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Abstract
Automatic helicopter flight in uncertain surroundings remains a challenging task due to sudden changes in environment, 
requiring fast response to guarantee safe and collision-free guidance. Increasing numbers of small unmanned aerial vehicles, 
which are not covered by air traffic control, pose a potential threat to rotorcraft operating in lower airspace. To provide col-
lision avoidance in this scenario, the capability of reacting immediately to appearing obstacles and guiding the rotorcraft 
along feasible evasive trajectories is required. This paper presents an approach to short-term collision avoidance based on 
model predictive techniques. The proposed method, originally developed for automotive applications, finds optimal control 
inputs by predicting a set of trajectories utilizing a model resembling the helicopter dynamics. Compared to model predictive 
control, no iterative optimization is adopted, resulting in deterministic execution time. The proposed method is evaluated by 
closed-loop simulations with a non-linear helicopter model. Additional hardware-in-the-loop simulations are conducted to 
examine the real-time capability of the approach.

Keywords Model predictive control · Rotorcraft · Helicopter · ACT/FHS · Collision avoidance · Flight control

1 Introduction

Over the past decades, a focus of rotorcraft research has 
been the development of advanced automatic flight control 
systems to increase safety and decrease pilot’s workload. A 
challenging aspect of automatic flight is avoidance of obsta-
cles, especially in uncertain environments. One source of 
uncertainty in low-altitude flight is given, for instance, by 
the growing numbers of unmanned aerial vehicles (UAV). 
Driven by the increasing performance of these systems, a 
broad field of applications has emerged. Besides commer-
cial use, a vast number of small UAVs is operated by pri-
vate individuals in lower airspace around the world. Despite 
newly introduced regulations, the operation of UAVs is an 
area of growing safety concern. The European Aviation 
Safety Agency (EASA) reported a significant increase in the 
number of collisions and near collisions in aviation involving 
UAVs in the last few years [1]. These UAVs are not covered 

by air traffic control and pose a potential threat to aircraft 
operating in low altitude, for example helicopter emergency 
medical services (HEMS). The ability to detect and avoid 
UAVs and other suddenly appearing obstacles can increase 
the safety of helicopter missions close to the ground.

Detection and avoidance of obstacles for rotorcraft is 
being investigated by various authors. Scherer et. al. pro-
posed a system for autonomous flight of a small unmanned 
helicopter in an unknown environment [2]. The system con-
sists of a laser scanner for obstacle detection, a path planning 
algorithm, and a reactive collision avoidance method. The 
control commands are calculated geometrically by evaluat-
ing the angles and distances to obstacles and the goal point, 
respectively. Flight tests with a full-scale helicopter showed 
the capability of avoiding static obstacles at lower flight 
speed [3].

Further significant research has been carried out by Goer-
zen and his colleagues. They presented a system for obstacle 
field navigation that provides helicopter guidance in low-
altitude flight in unknown environment based on sensor data 
[4]. The capabilities of the system have been demonstrated 
in extensive flight tests [5]. In their approach, a path to the 
goal location is generated by creating a risk-based map of 
the terrain and obstacles in the vicinity of the rotorcraft and 
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applying a navigation function that provides a minimum-risk 
path. To command the helicopter to the goal, a velocity com-
mand controller is used that follows the navigation function. 
A simple model based on fixed acceleration limits is utilized 
to generate feasible velocity commands. In recent work [6], 
the authors presented an improved method to generate the 
velocity commands. For this approach, a reachable set is 
estimated by calculating constant turn-radius paths for dif-
ferent lateral accelerations. The trajectory with lowest risk is 
chosen and the corresponding command is applied.

An approach to explicitly consider the system dynamics 
in trajectory generation is given by model predictive con-
trol (MPC). The idea is to predict the system dynamics by 
calculating the output of a model and find control inputs by 
optimization. A major drawback of MPC is the high com-
putational cost and proof of convergence under real-time 
constraints. Non-linear MPC has been used for collision-free 
guidance of an unmanned helicopter [7]; however, a simple 
non-linear translational model has been used to reduce the 
computational cost.

To overcome the disadvantages of MPC, model predictive 
path integral control (MPPI) has been proposed by Williams 
et. al. [8]. For this method, a finite number of trajectories is 
being sampled by generating random deviations of the con-
trol input and applying them to the model over a prediction 
horizon. The optimal trajectory is chosen by evaluating a 
cost function and the control sequence corresponding to it is 
set as input to the system. The trajectory sampling eliminates 
the need for explicit optimization and grants the possibility 
to parallelize the computations, i.e., on graphic processor 
units. Recently, the MPPI method has been adopted in dif-
ferent fields of aerospace research. Comandur et. al. used the 
approach for optimizing trajectories in automatic helicopter 
ship deck landings to compensate for random ship move-
ment [9–11]. In [12], the method is applied for controlling 
an aircraft on a racecourse, while [13] proposed MPPI for 
collision avoidance of a fixed-wing aircraft.

