 
based. Equation error methods (EEM), output error methods 
(OEM), or filter error methods belong to the first category, 
whereas particle swarm optimization (PSO) is an example 
of the second. In [10–12], several of these approaches are 
analyzed and compared for a cropped delta-wing UAV with 
a vertical tail and a rudder using lower Cramer–Rao bounds 
to motivate the accuracy of results.

1.3  Paper scope

The aforementioned methodologies are built upon bench-
mark models derived from traditional aircraft designs, which 
were subsequently modified to suit the unique structure of 
a tailless delta-wing UAV. Notably, most of the literature 
studying flying wing UAVs refers to the aerodynamic model 
structure provided for the Zagi FW in [24]. In this work, 
we focus on analyzing possible alternative model structures, 
which are capable of correctly capturing the coupled dynam-
ics of flying wings. The benefit of different model structures 
is evaluated for the scope of VDM-based navigation. For the 
aerodynamic characterization, we propose a hybrid approach 
which involves the combination of an experimental analysis 
methodology (wind-tunnel) and filter error methods based 
on real flight data.

The remainder of this paper is organized as follows: In 
Sect. 2, we introduce the theoretical framework of VDM-
based navigation including basic propulsion and aerody-
namic models. In Sect. 3, we present the experimental set 
up and the studied platform. Section 4 depicts the collected 
experimental data. In Sect. 5, we identify the coefficients 
of the propulsion model, while in Sect. 6, we determine the 
structure and numerical values of the coefficients for the 
platform aerodynamic model. The dead-reckoning perfor-
mance of VDM-based navigation employing the proposed 
models is also discussed in this section.
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2  Theoretical framework

Before introducing the mathematical equations characterizing 
the platform dynamics, we define the nomenclature used in 
this work. Figure 1 presents the relation between the two main 
coordinate frames adopted in this research: the body frame 
(FRD), denoted by ( xb , yb , zb ), and the wind frame ( xw , yw , zw ). 
The latter has its first axis in the direction of airspeed V and is 
defined by two angles with respect to the body frame: angle 
of attack � in the longitudinal plane and angle of side-slip � 
in the lateral plane.

The deflection of two control surfaces, respectively denoted 
with �L for the left elevon and �R for the right elevon, is decom-
posed in i) symmetrical deflection, or elevator effect �e , and 
in ii) asymmetrical deflection, or aileron effect �a . These are 
mathematically defined as follows:

The UAV dynamics is jointly characterized by the propul-
sion model, providing the thrust Tb and torque Qb , and the 
aerodynamic model. Both are introduced in the following:

2.1  Propulsion model

According to [25], and as already reported in [26], the propul-
sion model dynamics can be generally characterized via the 
following thrust and torque equations expressed in the body 
frame:

(1)�a =
�L − �R

2
, �e =

�L + �R

2

(2)Tb(J,�p) = CT0 ⋅ � ⋅ D
4

p
⋅ �2

p
+ CT1 ⋅ � ⋅ D

4

p
⋅ J ⋅ �2

p

where � indicates the air density and Dp the propeller diam-
eter. The non-dimensional quantity J = V∕�pDp is the 
advance ratio and contains the true airspeed V and propel-
ler rotation speed �p . The CTi and CQi quantities represent 
respectively the thrust and torque coefficients, that charac-
terize the unique behavior of the studied propulsion system.

2.2  Aerodynamic model

The aerodynamic model specifies the forces and moments 
perceived by the platform as a consequence of flight param-
eters, i.e. angle of attack � and side slip angle � , control 
parameters, i.e. control surface deflection, and dynamic 
parameters, i.e. angular velocities �x , �y and �z . Its formula-
tion is defined in terms of aerodynamic coefficients, dimen-
sionless quantities independent of the platform size. Each 
model has three equations to define the aerodynamic forces 
and three for the aerodynamic moments. The force compo-
nents in the wind-frame are respectively referred to as drag 
D, side force Y and lift L whereas the moment components, 
expressed in the body frame, are roll Mx , pitch My and yaw 
Mz . When specific details about the model structure tailored 
for a particular platform are not available, the aerodynamic 
model’s design is based on a standardized benchmark formu-
lation. This formulation decouples longitudinal and lateral 
dynamics and incorporates all flight, control and dynamic 
parameters [27]. The general equations for such a model are 
presented as follows:

(3)Qb(J,�p) = CQ0 ⋅ � ⋅ D
5

p
⋅ �2

p
+ CQ1 ⋅ � ⋅ D

5

p
⋅ J ⋅ �2

p

(4)