Another model predictive approach that avoids explicit 
optimization is given by sampling a finite set of predicted 
trajectories but instead of using random deviations of the 
control input, the allowed range is roughly discretized and 
held constant for each trajectory over the prediction horizon. 
This method has been proposed for collision avoidance in 
automotive applications [14, 15].

This paper presents a short-term collision avoidance algo-
rithm for helicopters based on the aforementioned model 
predictive approach with control input range discretization 
and constant input over the prediction horizon. It is intended 
to support hands-on flight as well as automatic flight with 
trajectory following in situations with sudden changes in 
environment and non-cooperative obstacles.

Besides rotorcraft applications, collision avoidance has 
received a lot of attention in UAV research as well. Yasin et. 

al. categorized the various approaches in the field into four 
main categories: geometric, force field, optimization, and 
sense and avoid [16]. In the following, some recent methods 
are briefly described and compared to the method proposed 
in this paper.

In geometric approaches, position and velocity informa-
tion of the aircraft and obstacles are analyzed to ensure mini-
mum distances between them, as proposed in [17]. As the 
aircraft dynamics are not considered, these approaches are 
typically not well suited for short-term collision avoidance.

Force-field methods are based on the artificial potential 
field algorithm, where first application in collision avoid-
ance has been proposed for robot manipulators [18]. The 
algorithm calculates forces that attract the manipulator to 
the target location and repel it from obstacles. The result-
ing force vector is then transferred into position or velocity 
commands, resulting in smooth trajectories. The algorithm 
has been applied to multiple UAVs operating in one envi-
ronment and enhanced to prevent situations where the target 
can not be reached due to local minima in the potential field 
[19, 20]. The position of other UAVs is incorporated in the 
force field at each time instant to handle them as dynamic 
obstacles. However, the speed and direction of movement 
of the obstacle UAVs are not considered. Also, the resulting 
position commands do not take into account the dynamics 
of the respective UAV, which may lead to unreachable com-
manded flight states, especially when obstacles are being 
detected in short distance and fast evasive maneuvers need 
to be conducted.

Optimization-based methods are often used for long term 
planning in static environments, as they introduce high com-
putational complexity. Several authors have developed meth-
ods to reduce the computational burden, e.g., [21] proposes 
a real-time capable method for UAV collision avoidance 
utilizing sample-based path planning. The evasive trajecto-
ries are generated by prediction of a kinematic model [22]. 
Compared to the approach proposed in the paper at hand, the 
method does not explore the full range of possible evasive 
maneuvers, due to the random sampling of waypoints. The 
authors also state that errors of the prediction due to the 
simple model can cause the method to fail the task of colli-
sion avoidance.

Sense and avoid methods are characterized by short 
response times and are well suited for dynamic environ-
ments. In [23–25], the authors propose an algorithm that 
supports UAV pilots in manual flight by avoiding colli-
sions with surrounding walls. They use a model of the UAV 
dynamics to predict a trajectory based on the pilot’s current 
input. If the predicted trajectory collides with an obstacle 
detected by a 2D ranging sensor, the pilot input is overrid-
den to avoid the collision. To find a collision-free input, the 
resulting position is approximated based on the predicted 
trajectory. In the approach proposed in this contribution, no 
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approximation is needed as the control input is chosen based 
on a set of predicted trajectories.

The remaining paper will be structured as follows: First, 
an overview of the proposed method is given with a detailed 
description of the components. Then, the capability of the 
collision avoidance system is evaluated based on closed-loop 
simulations. In addition, results for real-time simulations at 
DLR’s flight simulation facility are presented. The paper 
closes with a conclusion of the findings and an outlook to 
future work.

2  Method

The proposed model predictive collision avoidance (MPCA) 
algorithm relies on an underlying flight control system that 
stabilizes the helicopter, tracks commanded flight states 
and provides axis decoupling. The implemented method 
utilizes the model-based control (MBC) flight control sys-
tem of DLR’s research helicopter ACT/FHS [26–28] as the 
underlying flight controller. The overall system architecture 
is shown in Fig. 1. The MPCA algorithm generates control 
inputs to the MBC to guide the rotorcraft around obstacles. 
To achieve this, an approximation of the closed-loop heli-
copter flight dynamics is predicted from the current flight 
state over a receding time horizon for a set of constant con-
trol inputs. The resulting predicted trajectories are then eval-
uated by applying a suitable cost function. The control input 
corresponding to the trajectory with lowest cost is applied 
to the MBC flight controller for the current time step. In the 
next time step, the initial flight state for prediction is updated 
with the currently measured flight state of the helicopter and 
the algorithm is executed again. By applying this feedback 
a closed-loop control system for short-term collision avoid-
ance is established.