CD = CD0 + CD�� + CD�2�
2 + CD��

+ CD�e
�e + CD�x

�x

+ CD�y
�y + CD�z

�z

(5)
CY = CY�� + CY�2�

2 + CY�a
�a

+ CY�x
�x + CY�y

�y + CY�z
�z

(6)
CL = CL0 + CL�� + CL�2�

2 + CL�� + CL�e
�e

+ CL�x
�x + CL�y

�y + CL�z
�z

(7)
CMx = CMx�

� + CMx�2
�2 + CMx�a

�a

+ CMx�x
�x + CMx�x

�x + CMx�z
�z

(8)
CMy = CMy0 + CMy�� + CMy�2�

2 + CMy�� + CMy�e
�e

+ CMy�x
�x + CMy�y

�y + CMy�z
�z

xb

yb

zb

V

xw

yw

zw

Ob

α β

Fig. 1  Wind frame and related flight parameters with respect to the 
platform body frame
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The specific force acting on the UAV in the body frame 
(b-frame) due to aerodynamic interactions and the propul-
sion system is determined according to:

with:

• q =
1

2
�V2 : dynamic pressure

• � : air density
• V: airspeed vector magnitude
• S: reference area

The total aerodynamic moment components are determined 
as follows:

with:

• c̄ : mean aerodynamic chord (pitch lever arm)
• b: wing span

2.3  Model‑based navigation filter architecture

The employed model-based navigation architecture follows 
that of [9] and is shown in Fig. 2.

Here the vehicle dynamic model is implemented using 
Eq. 10 - 11 as the input to rigid body dynamics. Together 
with initial conditions, the solution of the rigid body equa-
tions defines the platform dynamics. An Extended Kalman 
Filter (EKF) utilizes VDM as a process model, contrary to 
the traditional kinematic implementation. Hence, IMU and 
GNSS data are both treated as observations. The VDM is fed 
with inputs from the autopilot control U and with a recursive 
estimation of the navigation states and wind components. 
The filter provides corrections to the following via state aug-
mentation: navigation states Xn , wind Xw , IMU error param-
eters Xe and aerodynamic model coefficients Xp.

(9)
CMz = CMz�

� + CMz�2
�2 + CMz�a

�a

+ CMz�x
�x + CMz�x

�x + CMz�z
�z

(10)

f
b =

1

m

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

Tb

0

0

⎤
⎥
⎥
⎦
+ (Rw

b
)T
⎡
⎢
⎢
⎣

qSCD

qSCY

qSCL

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠

with R
w
b
=

⎡
⎢
⎢
⎣

cos � sin � 0

− sin � cos � 0

0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

cos � 0 sin �

0 1 0

− sin � 0 cos �

⎤
⎥
⎥
⎦

(11)M
b =

⎡
⎢
⎢
⎣

qSbCMx
+ Qb

qSc̄CMy

qSbCMz

⎤
⎥
⎥
⎦

3  Hardware

3.1  UAV platform

We use a custom-made delta-wing UAV developed at the 
Swiss Federal Institute of Technology Lausanne (EPFL) 
(Fig. 1). The wings are sourced from an externally manu-
factured product (Xeno Electric from Multiplex4), whereas 
the fuselage has been redesigned to accommodate a larger 
payload, and the power-train system has been upgraded to 
provide sufficient power for the increased weight. The autopi-
lot employed is a Pixhawk 4 holybro running the open-source 
software PX4 (firmware version FMU-v5) with custom driver 
modifications. A precise GNSS receiver (JAVAD TR-2S), an 
airspeed sensor (single hole pitot tube) and an rpm sensor are 
connected to the autopilot in addition to the servos and two 
communication modules (telemetry, radio). Figure 3 presents 
a schematic of the platform payload with its sensors.

3.2  UAV propulsion

The propulsion system consists of a fixed-pitch propeller 
actuated by a brushless direct current (BLDC) motor (AXI 
2814/20 gold line v2), providing a maximum power out-
put of 355W which is sufficient to sustain the UAV take-
off weight. The motor, connected to the propeller blade via 
a custom 3D printed connector, is controlled via an ESC5 
(MULTIPLEX BL 55 SBEC6). The control command to the 

Fig. 2  VDM-based navigation filter architecture. After [9]

4 https://www.multiplex-rc.de/
5 Electronic Speed Controller.
6 Switching Battery Eliminator Circuit.
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ESC arrives as a PWM signal issued by the PixHawk auto-
pilot. Fig. 4 illustrates the power-train system components 
for the studied UAV.

The RPM sensor (Beastx brushless) is connected to two 
of the three phases of the motor where it measures the pro-
duced back-emf voltage. These observations are output as 
PWM7 signal with a frequency proportional to the motor 
RPMs that is recorded by the autopilot. The Pixhawk ADC 
port, equipped with a dedicated topic in the internal com-
munication protocol ( uORB

8), is utilized to avoid customi-
zation of the autopilot firmware. An additional MCU board, 
the Seeduino XIAO, is therefore employed to convert the 
PWM signal into an analog signal within the [0.0V; 3.3V] 

range. Figure 5 depicts the data conversion path that enables 
the transformation of the initial back-emf signal to an analog 
input for the Pixhawk autopilot.