The following sections will give a detailed description of 
the three main components of the MPCA algorithm: con-
trol input range discretization, prediction model and cost 
function.

2.1  Control input range discretization

For the generation of predicted trajectories, the correspond-
ing control input � for the respective control axis needs to be 
specified. In the proposed approach, this is done by mapping 
the continuous range of � into a finite set of values. For this 
discretization of the control input range, two aspects need to 
be considered. First, the set of discrete values should cover 
the full range of � to represent the entire control authority 
and hence include the full range of possible maneuvers at the 
current flight state. Second, the difference between consecu-
tive values should be as small as possible to achieve a high 
resolution. Applying both requirements to a fixed discretiza-
tion of � will result in a large number of control values and 
therefore a large number of trajectories for prediction. Hence 
the computational cost will rise.

To reduce the number of trajectories, an adaptive discre-
tization method described in [15] is applied. � is first discre-
tized over the full range [�min, �max] with a small number of 
equally distanced values. For each element �i of the result-
ing set of equally distanced values, a polynomial function 
depending on the current control input value �c is applied, 
which increases the density of values in the vicinity of the 
current value while preserving the full range. The piecewise 
defined function reads as

(1)𝛿d,i =

⎧⎪⎨⎪⎩

�
𝛿min−𝛿c

𝛿3
min

�
⋅ 𝛿3

i
+ 𝛿c for 𝛿min ≤ 𝛿i < 𝛿c ,�

𝛿max−𝛿c

𝛿3
max

�
⋅ 𝛿3

i
+ 𝛿c for 𝛿c ≤ 𝛿i ≤ 𝛿max .
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Fig. 1  MPCA system architecture
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Compared to the method from [15], instead of a second-
order polynomial, a third-order equivalent is applied. This 
provides a higher resolution around the current control value 
�c . Figure 2 shows an example of the applied method for dis-
cretization of the lateral cyclic input �y . The plot displays the 
value distributions for �y,c = 0% and �y,c = 20% , respectively, 
with �min = −50% and �max = 50% . The number of discrete 
values in the set for both cases is 15. As can be seen, the area 
with highest density (highlighted areas in the plot) is located 
around the respective current value of �y.

Utilizing a suitable model, which will be described in 
the next section, the approximated closed-loop helicopter 
dynamics can be predicted for the set of discretized control 
input values ���d . To do so, for each element in the set, the 
dynamics are calculated with the respective control input 
value held constant over the prediction horizon. This yields 
one predicted trajectory for each element in the set of control 
input values. Figure 3 shows the results of the rotorcraft’s 
predicted position in the x–y-plane over a prediction time 
tp = 3 s for the lateral control input ���y,d shown in Fig. 2. The 
initial state is steady flight with a forward velocity of 30m/s . 
Figure 3a corresponds to �y,c = 0% , while Fig. 3b complies 
to �y,c = 20% . The high resolution of samples around the 
initial control value �y,c results in a high density of predicted 
positions around the trajectory corresponding to the initial 
control value (highlighted areas in the plots). At the same 
time, the range of reachable predicted positions is not altered 
by the initial value of �y,c , thus preserving the maximum 
range of maneuvers.

The described discretization method is executed for each 
control axis at every time step of the MPCA algorithm. The 
resulting set of discrete control inputs ���d is then passed as 
the input to the prediction model.

2.2  Prediction model

To predict the rotorcraft’s flight state for a given input, a 
suitable numerical model is needed. This prediction model 
should resemble the helicopter dynamics with sufficient 
fidelity and at the same time be computationally inexpensive 
to achieve real-time computation.

The MBC flight controller is based upon a model follow-
ing scheme where the pilot commands a model with desired 
helicopter dynamics. This command model (CM) resembles 
a stable helicopter with decoupled axes and good handling 
qualities. Based on the pilot input, the CM generates desired 
flight states xxxcmd that are being tracked by a combination of a 
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feedforward and a feedback controller, see Fig. 1. A detailed 
description of the CM used in the MBC flight controller can 
be found in [26] and [27].