3.3  Open‑air wind tunnel experimental set‑up

The wind-tunnel experiments were carried out in the facility 
of the LIS (Laboratory of Intelligent Systems) at EPFL. The 
set-up, shown in Fig. 6, is characterized by a modular wind 
generator called Windshaper [28], a 6-degree-of-freedom 
Staubli robotic arm used for changing the drone attitude with 
respect to the airstream, a 6-axis load cell to collect force 
and moment measurements and an optitrack motion capture 
system to follow the evolution in the UAV’s attitude. Motion 
capture markers (Fig. 6b) are strategically positioned on the 

UAV fuselage surface. Placement of markers on the wings 
was avoided to prevent interference with the airflow. These 
markers enable the Optitrack software to track the rigid 
body’s attitude using an array of cameras (Fig. 6c) in the 
experimental room. The load cell is placed directly below 
the delta-wing platform and secured to the robotic arm via 
a 3D printed custom holder (Fig. 6d).

4  Experiment methodology

The wind-tunnel experimental analysis aims to isolate the 
aerodynamic behavior of the Delta-wing UAV in relation 
to variations in flight, control and dynamic parameters. 
The robotic arm allows control of flight and dynamic 

GNSS receiver

Airspeed sensor

Telemetry
module

Radio module

Servos (x2)

Rpm sensor

Communication
Control
Sensors

Fig. 3  Schematic of the components connected to the onboard auto-
pilot

Fig. 4  UAV power-train system
Propeller blade

Propeller connector

ESC SBEC

Brushless motor
RPM sensor

Motor phases

Mechanical link

Fig. 5  RPM data conversion 
path

Back-emf PWM

RPM sensor
Seeduino XIAO

Analog signal

Pixhawk 4 autopilot

0.0 V

3.3 Vf [Hz]

f = 0Hz

f = 1750Hz

7 Pulse-Width Modulation.
8 https://docs.px4.io/main/en/middleware/uorb.html.



289Aerodynamic modeling of a delta-wing UAV for model-based navigation  

parameters through changes in attitudes at different rates 
following a designed flight sequence. The control param-
eters are managed by individually controlling the elevons 
to generate different combinations of control commands. 
Measurement of the total force and moments result-
ing from interaction of the drone with the Windshaper 
generated airflow are collected with the load cell. These 
measurements account for three main contributions: (i) 
aerodynamic interaction, (ii) gravity, (iii) inertial com-
ponents caused by linear/angular acceleration. To isolate 
the first component, experiments are repeated twice; the 
first experiment is conducted without any wind (no-wind 
experiment), whereas the second experiment involves 
generating a desired reference airflow (wind experiment). 
We then employ cross-correlation to align the no-wind 
experiment and subtract it from the wind experiment. As 
the gravity and inertial components are the same in both 
experiments, this operation eliminates their combined 
effects in addition to any sensor bias, thereby yielding the 
required aerodynamic forces and moments. Two classes of 
experiments are performed: static and dynamic. In static 
experiments, the drone is held at desired attitudes dur-
ing a predetermined acquisition time whereas in dynamic 
experiments real flight conditions are replicated by con-
tinuously evolving the drone orientation with respect to 
the upcoming airflow. Figure 7 presents a schematics of 
the wind tunnel experiment pipeline.

4.1  Data transformation

The force and moments measured by the load cell are 
expressed in the load cell frame, also referred to as the 

measurement frame (m-frame), having its origin situated 
within the load cell. The desired aerodynamic force and 
moment are, on the other hand, expressed respectively in the 
wind and body frame, with their origin in the UAV center of 
gravity. The difference between the involved frames, once 
the misalignment has been corrected, can be expressed in the 
form of a lever arm that indicates the position of the center 
of gravity in the m-frame rm

cg
= [xcg, ycg, zcg]

T.
The location of the center of gravity has been experimen-

tally determined in the FRD9 oriented m-frame, and resulted 
to be

which, as expected, situates it in the payload area.
The measured moments are therefore corrected and the 

expression in the body frame is given by

with Mm indicating the measured moments in the m-frame 
and Mb their expression in the body frame.

4.2  Data sampling

The data sampling strategy is established to maximize the 
observability of aerodynamic coefficients while minimizing 
experimental time and avoiding the injection of systematic 

(12)
⎡
⎢
⎢
⎣

xm
cg

ym
cg

zm
cg

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

−2.44 ± 0.02 cm

0.01 ± 0.02 cm

−5.90 ± 0.07 cm

⎤
⎥
⎥
⎦

(13)M
b = M

m − r
m
cg
× F

m

Fig. 6  a Experimental set-up, 
b motion capture markers, c 
motion capture camera and d 
UAV custom holder

9 Front Right Down directions.
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biases by the experimenter. The principle of randomization 
is one of the cornerstones established by the branch of statis-
tics devoted to optimization of experimental design (DOE). 
This technique ensures that the errors in the experimental 
procedure will consist of independently distributed random 
variables [29]. While random sampling of experimental 
points respects this principle, it does not efficiently explore 
the multi-dimensional state space defined by the possible 
attitudes during the wind tunnel experiment. Latin hyper-
cube sampling (LHS) solves this problem by maximizing 
the variability of the sampled points. Contrary to random 
sampling this approach accounts for the previously sampled 
points. It divides each dimension of the N-dimensional state 
space into M non-overlapping, equal intervals thus creating a 
subdivision of M × N hypercubes. Latin hypercube sampling 
ensures that within each hypercube, random samples are 
taken in such a way that for each variable, only one sample 
point is selected from each interval. This approach maintains 
variability across the experimental points in the entire state 
space while still meeting the requirement for randomization.