Provided that the controller tracks the commanded states 
with sufficient performance, the CM approximately repre-
sents the closed-loop dynamics of the helicopter with the 
MBC flight controller. Therefore, it is suited to serve as the 
MPCA algorithm’s prediction model. Compared to a lin-
ear helicopter model, the computational effort of the CM is 
higher; however, it provides predictions with higher fidelity, 
which is necessary as the MPCA is intended to be used in 
critical situations close to obstacles. For the implementation 
of the prediction model, several modifications and simpli-
fications compared to the original CM have been applied. 
The resulting prediction model is a six degree-of-freedom 
model accounting for rigid-body dynamics. The state-space 
equations are given by

where AAA and BBB denote the stability derivative and con-
trol derivative matrices, xxx =

[
uf vf wf p q r

]T denotes the 
state vector in body frame of reference with the veloci-
ties uf , vf ,wf  and angular rates p, q, r. The velocities for 
trimmed flight states based on recorded trim angles of the 
ACT/FHS are incorporated by xxxtrim , while f (xxx + xxxtc + xxxtrim) 
and f (xxxtrim) account for the gravitational forces at the flight 
states xxx + xxxtc + xxxtrim and xxxtrim , respectively. Coordinated 
turns with v̇f = 0 are achieved by applying a correction of 
angular rates xxxtc . The model output state vector account-
ing for trim angles and turn coordination is given by xxxmo . 
The vector uuu incorporates the control inputs and is being 
generated by the upper modes, which calculate velocity and 
angular rate commands based on the control input ��� . For 
cyclic inputs, the attitude command attitude hold (ACAH) 
mode has been implemented. It commands pitch angles 
proportional to the longitudinal cyclic stick deflection and 
roll angles proportional to the lateral cyclic stick deflection, 
respectively. As only coordinated turns shall be flown by the 
MPCA and the turn coordination (TC) is implemented in 
the CM itself, no pedal inputs and hence no upper mode for 
the yaw axis needs to be considered. For the heave axis the 
Rate Command Height Hold (RCHH) mode is implemented, 
which commands a vertical velocity proportional to the col-
lective stick deflection and holds the current altitude when 
no input is given.

Compared to the original CM, the states filter for the cal-
culation of the second derivative of the state vector ẍxx has been 
omitted, as ẍxx is only needed for feedforward control. Further-
more, the original CM implements additional upper modes, 
i.e., rate command attitude hold (RCAH) and translational 
rate command (TRC), to provide various control responses. 

(2)
ẋxx = AAAxxx + f

(
xxx + xxxtc + xxxtrim

)
− f (xxxtrim) +BBBuuu ,

xxxmo = xxx + xxxtc + xxxtrim ,

As for the MPCA only one upper mode per axis is required, 
additional modes have not been implemented in the prediction 
model.

The resulting model provides a close approximation of the 
command model dynamics and thus allows for predictions of 
the closed-loop helicopter response. However, it does not con-
sider controller tracking errors and external disturbances, i.e., 
the influence of wind.

To calculate trajectories utilizing the prediction model, a 
differential equation solver has to be applied. To minimize 
the computational effort of the calculation, the forward Euler 
method has been chosen. Adapting the model Eq. 2 to the 
solver yields

with h denoting the integration step size, k resembling the 
prediction step at time tk and k + 1 resembling the subse-
quent prediction at tk+1 = tk + h . The notation with hat sym-
bol denotes quantities calculated with the solver.

For the evaluation of the cost function described in the 
next section, besides the predicted body frame velocities and 
angular rates, further states are required. Therefore, at each 
prediction step, additional states are being calculated, includ-
ing positions

Euler angles

and additional velocities

where T̂TTgf (k) denotes the transformation from body fixed 
frame to local North-East-Down (NED) frame and T̂TTvf (k) 
denotes the transformation from body fixed frame to a frame 
where the z-axis is aligned with the local NED z-axis and the 
x-axis is horizontally aligned with the body x-axis (vertical 
frame). The overall predicted state vector at prediction step k 
reads as x̂xxp(k) =

[
ûf v̂f ŵf p̂ q̂ r̂ x̂ ŷ ẑ �̂� �̂� �̂� ûv v̂v ŵv

]T . With 

(3)

x̂xx(k + 1) = x̂xx(k)

+ h ⋅

(
AAAx̂xx(k) + f

(
x̂xx(k) + x̂xxtc(k) + x̂xxtrim(k)

)

− f
(
x̂xxtrim(k)

)
+BBBûuu(k)

)
,

x̂xxmo(k) = x̂xx(k) + x̂xxtc(k) + x̂xxtrim(k) ,

(4)
⎡⎢⎢⎣

x̂(k + 1)