Static experiments: The reference attitudes for the 
static experiment data are sampled using Latin hypercube 

sampling, which minimizes the number of data points 
needed to explore the state space while ensuring that a repre-
sentative dataset is collected. Figure 8 illustrates the chosen 
reference attitudes for static acquisition.

Dynamic Experiments: Dynamic experiments analyze 
the impact of different flight dynamics by sampling data 
obtained combining Euler angle oscillations with varying 
angular frequencies in the form of Lissajous curves. The 
parameters for these curves are iterated based on Latin 
hypercube sampling allowing for the description of complex 
harmonic-motion based trajectories. The resulting attitude 
components are depicted in Fig. 9.

4.3  Static experiment data

Static experiments allow for the evaluation of the steady-
state response of the UAV platform at different attitudes. The 
steady-state condition is reached when transient effects set-
tle. This is ensured by holding each attitude for a duration of 
three seconds, allowing the transient time to elapse and the 
collection of a buffer of data during the steady-state condi-
tion. Given the acquisition frequency of 100Hz , this allows 

Fig. 7  Experimental pipeline Trajectory
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for the collection of a data buffer of approximately 300 data 
points. Physical vibration of the platform due to the inher-
ent challenges in generating a perfectly uniform and constant 
airflow using the Windshaper are then filtered for the buffer 
of data. Consequently, this type of experiment has the benefit 
of providing a dataset with reduced noise, enabling a more 
accurate fitting of the data. Figure 10 depicts the result of the 
data collection for the longitudinal dynamics in a static experi-
ment with trimmed control surfaces (i.e. held at zero-deflection 
position by the autopilot control system).

The curves show the low noise during steady-state acqui-
sitions which allow for an accurate estimate of the platform 
static behavior. Another interesting finding emerging from the 
data is the positive correlation observed between the angle of 
attack and the pitching moment which suggests that the UAV 
being studied is statically unstable. Nonetheless, overall stabil-
ity is achieved via actuation of the wing control surfaces. The 
position of the neutral point being ahead of the center of grav-
ity is the cause of the static instability rendering the UAV more 
susceptible to external conditions such as gusts of wind. How-
ever, it also makes the platform highly agile due to the high 
maneuverability and quick responsiveness to control com-
mands. Figure 11 illustrates the data collected during a static 
experiment with concurrent excitation of the elevons. Notably, 
a linear relationship is depicted in the longitudinal dynamic 
with a symmetrical deflection of the control surfaces (elevator 

effect). The control surface deflection in Fig. 11 is mapped 
in a [−1, 1] interval with the end of range values respectively 
denoting maximum negative and positive deflection.

4.3.1  Reynolds number effect

The Reynolds number is a dimensionless parameter, measur-
ing the relative importance of inertial forces with respect to 
viscous forces within an airflow. It is defined as:

where Lc indicates the characteristic length of the system, V 
the airspeed magnitude, � and � respectively the density and 
viscosity of the medium. For an aircraft, the adopted char-
acteristic length is generally the mean aerodynamic chord c̄ . 
The corresponding Reynolds number is thus often referred to 
as the chord-based Reynolds number ( Rec = 𝜌Vc̄∕𝜇 ). This 
parameter impacts the aerodynamic behavior of a flying 
vehicle as it defines the airflow regime, laminar or turbulent, 
during flight conditions and when the transition from one to 
the other occurs. It is particularly relevant for small UAVs 
since it is often close to its critical value ( 1 × 105 ) [30], due 
to the typical reference length and flight speed.

(14)Re =
�VLc

�

Fig. 9  Reference attitudes for 
dynamic experiments [26]

0 50 100 150 200 250 300
time [s]

-40

-20

0

20

at
tit

ud
e 

[d
eg

]

roll
pitch
yaw

Fig. 10  Longitudinal dynamics 
for trimmed static experiments



292 P. Longobardi, J. Skaloud 

Table  1 shows the ranges of Reynolds numbers for 
the considered delta wing ( ̄c = 0.26m ), based on the 
range of attainable airspeeds, for a variety of air density 
( � ∈ [0.9;1.2]Kg∕m3 ) and temperature ( T ∈ [0◦;35◦]C ) 
values.

We examined the impact of Reynolds number on static 
experiments for a range of values around its critical thresh-
old. Figure 12 illustrates how the drag and lift coefficient 
curves are affected.

While the drag coefficient curve shows minimal impact 
across a large span of angles of attack, corroborating the 
findings in [31], the behaviour of the lift coefficient is 

influenced. The slope of the curve indicated a relatively 
higher lift produced at higher Reynolds numbers for the 
same angle of attack. This is in accordance with the results 
observed in [32], a study focusing on the aerodynamics of an 
unpowered fixed-wing MAV (Micro Aerial Vehicle).

4.4  Dynamic experiments data

Static experiments offer a dataset with reduced noise, yet 
they fail to account for the influence of flight dynamics on 
the airflow distribution around the UAV. In this context, 
dynamic experiments offer a more accurate depiction of 
real-world flight conditions.

Fig. 13 illustrates the results of data collection during 
dynamic experiments. Multivariate plots, depicting the 
dependence of three explanatory variables, have been used 
to show the different dependencies of force and moment 
coefficients.

Fig. 11  Longitudinal dynam-
ics for static experiments with 
elevons control

Table 1  Reynolds number values for the range of flight speeds [26]

Flight speed Reynolds number range

V = 10m∕s Re ∈ [1.2;1.8] × 10
5

V = 15m∕s Re ∈ [1.8;2.7] × 10
5

V = 20m∕s Re ∈ [2.4;3.6] × 10
5

Fig. 12  Impact of different 
Reynolds numbers on drag and 
lift coefficient curves
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Notably, the longitudinal force and moment coefficients 
(upper row) exhibit a clear relationship with pitching angular 
velocity. Contrarily, the lateral dynamics (lower row) show 
a less defined dependence on the angular rate. This is par-
ticularly evident in the yaw moment coefficients case, where 
the absence of dedicated control surface (rudder) results in a 
scattered data distribution due to the highly coupled lateral 
dynamics.

5  Propulsion model identification

In this section, we present the experimental process fol-
lowed to identify the propulsion system model coefficients 
described in Eq. 8 and 9. These coefficients describe the 
aerodynamic interaction of the actuated propeller blades 
with an upcoming airflow. The wind generator (Windshaper) 
is controlled to output different reference airflow velocities, 
while the autopilot varies the level of throttle issued. The 
resulting thrust Tb and torque Qb are measured by the load 
cell while the attitude is maintained constant throughout the 
experiment. Physical vibrations within the raw data were 
removed via low-pass filtering. Figure 14 depicts the rela-
tionship between the input throttle command and the corre-
sponding observed propeller speed at the output, measured 
using an RPM sensor.

The measured propeller speed for lower input throttle 
commands and higher airflow are non-linear. This phe-
nomenon is referred as windmilling [25]. Its effect progres-
sively diminishes in significance as the throttle input level 
increases, ultimately ceasing when the propeller acceler-
ates the air mass beyond the reference airspeed. Figure 15 
presents the result of fitting the experimental data with the 
model expressed by equations 8 and 9.

A comparison between the acquired data and the model-
predicted thrust and torque is depicted in Fig. 16

In certain situations, the measurements from the load 
cell can exhibit considerable noise, especially when dealing 
with torque, as the values are typically quite small, leading 
to a lower signal-to-noise ratio. In these cases, it may be 
sufficient to use the simplified model we’ve suggested for 
navigation purposes. This model relies on relative airspeed 
and propeller speed information and can provide a reliable 
solution.

Fig. 13  Full dynamics experi-
mental data
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6  Aerodynamic model structure 
identification

6.1  Methodology

To determine different candidate aerodynamic model 
structures, we make use of step-wise regression analysis 
on data from static and dynamic experiments. This tech-
nique is an iterative approach that entails the gradual addi-
tion (forward selection) or exclusion (backward elimina-
tion) of explanatory variables in a regression model based 
on their statistical significance [21]. We consider the aero-
dynamic force and moment components (D,Y,L,Mx,My,Mz ) 
as the dependent variables, while the flight parameters � , 
� , the control parameters �e , �a and the dynamic param-
eters �x , �y , �z are regarded as independent variables (or 
explanatory variables). Each step of the model building 
process, candidate explanatory variables are ranked based 
on the amount of correlation showed with the correspond-
ent dependent variable. This is measured using the coef-
ficient of determination R2 [29]. This coefficient, ranging 
from 0 to 1, indicates the percentage of the output variable 

that the constructed model is capable of reproducing, high-
lighting the statistical significance of its regressors. As 
more explanatory variables are added in the model, the 
value of this coefficient increases. We stop adding new 
explanatory variables in the step-wise regression when an 
increase of the coefficient of determination is less than 
1% . However, a more complex model, characterized by a 
higher R2 , does not necessarily translate to better predic-
tion qualities as depicted in Fig. 17 [22].