ŷ(k + 1)

ẑ(k + 1)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

x̂(k)

ŷ(k)

ẑ(k)

⎤⎥⎥⎦
+ T̂TTgf (k) ⋅ h ⋅

⎡⎢⎢⎣

ûf (k)

v̂f (k)

ŵf (k)

⎤⎥⎥⎦
,

(5)
⎡⎢⎢⎣

�̂�(k + 1)

�̂�(k + 1)

�̂�(k + 1)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

�̂�(k)

�̂�(k)

�̂�(k)

⎤⎥⎥⎦
+ T̂TTvf (k) ⋅ h ⋅

⎡⎢⎢⎣

p̂(k)

q̂(k)

r̂(k)

⎤⎥⎥⎦
,

(6)
⎡⎢⎢⎣

ûv(k)

v̂v(k)

ŵv(k)

⎤⎥⎥⎦
= T̂TTvf (k) ⋅

⎡⎢⎢⎣

ûf (k)

v̂f (k)

ŵf (k)

⎤⎥⎥⎦
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Eqs. 3–6, the prediction model dynamics are being com-
puted from k = 1 , with x̂xxp(k = 1) = xxxm holding the measured 
state vector, to k = np with np = tp∕h holding the prediction 
horizon. Performing this calculations for the vector of dis-
cretized control input values ���d provides a set of predicted 
trajectories x̂xxp,i.

2.3  Cost function

To guide the rotorcraft along a collision-free path, at each 
time step the most suitable predicted trajectory out of the 
complete set needs to be identified. This is realized by apply-
ing a cost function to the predictions. The trajectory with 
the smallest cost is considered as optimal with respect to 
the cost function and the corresponding control input ���opt is 
set as input to the flight controller for the current time step.

For the design and weighting of the cost function com-
ponents, the insights from [14] and [15] have been used and 
adopted to the application in rotorcraft flight. Therefore, 
three aspects have been considered: First, the cost function 
shall provide collision-free trajectories. Second, the dynamic 
reaction of the rotorcraft while avoiding obstacles shall be 
minimized. Third, if no collision is predicted, the rotorcraft 
shall follow reference flight states. The resulting cost func-
tion reads as

The cost function value is calculated at each prediction step 
k and summed up over the prediction horizon np to obtain the 
overall cost for each trajectory, respectively. J1, J2, J3 resem-
ble the cost function components, which will be explained 
in the following. W1,W2,W3 hold the weight for each cor-
responding component.

The first component J1 accounts for avoiding collisions. 
Therefore, at each prediction step, the distance dobs,k between 
the rotorcraft’s predicted position 

[
xp,k yp,k zp,k

]
 and the obsta-

cle’s position PPPobs,k is calculated. Depending on the distance, 
the collision avoidance component is given by

and is diagrammed in Fig. 4. If the predicted distance to 
the obstacle dobs,k is less than the minimum safety dis-
tance ds , a collision is predicted and the cost value is set 
to a value greater than 1. A quadratic function is applied 
that increases the cost value with decreasing distance. This 
ensures that trajectories with higher distance to the obstacle 

(7)J =

np∑
k=1

(
W1J1,k +W2J2,k +W3J3,k

)
.

(8)J1 =

⎧⎪⎪⎨⎪⎪⎩

2 −
1

ds
2
dobs,k if dobs,k ≤ ds ,

�
dobs,k − (ds + df )

�2
df

2
if ds < dobs,k < ds + df ,

0 if dobs,k ≥ ds + df ,

are chosen when all predicted trajectories collide with the 
safety margin. If the predicted position of the helicopter is 
not colliding but is within a certain range to the obstacle 
ds < dobs,k < ds + df  , another quadratic function is applied 
that generates rising cost with decreasing distance. The 
range for this fade-in of the cost has been set to df = 5 m . 
This measure removes sharp discontinuities of the cost 
value in the vicinity of the obstacle, which caused unde-
sired behavior in early experiments, i.e., oscillations of the 
control inputs. Finally, if the rotorcraft’s position is outside 
the fading distance dobs,k ≥ ds + df  , the cost is set to J1 = 0.