However, in its classical formulation, the coefficient of 
determination has a tendency to increase as more predic-
tors are added to the model. Consequently, the adjusted 
coefficient of determination R2

adj
 is utilized in this work and 

is defined as follows:

where N indicates the total number of experimental data 
points and np the number of model predictors (explanatory 
variables). The adjusted coefficient of determination penal-
izes over-parametrized models where the number of predic-
tors tend to grow larger. Figures 18 and 19 present the R2

adj
 

(15)R2

adj
= (1 − [(1 − R2)

N − 1

N − np
]) × 100

Fig. 15  Thrust and torque mod-
els fitted to experimental data. 
After [26]

Fig. 16  Comparison of model 
prediction on thrust and torque 
with raw and filtered data. After 
[26]

0 10 20
time [s]

0

1

2

3

4

5

6

Th
ru

st
 [N

]

Thrust model
raw data
filtered data
model

0 10 20
time [s]

0

0.1

0.2

0.3

0.4

To
rq

ue
 [N

m
]

Torque model
raw data
filtered data
model



295Aerodynamic modeling of a delta-wing UAV for model-based navigation  

plots, incrementally constructed with step-wise regression, 
for each of the aerodynamic force and moment equations, 
for both static and dynamic experiments.

These plots provide a visual representation of the corre-
lation levels between various explanatory variables and the 
force and moment components and will be used as reference 
in the following discussion (Sect. 6.2) for the determination 
of candidate aerodynamic model structures. The coefficients 
weighting the influence of the highest correlated explana-
tory variable within each force and moment equation are 
known as "main effects". Utilizing this information, we can 
develop different models with varying levels of complex-
ity. Numerous test models were examined to determine 
the ideal compromise between the simplicity of the model 
and its predictive capabilities. Given our aim of using the 

Number of parametersOptimal number 
of parameters

Fitting error

Model prediction
error

Evaluation
method

Fig. 17  Model complexity effect

Fig. 18  Force-related adjusted 
coefficient of determination 
plots for static and dynamic 
experiments
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aerodynamic model for VDM-based navigation using an 
error (augmented) state filter, an additional objective is to 
create a model that is more resilient to the development of 
inter-state correlations. Consequently, significant effort has 
been dedicated to constructing models that reduce the inter-
model correlation among parameters in the various force 
and moment equations by separating flight and control 
parameters.

6.2  Candidate aerodynamic model structures

The following presents a subset of the tested models, which 
provide a representative outlook of the global behavior 
observed during the model identification phase, along with the 
corresponding static and dynamic R2

adj
 tables (Tables 2, 3, 4). 

1. Model A In this structure, the moments (Eqs. 19–20) 
are only governed by control derivatives and the result-
ing change in attitude alters the stability derivatives ( � , 
� ) governing the forces (Eqs. 16–18). This results in a 
decorrelation of force and moment coefficients. The yaw 

contribution is deemed negligible due to the absence of 
the rudder (Table 2). 

1. Model B Model B (Eqs. 21–26) accounts for the main 
effects among the independent variables described both 
in static and dynamic experiments. With respect to 
model A, it introduces a formulation for the yaw coef-
ficient by including the highest ranked explanatory vari-
able that, interestingly, is the result of a combination of 
elevator and aileron effects. 

1. Model C This model includes, on top of the main effects, 
interaction coefficients and dynamic derivatives. 

(16)CD = CD0 + CD�2�
2

(17)CY = CY0 + CY��

(18)CL = CL0 + CL��

(19)CMx = CMx0 + CMx�a
�a

(20)CMy = CMy0 + CMx�e
�e

(21)CD = CD0 + CD�� + CD�2�
2

(22)CY = CY0 + CY��

(23)CL = CL0 + CL��

(24)CMx = CMx0 + CMx�a
�a

(25)CMy = CMy0 + CMy�� + CMx�e
�e

(26)CMz = CMz�a�e
�a�e

(27)
C
D
= C

D0
+ C

D�� + C
D�2�

2
+ C

D�
e

�
e

+ C
D��

e

��
e
+ C

D�
y

�
y

(28)CY = CY0 + CY�� + CY�x
�x + CY��

(29)CL = CL0 + CL�� + CL�e
�e + CL�y

�y

(30)CMx = CMx0 + CMx�a
�a

Table 2  Summary table of R2

adj
 statistics for model A

R2

adj
 Static R2

adj
 Dynamic

DRAG 0.55 0.91
SIDE 0.34 0.55
LIFT 0.95 0.86
ROLL 0.97 0.68
PITCH 0.46 0.33

Table 3  Summary table of R2

adj
 statistics for model B

R2

adj
 Static R2

adj
 Dynamic

DRAG 0.88 0.95
SIDE 0.34 0.55
LIFT 0.95 0.86
ROLL 0.97 0.68
PITCH 0.97 0.85
YAW 0.33 0.08

Table 4  Summary table of R2

adj
 statistics for model C

R2

adj
 Static R2

adj
 Dynamic

DRAG 0.95 0.97
SIDE 0.46 0.83
LIFT 0.99 0.94
ROLL 0.97 0.68
PITCH 0.97 0.85
YAW 0.72 0.30



297Aerodynamic modeling of a delta-wing UAV for model-based navigation  

6.3  Model coefficients identification

The values of the coefficients determined via the previously 
described experimental analysis of wind-tunnel data are not 
definitive due to two reasons: 

1. Differences between real flight and experimental condi-
tions.

2. Possible variation of the payload configuration between 
flights.

Due to the approaches taken in performing the experiments, 
secondary aerodynamic effects, such as Reynolds number 
effect (discussed in Sect. 4.3.1) and propwash effect (dis-
cussed in [26]), are not accounted for in the identified aero-
dynamic coefficients. Furthermore, the presence of a small 
support system for the UAV during testing, inevitably causes 
minor interference in the air-flow [33]. On the other hand, 
the non-repeatability over different flights is related to the 
modular nature of the considered platform. Small differ-
ences in the alignment of the removable payload and of the 
battery (small variations in position are possible due to the 
velcro-dry-zipper attachment) or of the external assembly 
(fuselage cover) affect inertial and aerodynamic properties 
of the UAV. Furthermore, the small damage to the wings 
accumulated over the UAV lifespan due to landings and 
drone manipulations can also impact its aerodynamic behav-
ior. Consequently, the value of aerodynamic coefficients will 
slightly differ at each flight.

A Bayesian approach is employed for taking into account 
the variability of model coefficients values. Priors for the 
aerodynamic derivatives are set as Gaussian distributions 
centered at the values estimated during the experimental 
campaign. The navigation EKF is then employed as a Bayes-
ian filter to incorporate flight data and recursively generate a 
posteriori estimate of the aerodynamic derivatives. Notably 
the calibration procedure can be separated into two phases:

• Coarse adjustment (or Phase 1 calibration)
• Fine adjustment (or Phase 2 calibration)

Here we use an offline implementation of the filter (VDM-
EKF) to replay the pre-recorded flight data for calibration as 
well as navigation performance evaluation.

(31)CMy = CMy0 + CMy�� + CMx�e
�e

(32)CMz = CMz0 + CMz�a�e
�a�e + CMz�a

�a + CMz��

Coarse adjustment is driven by the availability of post-
processed data, using a Kalman smoother, with a GNSS 
accuracy in cm-level for position and cm/s for velocity to 
adapt the experimentally pre-determined coefficients to real 
flight conditions. An initial uncertainty of ∼ 1% of their ini-
tial values is assigned to the aerodynamic derivatives’ initial 
covariance matrix P0.

Fine adjustment is intended to be performed in-flight to 
slightly re-tune the Xp coefficients to their optimal value 
using GNSS in single-point positioning after take-off. 
Here we employ the data recorded from the onboard auto-
pilot to reproduce the same condition as would be obtained 
by running the VDM-based navigation filter in real time. A 
small uncertainty ( ∼ 0.1% ) is assigned to the model aero-
dynamic parameters as determined in Coarse adjustment. 
This allows the aerodynamic coefficients to slightly adjust 
at the beginning of the flight, when the GNSS position-
ing is still available. The model hence evolves towards a 
more representative depiction of the current flight condi-
tion. At the same time, the small uncertainty prevents a 
divergence or overfitting of model coefficients in case of 
limited observability (e.g. a flight with constant direction 
and velocity). Once the values of aerodynamic coefficients 
stabilize, usually within the first 2 min of flight, the filter 
is well conditioned to produce a dead-reckoning naviga-
tion solution in the absence of GNSS signal. Figure 20 
provides a schematic of the coefficient identification pro-
cedure while Figs. 21 and 22 depict the numerical values 
of the aerodynamic coefficients in the various phases of 
the identification process for model B.

6.4  Model comparison

Inter-model:Here we compare the three model structures 
proposed in Sect. 6.2. Each model candidate is evaluated 
offline using four test flights with respect to improvements 
in dead-reckoning using a VDM-based navigation filter. The 
objective is to assess the self-localization performance that 
can be achieved on-board using a minimal set of inertial and 
barometric sensors such as those available on the PixHawk 
autopilot. Single-point GNSS positioning is made available 
at the beginning of the flight for fine-tuning coefficients 
(phase 2 calibration) before testing the effect of GNSS sig-
nal withdrawal. The VDM-based navigation filter relies on a 
subset of measurements available on the Pixhawk autopilot: 
IMU, GNSS, barometer and motor rpms.

Three instances of the VDM-EKF are generated, each 
employing one of the presented candidate solutions as its 
model structure. Table 5 summarizes the employed flights

The flights trace different trajectories and are character-
ized by different dynamics and wind conditions. The initial 
part is performed in manual flight mode and presents sev-
eral turns to ensure proper excitation of the aerodynamic 
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derivatives through different flight maneuvers while preserv-
ing stability through the autopilot control loop. This part 
of the flight is essential as it enables the fine-tuning of the 

aerodynamic coefficients (phase 2 calibration) and estima-
tion of the wind components within the augmented state 
vector. The remaining part of the flight is devoted to test the 
quality of the VDM-based navigation solution for GNSS 
outages in different flight scenarios.