The cost function component J2 accounts for minimiz-
ing the dynamic reaction of the helicopter while avoiding 
a collision with a nearby obstacle to prevent unstable flight 
conditions. This is achieved by minimizing the angular 
rates p and q. The turn rate r will not be considered, as this 
would penalize steady turn flight. Therefore, the cost func-
tion component for minimizing dynamic reactions yields

The third cost function component J3 accounts for the rotor-
craft to maintain a reference flight state while no collision is 
predicted along the current flight path or right after a colli-
sion has been avoided. If evasive maneuvers with only lateral 
cyclic control inputs shall be performed, the deviation of the 
predicted yaw angle �̂�p to the reference track angle �ref has 
to be considered

If maneuvers with longitudinal and lateral cyclic inputs 
shall be executed, additionally the deviation of the predicted 

(9)J2 = |p̂| + |q̂|.

(10)J3,y = |�̂�p − 𝜒ref|.

0 ds ds + df
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Fig. 4  Collision cost dependent on distance to obstacle
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forward velocity ûv,p to the reference velocity uv,ref needs to 
be incorporated

Weighting of the different components is a crucial step in the 
design of the cost function, as the overall system behavior 
strongly relies on correct ratios between the several weights. 
Badly set weights can even cause the algorithm to force col-
lisions instead of avoiding them. For this reason, the cost 
function has been designed to utilize only few weights which 
can be tuned manually.

First, critical situations will be considered: As avoid-
ing collisions has highest priority, setting W1 >> W2 and 
W1 >> W3 is mandatory. For non-critical situations, obtain-
ing reference states needs to be weighted higher than mini-
mizing dynamic reactions, as a change of flight state can 
only be achieved by applying angular rates, hence W3 >> W2 
can be set. Combining both requirements provides the over-
all setup rule W1 >> W3 >> W2.

3  Evaluation

To evaluate the capability of the proposed model predic-
tive approach to short-term collision avoidance and tune 
the algorithm’s parameters, software-in-the-loop simula-
tions have been conducted. The simulation setup utilizes 
the flight controls development tool chain of the research 
helicopter ACT/FHS. The MPCA algorithm has been added 
to the implementation of the MBC in MATLAB/Simulink®. 
The helicopter flight dynamics are resembled by a physics-
based non-linear model of the ACT/FHS which is also used 
for real-time simulations at DLR.

First, the parameter values of the algorithm are defined. 
The number of sampled trajectories has been set to 15 per 
control axis. This value has been found to be a feasible 
trade-off between sufficiently high discretization and com-
putational effort. With 15 trajectories, each in the lateral 
and the longitudinal cyclic axis, a total of 225 trajectories is 
being predicted. For the definition of the prediction horizon, 
typically the time is considered that is needed to decelerate 
the rotorcraft to hover. This ensures that a collision with 
a straight-ahead obstacle, which can not be dodged later-
ally, can be avoided. For this study, the prediction horizon 
is intentionally set to a lower value, as only obstacles in the 
order of magnitude of the helicopter are considered, which 
can be avoided by lateral maneuvers. Furthermore, the per-
formance of the system shall be evaluated for short-term col-
lision avoidance, therefore the prediction horizon has been 
set to tp = 3 s . To achieve a sufficiently high quality of the 
prediction, the integration step size is set to h = 30ms , thus 
each predicted trajectory consists of np = 100 prediction 

(11)J3,x,y = |�̂�p − 𝜒ref| + |ûv,p − uv,ref|.

steps. This grants a spatial resolution of the predicted trajec-
tories of about 1 m at 30 m/s airspeed. Finally, the cost func-
tion weights are being set. Applying the setup rule described 
in the previous section and evaluation in different scenarios 
results in W1 = 10,W2 = 0.1,W3 = 1.

To evaluate the algorithm’s collision avoidance capabil-
ity in cruise flight, a scenario with two spherical, station-
ary obstacles has been defined. The obstacles have a radius 
Robs = 10m with a safety margin ds = 10m . The initial state 
of the helicopter is steady flight with uv = 30m∕s and � = 0 . 
The flight path collides with the obstacle, forcing the heli-
copter to conduct an evasive maneuver. The resulting trajec-
tory as well as attitude and control input are shown in Fig. 5. 
The upper three plots show the trajectory of the helicopter 
in the x–y-plane at different points in time. At each point in 
time the predicted trajectories for lateral control inputs are 
shown. The coloring separates collision-free from colliding 
trajectories and highlights the trajectory with lowest cost.