Figure 23 depicts the performance of each candidate 
model during 2 min GNSS outages within the 4 flights. The 
displayed metric is the horizontal error with respect to the 
reference trajectory obtained via post-processing solution 
with continuous GNSS data. The positioning error is evalu-
ated only in the horizontal plane as the information from the 
barometer sensor allows to prevent the vertical drift of the 
platform during dead-reckoning navigation.

It can be observed that the proposed models perform 
comparably throughout the different test flights although 
model A and B appear to be slightly more robust in flight 
2. Figure 24 shows a direct comparison of the VDM-based 
navigation performance of candidate models with respect to 
the reference trajectory respectively for flight 1 (manual-sta-
bilized flight mode) and flight 4 (Mission mode) for longer 
(200-second) outages.

Notably the dynamics of the flight is retained in both cases 
for all considered models. Similar results were obtained 
for the remaining flights and hence not shown. From the 
obtained results, it seems that models A and B represent a 
good compromise between the dead-reckoning quality and 
simplicity of the model structure. In particular, model A 
benefits from the decorrelation of moment and force equa-
tions due to the separation of dependency between control 
surfaces and flight parameters. This separation prevents the 
build-up of correlation between the respective coefficients 
during the calibration phases (1 and 2) while offering a navi-
gation solution comparable to more complex models. The 
additional advantage of a minimal model structure is that 
it results in lower computational load, particularly in terms 
of covariance matrix propagation, and has thus the poten-
tial to be implemented in hardware with low computational 
resource. This is important to consider for micro-processor 
implementations such as that which the PX4 autopilot stack 
is currently running.

Inertial coasting: Here we compare the dead-reckoning 
performance of VDM-based navigation on a delta wing UAV 

Fig. 20  Schematics of the coef-
ficient identification phases
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Fig. 21  Aerodynamic force coefficients during the three phases of the 
identification process

Fig. 22  Aerodynamic moment coefficients during the three phases of 
the identification process
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with respect to inertial coasting. Since the barometer allows 
for the mitigation of vertical drift, we depict errors exclu-
sively in the horizontal plane. Figure 25 shows the errors 
of VDM dead-reckoning using model B and that of inertial 
coasting for the autopilot IMU.

The drift of inertial coasting varies among the test flights 
from ∼ 500 to ∼ 3000 m, most likely due to the differences 
in trajectory shape, flight dynamics and wind conditions. 
On the other hand, the maximum drift of the VDM-based 
solution appears to be less dependent on these factors with 
horizontal error being between one and two orders of mag-
nitude less than those of inertial coasting.

6.5  Conclusion

The contributions of this work can be summarized in the 
following aspects:

First, we present a model structure identification method-
ology for small delta-wing UAV in an open-air wind tunnel 
set-up. The collected experimental data are based on a com-
bination of static and dynamic observations sampled with 
LHS. The experimental design allows for the observability 
of explanatory variable to be enhanced, while minimizing 
the required experimental time. From these data, we identify 

three possible model structures with approximate values of 
their coefficients employing step-wise regression. The selec-
tion criterion is based on increments of the adjusted coef-
ficient of determination.

Table 5  Summary of the testing 
reference flights

Date Flight ID Control type Flight duration Mean wind conditions

2/9/2022 Flight 1 Manual-Stabilized 10 min 35 s 4.6 [m/s] SW
6/4/2023 Flight 2 Manual-Stabilized 9 min 12 s 2.6 [m/s] N
1/6/2023(a) Flight 3 Manual-Stabilized + Mission 9min 10 s 4.3 [m/s] S
1/6/2023(b) Flight 4 Manual-Stabilized + Mission 9 min 18 s 4.9 [m/s] SW
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Fig. 23  Horizontal drift comparison of the proposed models for 
model-based navigation during GNSS outage in different test flights

Fig. 24  Horizontal drift com-
parison of the proposed models 
for model-based navigation 
during GNSS outage
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Second, we both fine-calibrate and evaluate the presented 
aerodynamic models in different flights under varying 
wind and flight dynamics conditions. Differences between 
experimental and real flight conditions lead to significant 
discrepancies in aerodynamic coefficient values which must 
be compensated. One of the possible sources of variation 
analyzed is the Reynolds number effect showed in this work 
to be a non-negligible secondary aerodynamic effect due 
to the platform Reynolds number being near to the critical 
value. We show that relatively simple models (A and B) are 
sufficiently representative for navigation purposes; i.e. they 
depict a one to two order of magnitude improvement with 
respect to inertial navigation in GNSS denied scenarios.

The size of both identified models remains reasonable for 
implementations in resource constrained micro-controllers. 
Model A is further attractive due to the functional independ-
ence of its force and moment coefficients.

As a result, this study shows that appropriate selection 
of a vehicle aerodynamic model structure specific to VDM-
based navigation is crucial. The optimal formulation for the 
model, providing the best dead-reckoning performance, does 
not necessarily coincide with the best model formulation in 
the traditional aerodynamic sense.
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