At the beginning of the maneuver, the helicopter 
approaches the first obstacle. At a position x ≈ 40m , the pre-
dicted trajectories meet the obstacle, resulting in a predicted 
collision and causing the helicopter to introduce a left turn 
with a maximum roll angle 𝜙 > 30 deg . While closing in on 
the obstacle, the roll angle is reduced to conduct a right turn 
to capture the reference track angle �ref = 0 . At a position 
x ≈ 150 m a collision with the second obstacle is predicted, 
causing the helicopter to increase the roll angle to the right. 
After passing the second obstacle the reference track angle 
�ref = 0 is reestablished. During the maneuver the helicop-
ter stays clear of the safety margins and hence successfully 
avoids collisions. To minimize the roll rate, however, it is 
passing the obstacles very close to their boundaries. The 
evasive maneuver requires high amplitude lateral cyclic 
control inputs exceeding 40%. At the same time, there are 
only low-amplitude inputs in the longitudinal cyclic axis and 
hence small change of pitch angle, resulting in a nearly con-
stant velocity. This is due to the design of the cost function 
favoring lateral maneuvers over variation of speed.

The evaluation shows the capability of the method to 
provide collision avoidance for obstacles appearing close 
to the aircraft, yet there are still some shortcomings that 
need further improvement. As the cost function does not 
include a direct penalization of control inputs, the algorithm 
generates high amplitude and high rate control inputs which 
may excite oscillations. Furthermore, the prediction model 
reflects the desired closed-loop dynamics and hence does not 
explicitly include limitations of the helicopter performance 
and does not account for tracking errors of the controller. 
This may lead to predictions diverging from the aircraft 
behavior, especially close to the borders of the flight enve-
lope. These shortcomings result in oscillations of the con-
trols, as can be seen in the plot of �y , especially for positions 
140m ≤ x ≤ 220m.
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4  Real‑time simulation

In the previous section, the capability of the MPCA algo-
rithm to successfully avoid collisions has been shown using 
closed-loop simulations. To evaluate the system performance 
under real-time conditions, the algorithm is implemented 
on an experimental flight control computer and tested in 
hardware-in-the-loop simulations with DLR’s ground based 

flight simulation facility, the Air Vehicle Simulator (AVES, 
[29]). In the AVES, the flight control computer is set up 
in a control loop with a non-linear physics based model of 
the ACT/FHS flight dynamics together with supplementary 
simulation models such as actuator dynamics and sensor 
simulation.

The flight control computer is an exact replication of the 
experimental hardware of the ACT/FHS, which offers a plat-
form for in-flight evaluation of flight control algorithms. To 
achieve this, the research helicopter is equipped with a high 
authority experimental system with fly-by-wire connection 
to electro-hydraulical actuators. The flight control computer 
generates actuator commands based on pilot inputs and the 
implemented control algorithms and sends them to the actu-
ators. Further details on the system architecture can be found 
in [27] and [28].

The experimental computer has been specifically 
designed to execute flight control algorithms. Therefore, 
it implements hard real-time constraints, i.e., a fixed cycle 
time of 8ms . The implemented flight control algorithms 
should not exceed 6ms per cycle to retain sufficient compu-
tation time for other processes. The flight controller MBC 
requires approximately 2ms each cycle, thus the MPCA may 
use a maximum of 4ms . However, for the implementation 
with one active control axis utilizing a set of 15 predicted 
trajectories, an execution time on the experimental system 
hardware of approximately 30ms is needed. To meet the 
real-time requirements, the MPCA algorithm’s calculations 
are distributed by spreading the model prediction and cost 
calculation over eight cycles of the flight control system exe-
cution. As a result, the algorithm generates updated control 
inputs to the MBC each 64ms.

For the evaluation of the MPCA in the real-time simula-
tion, a low radio tower is defined as obstacle, which is dis-
played in Fig. 6. As the implementation of the MPCA system 
does not yet utilize sensor information for the detection, the 
tower top is resembled by a sphere with radius Robs = 5m 
at predefined coordinates. The safety margin to the obsta-
cle again has been set to ds = 10m . Due to the mentioned 
limitations in execution time, evasive maneuvers with only 
lateral cyclic control input with 15 predicted trajectories are 
evaluated. The remaining parameters of the algorithm are 
set according to the evaluation setup in the previous sec-
tion with tp = 3 s , h = 30ms and W1 = 10,W2 = 0.1,W3 = 1 . 
The initial state of the helicopter is again steady flight with 
uv = 30m/s and � = 0 . The initial position is set to achieve 
an initial flight path colliding with the radio tower. The 
resulting trajectory of the maneuver as well as roll angle and 
control input is shown in Fig. 7. The upper three plots show 
the trajectory of the helicopter in the x–y-plane at different 
points in time. At each point in time the predicted trajecto-
ries are shown. The coloring separates collision-free from 
colliding trajectories and highlights the chosen trajectory.
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The simulation starts with the helicopter approaching 
the tower top. At a position x ≈ 50m a collision is pre-
dicted and the helicopter introduces a right turn. While 
passing the obstacle, the roll angle is reduced to conduct 
a left turn to capture the reference track angle �ref = 0 . 
After the helicopter has passed the tower, the reference 
track angle is reestablished. A collision with the tower 
is successfully avoided, yet the resulting trajectory lies 
close to the obstacle to minimize the roll rate during the 
maneuver. Compared to the evaluation described in the 
previous section, the necessary control input amplitude 
and, thus, the resulting roll angle amplitude is lower. This 
is due to the smaller diameter of the obstacle in the real-
time scenario. Figure 8 displays a sequence of images of 
the maneuver. Figure 8a shows the helicopter conduct-
ing a right turn shortly after a collision with the tower 
is predicted. In Fig. 8b the helicopter is approaching the 
obstacle while maintaining a sufficiently large lateral dis-
tance. Finally, in Fig. 8c the helicopter introduces a left 
turn to reestablish the reference track angle after passing 
the tower.

The simulation results show the real-time capability of 
the MPCA method for lateral evasive maneuvers. Utilizing 
a set of predicted trajectories with constant control input 
yields a promising solution to the collision avoidance task. 
However, implementing the algorithm into the experimental 
system of the ACT/FHS shows that the proposed method is 
computationally expensive and can easily exceed available 
flight control hardware capabilities. For the present setup, 
control discretization and model prediction can only be 
achieved for one control axis at a time.

Nevertheless, specialized hardware may exploit the 
structure of the algorithm. As calculations of the predicted 
trajectories are independent of one another, the algorithm 

is a suitable candidate for parallel computation. Therefore, 
future work will investigate the implementation of the algo-
rithm on graphic processor based hardware.

Fig. 6  Obstacle in real-time simulation: radio tower
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5  Concluding remarks

This paper proposes a model predictive approach, previ-
ously used in automotive driver assistance systems, for 
short-term collision avoidance for helicopters. The method 
solves an optimal control problem by evaluating the output 
of a set of trajectories which are generated by predicting 
a model of the system dynamics with roughly discretized 
control inputs over a short prediction horizon.

First, the method is adapted to be suitable for rotorcraft 
applications and to serve as an extension of the model-
based flight controller of DLR’s research helicopter. The 
three main components of the algorithm, control input 
range discretization, prediction model and cost function, 
are developed. While the adaptive discretization technique 
is slightly modified, the prediction model is derived from 
the command model of the underlying flight controller. 
This six degree-of-freedom model resembles the desired 
closed-loop dynamics of the helicopter. The cost function 

is designed to provide collision-free trajectories, while at 
the same time account for reasonable maneuvers.

The resulting model predictive collision avoidance 
(MPCA) system is implemented into the flight control tool 
chain of the research helicopter and evaluated in closed-
loop simulations with a non-linear helicopter model. The 
implementation supports longitudinal and lateral cyclic 
inputs. The evaluations show the capability of the system 
to guide the helicopter along collision-free trajectories 
while keeping control intervention to a minimum. Some 
shortcomings of the current implementation, which need 
further improvement, are identified, i.e., insufficiencies of 
the cost function and deviations of the dynamics of the 
prediction model from the helicopter simulation model. 
To investigate the real-time capability of the MPCA, it is 
additionally evaluated in real-time hardware-in-the-loop 
simulations at DLR’s flight simulation facility. Limitations 
of computational resources of the experimental flight con-
trol system allow only for prediction in one control axis 
at a time, constraining the application to lateral evasive 
maneuvers. The real-time simulations show the capability 
of the algorithm to successfully conduct evasive maneu-
vers under real-time constraints.

The results in this paper provide a proof of concept for 
the MPCA as a short-term collision avoidance system for 
helicopters. Future work will include the enhancement of 
the system to extend the possible maneuvers for obstacle 
avoidance, i.e., by ascending or descending. Also, the cur-
rent implementation does not account for prediction uncer-
tainties which may be caused by model uncertainties and 
disturbances, for example the influence of wind. Therefore, 
the system will be extended to consider prediction errors 
that arise from tracking errors of the underlying flight 
controller. Furthermore, the design and parameterization 
of the cost function will be refined to explicitly consider 
the flight envelope and the control value history. Another 
focus of future work will be set on the implementation of 
the MPCA method on specialized hardware. The structure 
of the algorithm allows for parallel computation, as the 
predicted trajectories are being calculated independent of 
each other. Implementation of the system on graphic pro-
cessor based hardware is expected to strongly decrease the 
required computation time while at the same time allow 
for a larger number of predicted trajectories.
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